Research Article
BibTex RIS Cite

Production of Sugar Beet Pulp/LDPE Composites Using Compression Molding Method and Investigation of Some Properties

Year 2021, Volume: 21 Issue: 3, 295 - 305, 31.12.2021
https://doi.org/10.17475/kastorman.1049966

Abstract

Aim of study: In this study, the effect of lignocellulosic filler and coupling agent amount on the physical and mechanical properties of produced sugar beet pulp/LDPE composites were researched.
Material and methods: Wood-plastic composites were produced using compression molding method. The effect of lignocellulosic filler and coupling agent (maleic anhydride grafted polyethylene) amount on the physical (density and water uptake analyses) and mechanical (tensile strength, tensile modulus, elongation at break, flexural strength, flexural modulus, and impact strength) properties of composites were investigated.
Main results: According to the obtained results, the rise in the amount of SBP were increased the density, tensile modulus, flexural strength, and flexural modulus while decreasing tensile strength, elongation at break, and impact strength of the resulting composites. Generally, the increase of coupling agent (MAPE) amount improved the composites properties except for impact strength and elongation at break.
Highlights: Sugar beet pulp (SBP) can be successfully used as an alternative lignocellulosic filler in the wood plastic composite production.

References

  • Adhikary, K. B., Pang, S. & Staiger, M. P. (2008). Long-term moisture absorption and thickness swelling behaviour of recycled thermoplastics reinforced with Pinusradiata sawdust. Chemical Engineering Journal, 142(2), 190-198.
  • Ahmad, Z., Ansell, M. P. & Smedley, D. (2010). Effect of nano-and micro-particle additions on moisture absorption in thixotropic room temperature cure epoxy-based adhesives for bonded-in timber connections. International Journal of Adhesion and Adhesives, 30(6), 448-455.
  • Anonim. Konya Şeker A.Ş. Bitkisel Üretim Çiftçi Rehberi (2012).
  • Anonim. T.C., Şeker Kurumu. 2012 yılı Faaliyet Raporu, (2013).
  • Anonim. Türkiye Şeker Fabrikaları A.Ş. Sektör Raporu (2013), (2014).
  • Arjmand, M., Apperley, T., Okoniewski, M. & Sundararaj, U., (2012). Comparative study of electromagnetic interference shielding properties of injection molded versus compression molded multi-walled carbon nanotube/polystyrene composites. Carbon, 50(14), 5126-5134.
  • ASTM D570, (2010). Standard test method for water absorption of plastics. ASTM International.
  • ASTM D638, (2010). Standard test for tensile properties of plastics. ASTM International.
  • ASTM D790, (2010). Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. ASTM International.
  • ASTM D256, (2010). Standard test for determining the Izod pendulum impact resistance of plastics. ASTM International.
  • ASTM D6662, (2013). Standard specification for polyolefin-based plastic lumber decking boards. ASTM International.
  • ASTM D792, (2013). Standard test methods for density and specific gravity (relative density) of plastics by displacement. ASTM International.
  • Aziz, N. F. A., Ahmad, Z. & Puaad, M. B. F. M. (2020). Study of the behavior of moisture absorption and swelling in high filler loading kenaf core/bast polyethylene composites. Advances in Civil Engineering Materials, 9(1), 250-261.
  • Basalp, D., Tihminlioglu, F., Sofuoglu, S. C., Inal, F. & Sofuoglu, A. (2020). Utilization of Municipal Plastic and Wood Waste in Industrial Manufacturing of Wood Plastic Composites. Waste and Biomass Valorization, 1-12.
  • Bajwa, S. G., Bajwa, D. S., Holt, G., Coffelt, T. & Nakayama, F. (2011). Properties of thermoplastic composites with cotton and guayule biomass residues as fiber fillers. Industrial Crops and Products, 33(3), 747-755.
  • Bledzki, A. K. & Faruk, O. (2004). Wood fiber reinforced polypropylene composites: Compression and injection molding process. Polymer-Plastics Technology and Engineering, 43(3), 871-888.
  • Brahmakumar, M., Pavithran, C. & Pillai, R. M. (2005). Coconut fibre reinforced polyethylene composites: effect of natural waxy surface layer of the fibre on fibre/matrix interfacial bonding and strength of composites. Composites Science and Technology, 65(3-4), 563-569.
  • Cavus, V. & Mengeloglu, F. (2020). Effect of wood particle size on selected properties of neat and recycled wood polypropylene composites. BioResources, 15(2), 3427-3442.
  • Dinand, E., Chanzy, H. & Vignon, R. M. (1999). Suspensions of cellulose microfibrils from sugar beet pulp. Food Hydrocolloids, 13(3), 275-283.
  • Gardner, D. J., Han, Y. & Wang, L. (2015). Wood–plastic composite technology. Current Forestry Reports, 1(3), 139-150.
  • Huang, L., Mu, B., Yi, X., Li, S. & Wang, Q. (2018). Sustainable use of coffee husks for reinforcing polyethylene composites. Journal of Polymers and the Environment, 26(1), 48-58.
  • Kalaprasad, G., Mathew, G., Pavithran, C. & Thomas, S. (2003). Melt rheological behavior of intimately mixed short sisal–glass hybrid fiber‐reinforced low‐density polyethylene composites. I. Untreated fibers. Journal of Applied Polymer Science, 89(2), 432-442.
  • Karakus, K., Gulec, T., Kaymakci, A., Mengeloglu, F., 2010. Mısır sapı unlarının dolgu maddesi olarak polimer kompozit üretiminde değerlendirilmesi. Ш. Ulusal Karadeniz Ormancılık Kongresi. 20-22 Mayıs, Trabzon. 2013-2019.
  • Karakus, K., Birbilen, Y. & Mengeloğlu, F. (2016). Assessment of selected properties of LDPE composites reinforced with sugar beet pulp. Measurement, 88, 137-146.
  • Kar, K. K. (Ed.). (2016). Composite materials: processing, applications, characterizations. Springer.
  • Karnani, R., Krishnan, M. & Narayan, R. (1997). Biofiber-Reinforced Polypropylene Composites. Polymer Engineering and Science, 37(2), 476-482.
  • Liu, B., Jin, Y. & Wang, S. (2017). Effect of processing method on the mechanical and thermal of Silvergrass/HDPE composites. In AIP Conference Proceedings (Vol. 1839, No. 1, p. 020002).AIP Publishing LLC.
  • Mengeloglu, F. & Cavus, V. (2019). Additives used in wood plastic composite manufacturing. Research and Reviews in Agriculture, Forestry and Aquaculture Sciences, Summer, 49-58.
  • Mengeloglu, F., Kurt, R., Gardner, D. J., O’Neill, S. (2007). Mechanical Properties of Extruded High-Density Polyethylene and Polypropylene Wood Flour Decking Boards. Iranian Polymer Journal, 16(7), 477-487.
  • Mengeloglu, F. & Karakus, K. (2008). Some properties of eucalyptus wood flour filled recycled high density polyethylene polymer-composites. Turkish Journal of Agriculture and Forestry, 32(6), 537-546.
  • Panthapulakkal, S. & Sain, M. (2006). Injection molded wheat straw and corn stem filled polypropylene composites. Journal of Polymers and the Environment, 14(3), 265-272.
  • Petkim, PetrokimyasalMaddeleriÜretimZinciri, PetkimAraştırmaMerkezi, (2019).
  • https://app.petkim.com.tr/web/urun/File.ashx?fn=UR.12-BF-U1221&l=tr&fl=urunler Accessed 20.04.2020.
  • Rouilly, A., Jorda, J. & Rigal, L. (2006). Thermo-mechanical processing of sugar beet pulp. I. Twin-screw extrusion process. Carbohydrate polymers, 66(1), 81-87.
  • Shah, B. L., Matuana, L. M. & Heiden, P. A. (2005). Novel coupling agents for PVC/wood‐flour composites. Journal of Vinyl and Additive Technology, 11(4), 160-165.
  • Sever, K. (2010). The improvement of mechanical properties of jute fiber/LDPE composites by fiber surface treatment. Journal of reinforced plastics and composites, 29(13), 1921-1929.
  • Sun, R. C. & Hughes, S. (1999). Fractional isolation and physico-chemical characterization of alkali-soluble polysaccharides from sugar beet pulp. Carbohydrate Polymers, 38(3), 273-281.
  • Tasdemir, M., Biltekin, H. & Caneba, G. T. (2009). Preparation and characterization of LDPE and PP—wood fiber composites. Journal of applied polymer science, 112(5), 3095-3102.
  • Tisserat, B. H., Reifschneider, L., Gravett, A. & Peterson, S. C. (2017). Wood-plastic composites utilizing wood flours derived from fast-growing trees common to the Midwest. BioResources, 12(4), 7898-7916.
  • Wu, H., Liang, X., Huang, L., Xie, Y., Tan, S. & Cai, X. (2016). The utilization of cotton stalk bark to reinforce the mechanical and thermal properties of bio-flour plastic composites. Construction and Building Materials, 118, 337-343.
  • Yang, H. S., Wolcott, M. P., Kim, H. S. & Kim, H. J. (2005). Thermal properties of lignocellulosic filler-thermoplastic polymer bio-composites. Journal of Thermal Analysis and Calorimetry, 82(1), 157-160.
  • Yang, H. ., Wolcott, M. P., Kim, H. S., Kim, S., Kim, H. J. (2007). Effect of different compatibilizing agents on the mechanical properties of lignocellulosic material filled polyethylene bio-composites. Composite Structures, 79, 369-375.

Pres Kalıplama Yöntemi Kullanılarak Şeker Pancarı Küspesi/LDPE Kompozitlerin Üretilmesi ve Bazı Özelliklerinin İncelenmesi

Year 2021, Volume: 21 Issue: 3, 295 - 305, 31.12.2021
https://doi.org/10.17475/kastorman.1049966

Abstract

Çalışmanın amacı: Bu çalışmada, üretilen şeker pancarı küspesi/LDPE kompozitlerin fiziksel ve mekanik özellikleri üzerine lignoselülozik dolgu maddesi ve uyumlaştırıcı ajan miktarının etkisi araştırılmıştır.
Materyal ve yöntem: Kompozitlerin fiziksel (yoğunluk ve su alma analizleri) ve mekanik (çekme direnci, çekmede elastikiyet modülü, kopmada uzama, eğilme direnci, eğilmede elastikiyet modülü ve darbe direnci) özellikleri üzerine dolgu maddesi ve uyumlaştırıcı ajan miktarının etkisi incelenmiştir.
Temel sonuçlar: Elde edilen sonuçlara göre, şeker pancarı küspesi miktarındaki artışlar yoğunluk, çekmede elastikiyet modülü, eğilme direnci ve eğilmede elastikiyet modülü değerlerini artırmıştır. Çekme direnci, kopmada uzama ve darbe direnci şeker pancarı küspesi oranının artması ile azalmıştır. Uyumlaştırıcı ajan MAPE miktarının artması ise kopmada uzama ve darbe direnci hariç genel olarak kompozitlerin özelliklerini iyileştirmiştir.
Araştırma vurguları: Şeker pancarı küspesinin odun plastik kompozit üretiminde alternatif bir lignoselülozik dolgu maddesi olarak kullanılabileceği belirlenmiştir.

References

  • Adhikary, K. B., Pang, S. & Staiger, M. P. (2008). Long-term moisture absorption and thickness swelling behaviour of recycled thermoplastics reinforced with Pinusradiata sawdust. Chemical Engineering Journal, 142(2), 190-198.
  • Ahmad, Z., Ansell, M. P. & Smedley, D. (2010). Effect of nano-and micro-particle additions on moisture absorption in thixotropic room temperature cure epoxy-based adhesives for bonded-in timber connections. International Journal of Adhesion and Adhesives, 30(6), 448-455.
  • Anonim. Konya Şeker A.Ş. Bitkisel Üretim Çiftçi Rehberi (2012).
  • Anonim. T.C., Şeker Kurumu. 2012 yılı Faaliyet Raporu, (2013).
  • Anonim. Türkiye Şeker Fabrikaları A.Ş. Sektör Raporu (2013), (2014).
  • Arjmand, M., Apperley, T., Okoniewski, M. & Sundararaj, U., (2012). Comparative study of electromagnetic interference shielding properties of injection molded versus compression molded multi-walled carbon nanotube/polystyrene composites. Carbon, 50(14), 5126-5134.
  • ASTM D570, (2010). Standard test method for water absorption of plastics. ASTM International.
  • ASTM D638, (2010). Standard test for tensile properties of plastics. ASTM International.
  • ASTM D790, (2010). Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. ASTM International.
  • ASTM D256, (2010). Standard test for determining the Izod pendulum impact resistance of plastics. ASTM International.
  • ASTM D6662, (2013). Standard specification for polyolefin-based plastic lumber decking boards. ASTM International.
  • ASTM D792, (2013). Standard test methods for density and specific gravity (relative density) of plastics by displacement. ASTM International.
  • Aziz, N. F. A., Ahmad, Z. & Puaad, M. B. F. M. (2020). Study of the behavior of moisture absorption and swelling in high filler loading kenaf core/bast polyethylene composites. Advances in Civil Engineering Materials, 9(1), 250-261.
  • Basalp, D., Tihminlioglu, F., Sofuoglu, S. C., Inal, F. & Sofuoglu, A. (2020). Utilization of Municipal Plastic and Wood Waste in Industrial Manufacturing of Wood Plastic Composites. Waste and Biomass Valorization, 1-12.
  • Bajwa, S. G., Bajwa, D. S., Holt, G., Coffelt, T. & Nakayama, F. (2011). Properties of thermoplastic composites with cotton and guayule biomass residues as fiber fillers. Industrial Crops and Products, 33(3), 747-755.
  • Bledzki, A. K. & Faruk, O. (2004). Wood fiber reinforced polypropylene composites: Compression and injection molding process. Polymer-Plastics Technology and Engineering, 43(3), 871-888.
  • Brahmakumar, M., Pavithran, C. & Pillai, R. M. (2005). Coconut fibre reinforced polyethylene composites: effect of natural waxy surface layer of the fibre on fibre/matrix interfacial bonding and strength of composites. Composites Science and Technology, 65(3-4), 563-569.
  • Cavus, V. & Mengeloglu, F. (2020). Effect of wood particle size on selected properties of neat and recycled wood polypropylene composites. BioResources, 15(2), 3427-3442.
  • Dinand, E., Chanzy, H. & Vignon, R. M. (1999). Suspensions of cellulose microfibrils from sugar beet pulp. Food Hydrocolloids, 13(3), 275-283.
  • Gardner, D. J., Han, Y. & Wang, L. (2015). Wood–plastic composite technology. Current Forestry Reports, 1(3), 139-150.
  • Huang, L., Mu, B., Yi, X., Li, S. & Wang, Q. (2018). Sustainable use of coffee husks for reinforcing polyethylene composites. Journal of Polymers and the Environment, 26(1), 48-58.
  • Kalaprasad, G., Mathew, G., Pavithran, C. & Thomas, S. (2003). Melt rheological behavior of intimately mixed short sisal–glass hybrid fiber‐reinforced low‐density polyethylene composites. I. Untreated fibers. Journal of Applied Polymer Science, 89(2), 432-442.
  • Karakus, K., Gulec, T., Kaymakci, A., Mengeloglu, F., 2010. Mısır sapı unlarının dolgu maddesi olarak polimer kompozit üretiminde değerlendirilmesi. Ш. Ulusal Karadeniz Ormancılık Kongresi. 20-22 Mayıs, Trabzon. 2013-2019.
  • Karakus, K., Birbilen, Y. & Mengeloğlu, F. (2016). Assessment of selected properties of LDPE composites reinforced with sugar beet pulp. Measurement, 88, 137-146.
  • Kar, K. K. (Ed.). (2016). Composite materials: processing, applications, characterizations. Springer.
  • Karnani, R., Krishnan, M. & Narayan, R. (1997). Biofiber-Reinforced Polypropylene Composites. Polymer Engineering and Science, 37(2), 476-482.
  • Liu, B., Jin, Y. & Wang, S. (2017). Effect of processing method on the mechanical and thermal of Silvergrass/HDPE composites. In AIP Conference Proceedings (Vol. 1839, No. 1, p. 020002).AIP Publishing LLC.
  • Mengeloglu, F. & Cavus, V. (2019). Additives used in wood plastic composite manufacturing. Research and Reviews in Agriculture, Forestry and Aquaculture Sciences, Summer, 49-58.
  • Mengeloglu, F., Kurt, R., Gardner, D. J., O’Neill, S. (2007). Mechanical Properties of Extruded High-Density Polyethylene and Polypropylene Wood Flour Decking Boards. Iranian Polymer Journal, 16(7), 477-487.
  • Mengeloglu, F. & Karakus, K. (2008). Some properties of eucalyptus wood flour filled recycled high density polyethylene polymer-composites. Turkish Journal of Agriculture and Forestry, 32(6), 537-546.
  • Panthapulakkal, S. & Sain, M. (2006). Injection molded wheat straw and corn stem filled polypropylene composites. Journal of Polymers and the Environment, 14(3), 265-272.
  • Petkim, PetrokimyasalMaddeleriÜretimZinciri, PetkimAraştırmaMerkezi, (2019).
  • https://app.petkim.com.tr/web/urun/File.ashx?fn=UR.12-BF-U1221&l=tr&fl=urunler Accessed 20.04.2020.
  • Rouilly, A., Jorda, J. & Rigal, L. (2006). Thermo-mechanical processing of sugar beet pulp. I. Twin-screw extrusion process. Carbohydrate polymers, 66(1), 81-87.
  • Shah, B. L., Matuana, L. M. & Heiden, P. A. (2005). Novel coupling agents for PVC/wood‐flour composites. Journal of Vinyl and Additive Technology, 11(4), 160-165.
  • Sever, K. (2010). The improvement of mechanical properties of jute fiber/LDPE composites by fiber surface treatment. Journal of reinforced plastics and composites, 29(13), 1921-1929.
  • Sun, R. C. & Hughes, S. (1999). Fractional isolation and physico-chemical characterization of alkali-soluble polysaccharides from sugar beet pulp. Carbohydrate Polymers, 38(3), 273-281.
  • Tasdemir, M., Biltekin, H. & Caneba, G. T. (2009). Preparation and characterization of LDPE and PP—wood fiber composites. Journal of applied polymer science, 112(5), 3095-3102.
  • Tisserat, B. H., Reifschneider, L., Gravett, A. & Peterson, S. C. (2017). Wood-plastic composites utilizing wood flours derived from fast-growing trees common to the Midwest. BioResources, 12(4), 7898-7916.
  • Wu, H., Liang, X., Huang, L., Xie, Y., Tan, S. & Cai, X. (2016). The utilization of cotton stalk bark to reinforce the mechanical and thermal properties of bio-flour plastic composites. Construction and Building Materials, 118, 337-343.
  • Yang, H. S., Wolcott, M. P., Kim, H. S. & Kim, H. J. (2005). Thermal properties of lignocellulosic filler-thermoplastic polymer bio-composites. Journal of Thermal Analysis and Calorimetry, 82(1), 157-160.
  • Yang, H. ., Wolcott, M. P., Kim, H. S., Kim, S., Kim, H. J. (2007). Effect of different compatibilizing agents on the mechanical properties of lignocellulosic material filled polyethylene bio-composites. Composite Structures, 79, 369-375.
There are 42 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Yıldız Birbilen This is me

Kadir Karakuş This is me

Fatih Mengeloğlu This is me

Publication Date December 31, 2021
Published in Issue Year 2021 Volume: 21 Issue: 3

Cite

APA Birbilen, Y., Karakuş, K., & Mengeloğlu, F. (2021). Production of Sugar Beet Pulp/LDPE Composites Using Compression Molding Method and Investigation of Some Properties. Kastamonu University Journal of Forestry Faculty, 21(3), 295-305. https://doi.org/10.17475/kastorman.1049966
AMA Birbilen Y, Karakuş K, Mengeloğlu F. Production of Sugar Beet Pulp/LDPE Composites Using Compression Molding Method and Investigation of Some Properties. Kastamonu University Journal of Forestry Faculty. December 2021;21(3):295-305. doi:10.17475/kastorman.1049966
Chicago Birbilen, Yıldız, Kadir Karakuş, and Fatih Mengeloğlu. “Production of Sugar Beet Pulp/LDPE Composites Using Compression Molding Method and Investigation of Some Properties”. Kastamonu University Journal of Forestry Faculty 21, no. 3 (December 2021): 295-305. https://doi.org/10.17475/kastorman.1049966.
EndNote Birbilen Y, Karakuş K, Mengeloğlu F (December 1, 2021) Production of Sugar Beet Pulp/LDPE Composites Using Compression Molding Method and Investigation of Some Properties. Kastamonu University Journal of Forestry Faculty 21 3 295–305.
IEEE Y. Birbilen, K. Karakuş, and F. Mengeloğlu, “Production of Sugar Beet Pulp/LDPE Composites Using Compression Molding Method and Investigation of Some Properties”, Kastamonu University Journal of Forestry Faculty, vol. 21, no. 3, pp. 295–305, 2021, doi: 10.17475/kastorman.1049966.
ISNAD Birbilen, Yıldız et al. “Production of Sugar Beet Pulp/LDPE Composites Using Compression Molding Method and Investigation of Some Properties”. Kastamonu University Journal of Forestry Faculty 21/3 (December 2021), 295-305. https://doi.org/10.17475/kastorman.1049966.
JAMA Birbilen Y, Karakuş K, Mengeloğlu F. Production of Sugar Beet Pulp/LDPE Composites Using Compression Molding Method and Investigation of Some Properties. Kastamonu University Journal of Forestry Faculty. 2021;21:295–305.
MLA Birbilen, Yıldız et al. “Production of Sugar Beet Pulp/LDPE Composites Using Compression Molding Method and Investigation of Some Properties”. Kastamonu University Journal of Forestry Faculty, vol. 21, no. 3, 2021, pp. 295-0, doi:10.17475/kastorman.1049966.
Vancouver Birbilen Y, Karakuş K, Mengeloğlu F. Production of Sugar Beet Pulp/LDPE Composites Using Compression Molding Method and Investigation of Some Properties. Kastamonu University Journal of Forestry Faculty. 2021;21(3):295-30.

14178  14179       14165           14166           14167            14168