Research Article
BibTex RIS Cite

Antagonistic Effects of Trichoderma Species in Biocontrol of Armillaria Root Rot Disease In Vitro Conditions

Year 2022, Volume: 22 Issue: 1, 17 - 23, 31.03.2022
https://doi.org/10.17475/kastorman.1095712

Abstract

Aim of study: Armillaria root rot is a disease of fruit trees, some herbaceous plants and forest trees. Armillaria spp. which cause this disease, are among the most destructive fungal pathogens of trees. In this study, antagonistic effects of Trichoderma species in biocontrol of Armillaria were investigated in vitro conditions
Area of study: The study area was in the Düzce University, Konuralp Campus.
Material and methods: Trichoderma harzianum was provided from Düzce University, Faculty of Forestry, Department of Forestry Industrial Engineering (FS19) and Trichoderma viride was provided from Düzce University, Konuralp Campus. Armillaria mellea and Desarmillaria tabescens were isolated from the infected roots of hazelnut and oak trees in Konuralp Campus and cultured in potato dextrose agar. Trichoderma species were inoculated to confront with the pathogens in cultures of Armillaria and Desarmillaria to determine antagonistic effects for 15 days. Penetration of Trichoderma hyphae in rhizomorphs and sporulation of Trichoderma species in the surface of rhizomorphs were investigated by scanning electron microscopy.
Main results: The statistically significant decrease was observed for A. mellea and Desarmillaria species caused by Trichoderma. One day after Trichoderma inoculation, Trichoderma hyphae grew approximately twice as much towards the host rhizomorphs. Three days after colonization of Armillaria and Desarmillaria rhizomorphs by Trichoderma, growth of Armillaria and Desarmillaria seemed to completely stopped.
Highlights: Trichoderma species have been studied as the most widely used antagonists in biological control against many plant-pathogenic fungi worldwide. To develop an effective biological method for plant protection in the future, biological control studies are highly important in oak forest under natural stand conditions.

References

  • Abdulkhair, W. M. & Alghuthaymi, M. A. (2016). Plant Pathogens. Plant Growth. DOI: 10.5772/65325.
  • Amiri, A., Bussey, K. E., Riley, M. & Schnabel, G. (2008). Propiconazole inhibits Armillaria tabescens in vitro and translocates into peach roots following trunk infusion. Plant Disease, 92, 1293-1298.
  • Asef, M. R., Goltapeh, E. M. & Danesh, Y. R. (2008). Antagonistic effects of Trichoderma species in biocontrol of Armillaria mellea in fruit trees in Iran. Journal of Plant Protection Research, 48, 2.
  • Baumgartner, K. & Rizzo, D. M. (2001). Distribution of Armillaria species in California. Mycologia, 93, 821-830.
  • Baumgartner, K. (2004). Root collar excavation for postinfection control of Armillaria root disease of grapevine. Plant Disease, 88(11), 1235–1240.
  • Baumgartner, K., Coetzee, M. P. A. & Hoffmeister, D. (2011). Secrets of the subterranean pathosystem of Armillaria. Molecular Plant Pathology, 12, 515-534.
  • Baysal-Gürel, F. & Çınar, A. (2014). First Report of Armillaria Root Rot Caused by Armillaria mellea Infecting Carrizo Citrange and Sour Orange Rootstocks in Turkey. Plant Disease, 98, 1439.
  • Bremer, H., Ismen, H., Karel, G. & Özkan, M. (1947). Beiträge zur Kenntnis der parasitischen Pilze der Türkei. I. Revue de la Faculté des Sciences de I’Université d’İstanbul. Ser. B. 12(2), 307- 334.
  • Chen, L., Bóka, B., Kedves, O., Nagy, V.D., Szucs, A., Champramary, S., Roszik, R., Patocskai, Z., Münsterkötter, M., Huynh, T., Indic, B., Vágvölgyi, C., Sipos, G. & Kredics, L. (2019). Towards the biological control of devastating forest pathogens from the genus Armillaria. Forests, 10, 1013. doi:10.3390/f10111013.
  • Doepel, R. F. (1962) "Plant diseases: Armillaria root rot of fruit trees,"Journal of the Department of Agriculture, Western Australia, Series 4, 3(1), Article 8.
  • Downer, A. J. & Lacan, I. (2020). Armillaria Root Rot UC IPM Pest Note. UC IPM Pest Notes. K. Windbiel-Rojas, A. Sutherland and B. Messenger-Sikes. UC ANR. 74171.
  • Dunaev, A. V. & Afanasenkova, O. V. (2009). Macromycetes infecting English oak in forest-steppe oak groves, Zashchita i Karantin Rasteniĭ, No.2 51.
  • Dumas, M. T. & Boyonoski, N. W. (1992). Scanning electron microscopy of mycoparasitism of Armillaria rhizomorphs by species of Trichoderma. European Journal of Forest Pathology, 22, 379-383.
  • Erdem, R. (1956). Kestanenin abiyotik ve biyotik düşmanları üzerine araştırmalar. İstanbul Üniversitesi Orman Fakültesi Yayınları. Yayın No: 662, 36.
  • Emmert, E. A. B. & Handelsman, J. (1999). Biocontrol of plant disease: a (Gram-) positive perspective, FEMS Microbiology Letters, 171(1), 1-9.
  • Hagle, S. K. & Shaw, C. G. (1991). Avoiding and reducing losses from Armillaria root disease. ‘‘In: Armillaria Root Disease. Forest service Agriculture Handbook No. 691” (C.G. Shaw, G.A. Kile, eds.). Washington, D.C., USDA, 157-173.
  • Hood, I. A., Redfern, D. B. & Kile, G. A. (1991). Armillaria in planted hosts. In: ‘‘Armillaria Root Disease. Forest service Agriculture Handbook No. 691” (C.G. Shaw, G.A. Kile, eds.). Washington, D.C., USDA, 122–149.
  • Jibril, S. M, Jakada, B. H., Kutama, A. S. & Umar, H. Y. (2016). Plant and Pathogens. Pathogen Recognision, Invasion and Plant Defense Mechanism. International Journal of Current Microbiology and Applied Sciences ISSN, 5(6), 2319-7706.
  • Keča N. (2009). In vitro interactions between Armillaria species and potential biocontrol fungi. Bulletin of the Faculty of Forestry, 100, 129-142.
  • Keča, N., Karadžić, D. & Woodward, S. (2009). Ecology of Armillaria species in managed forests and plantations in Serbia. Forest Pathology, 39, 217-231.
  • Kelley, M. B., Fierke, M. K. & Stephen, F. M. (2009). Identification and distribution of Armillaria species associated with an oak decline event in the Arkansas Ozarks. Forest Pathology, 39(6) 397-404.
  • Kile, G. A. & Watling, R. (1988). Identification and occurrence of Australian Armillaria species, including A. pallidula sp. nov. and comparative studies between them and non-Australian tropical and Indian Armillaria. Transactions of the British Mycological Society, 91, 305 - 315.
  • Kubicek, C. P. & Harman, G. E., (2002). Trichoderma and Gliocladium. Basic Biology, Taxonomy and Genetics, ISBN 0-203-48355-3, 9-34.
  • Kumar, M. & Ashraf, S. (2017). Role of Trichoderma spp. as a Biocontrol Agent of Fungal Plant Pathogens, in book: Probiotics and Plant Health. DOI: 10.1007/978-981-10-3473-2_23, 497-506.
  • Lehtijärvi, A., Doğmuş-Lehtijärvi, H. T. & Aday, A. G. (2012). Armillaria ostoyae associated with dying 60-year-old Scots pines in northern Turkey. Forest Pathology, 42, 267–269.
  • Lohwag, K. (1957). Ein Beitrag zur Pilzflora der Türkei. İstanbul Üniversitesi Orman Fakültesi Dergisi, 7(1), 118-128.
  • Luisi, N., Sicoli, G. & Lerario, P. (1996). Observations on Armillaria occurrence in declining oak woods of southern Italy. Annales des Sciences Forestières, 53, 389-394
  • Miller S. B., Gasic, K., Reighard, G. R, Henderson, W. G, Rollins, P. A., Vassalos, M. & Schnabel, G. (2020) Preventative root collar excavation reduces peach tree mortality caused by Armillaria root rot on replant sites. Plant Disease, 104, 1274-1279.
  • Mitchell, E. K. (1950). Some contributions to the biology of Armillaria mellea (Vahl ex fr.) Quel, Doctoral Thesis, University of Glasgow.
  • Mukhopadhyay, R. & Kumar, D. (2020). Trichoderma: a beneficial antifungal agent and insights into its mechanism of biocontrol potential. Egyptian Journal of Biological Pest Control, 30, 133.
  • Morrison, D. J., Williams, R. E. & Whitney, R. D. (1991). Infection, disease development, diagnosis and detection. In C. G. Shaw III & G. A. Kile, (Eds.), Armillaria root disease. Agricultural handbook no. 691.Washington, D.C., USDA, Forest Service, 62–75.
  • O’Brien, P. A. (2017). Biological control of plant diseases. Australasian Plant Pathology, 46(4) DOI: 10.1007/s13313-017-0481-4.
  • Park K. H., Oh, S. Y., Park M. S., Kim, M. S., Klopfenstein, N. B., Kim, N. K., Park, J. Y., Kim, J. J., Han, S. K., Lee, J. K. & Lim, Y. W. (2017). Re-evaluation of Armillaria and Desarmillaria in South Korea based on ITS/tef1 sequences and morphological characteristics. Forest Pathology, 47, e12447.
  • Pildain, M. B., Coetzee, M. P. A., Wingfield, B. D., Wingfield, M. J. & Rajchenberg, M. (2010). Taxonomy of Armillaria in the Patagonian forests of Argentina. Mycologia, 102, 392–403.
  • Rossnev, B. & Petkov, P. (2000). Health tatus and pathological problems in the oak forest of northeastern Bulgaria. Lesotekhnicheski Universitet. Yubileen sbornik nauchni dokladi: 75 godini visshe lesotekhnichesko obrazovanie v B"lgariya. Sektsiya Gorsko Stopanstvo, 109-114
  • Selik, M. (1973). Türkiye odunsu bitkileri, özellikle orman ağaçlarında hastalık amili ve odun tahrip eden mantarlar. İ.Ü., Orman Fakültesi Yayınları. Yayın No: 1948, 55.
  • Schimitschek, E. (1937). Observations of forest entomology and protection in Turkey. Nr. 1, Observations of forest entomology and protection in countrysides: Ayancik-Gokirmak-Gokceagac-Kastamonu-Kure-Daday-Ilgaz Dagi-Cankiri. High Agricultural Institution Publications, 74, 46 (in German).
  • Shaw, C. G. & Kile, G. A. (1991). Armillaria Root Disease. Agriculture Handbook No. 691. United States Department of Agriculture, Forest Service, Washington, D.C., 233.
  • Sharma, J. K. & Sankaran, K. V. (1988). Biocontrol of Rust and Leaf Spot Diseases. In: Mukerji KG, Garg KL (eds) Biocontrol of Plant Diseases, 2, CRC Press, Boca Raton, 1-23.
  • Sipos, G., Anderson, J. B. & Nagy, L. G. (2018). Armillaria, Current Biology, 28 (7), 297-298.
  • Williams-Woodward, J. L. (2013). 2011 Georgia Plant Disease Loss Estimates. Cooperative Extension Service, University of Georgia, College of Agricultural & Environmental Sciences, Annual Publication, 102-4.
  • Wingfield, B. D., Maphosa, L., Coetzee, M. P. A., Mwenje, E. & Wingfield, M. J. (2009). Characterisation of Zimbabwean Armillaria using IGS-1 sequences and AFLP analysis. Fungal Diversity. 34, 187-196. Worrall, J. (2004). Armillaria root disease. The Plant Health Instructor. DOI:10.1094/PHI-I-2004-0706-01.
  • Yüksel, B. (2016). Türkiye’de Meşe Ormanının Önemli Zararlıları ve Yönetimi. Marmara Ormancılık Araştırma Enstitüsü Uluslararası Katılımlı Meşe Çalıştayı Bildiriler ve Sonuç Bildirgesi. 18-20 Ekim 2016, İğneada/Kırklareli.
  • Yüksel, B. & Tekel, S. (2020). Düzce Üniversitesi Konuralp Kampüsü Makrofungusları. D.Ü. Ormancılık Dergisi. 16(2), 161-178.

In Vitro Koşullarında Armillaria Kök Çürüklüğü Hastalığının Biyolojik Kontrolünde Trichoderma Türlerinin Antagonistik Etkileri

Year 2022, Volume: 22 Issue: 1, 17 - 23, 31.03.2022
https://doi.org/10.17475/kastorman.1095712

Abstract

Çalışmanın amacı: Armillaria kök çürüklüğü, bazı otsu bitkiler, meyve ağaçları, ve orman ağaçlarında zarar yapan fungal bir hastalıktır. Bu hastalığa neden olan Armillaria türleri, ağaçlar üzerinde etkili en yıkıcı fungal patojenler arasında yer alır. Bu çalışmada Armillaria türlerinin biyokontrolünde Trichoderma türlerinin antagonistik etkileri araştırılmıştır.
Çalışma alanı: Çalışma alanı Düzce Üniversitesi Konuralp Kampüsü yerleşkesindedir.
Materyal ve yöntem: Çalışmada kullanılan Trichoderma harzianum Düzce Üniversitesi Orman Fakültesi Orman Endüstri Mühendisliği Bölümü’nden (FS19), Trichoderma viride ise Düzce Üniversitesi Konuralp Yerleşkesinden temin edilmiştir. Armillaria mellea ve Desarmillaria tabescens türleri ise Düzce Üniversitesi Konuralp Kampüsünde bulunan hastalıklı fındık ve meşe ağaçlarının köklerinden izole edilerek patates dekstroz agarında kültüre alınmıştır. Daha sonra Trichoderma türleri Armillaria ve Desarmillaria kültürlerine yerleştirilmiş ve 15 gün boyunca gelişimleri gözlemlenmiştir. Trichoderma hiflerinin rizomorflara girişi ve sporulasyonu taramalı elektron mikroskobu kullanılarak gözlemlenmiştir.
Temel sonuçlar: A. mellea ve Desarmillaria türlerinin büyümelerinde istatistiksel olarak anlamlı bir düşüş gözlenmiştir. Bir gün sonra yapılan ölçümde Trichoderma hiflerinin Armillaria ve Desarmillaria rizomorflarının yaklaşık iki katı kadar olduğu gözlemlenmiştir. Trichoderma türlerinin kolonizasyonundan sonra, Armillaria ve Desarmillaria funguslarının üçüncü günden itibaren gelişimleri sonlanmıştır.
Araştırma vurguları: Trichoderma türleri, pek çok bitki patojen funguslarına karşı biyolojik mücadelede en yaygın kullanılan antagonistler olarak bilinmektedir. Gelecekte etkin bir biyolojik mücadele yöntemi geliştirmek için doğal ortam koşullarında bu çalışmaların yapılması oldukça önemlidir.

References

  • Abdulkhair, W. M. & Alghuthaymi, M. A. (2016). Plant Pathogens. Plant Growth. DOI: 10.5772/65325.
  • Amiri, A., Bussey, K. E., Riley, M. & Schnabel, G. (2008). Propiconazole inhibits Armillaria tabescens in vitro and translocates into peach roots following trunk infusion. Plant Disease, 92, 1293-1298.
  • Asef, M. R., Goltapeh, E. M. & Danesh, Y. R. (2008). Antagonistic effects of Trichoderma species in biocontrol of Armillaria mellea in fruit trees in Iran. Journal of Plant Protection Research, 48, 2.
  • Baumgartner, K. & Rizzo, D. M. (2001). Distribution of Armillaria species in California. Mycologia, 93, 821-830.
  • Baumgartner, K. (2004). Root collar excavation for postinfection control of Armillaria root disease of grapevine. Plant Disease, 88(11), 1235–1240.
  • Baumgartner, K., Coetzee, M. P. A. & Hoffmeister, D. (2011). Secrets of the subterranean pathosystem of Armillaria. Molecular Plant Pathology, 12, 515-534.
  • Baysal-Gürel, F. & Çınar, A. (2014). First Report of Armillaria Root Rot Caused by Armillaria mellea Infecting Carrizo Citrange and Sour Orange Rootstocks in Turkey. Plant Disease, 98, 1439.
  • Bremer, H., Ismen, H., Karel, G. & Özkan, M. (1947). Beiträge zur Kenntnis der parasitischen Pilze der Türkei. I. Revue de la Faculté des Sciences de I’Université d’İstanbul. Ser. B. 12(2), 307- 334.
  • Chen, L., Bóka, B., Kedves, O., Nagy, V.D., Szucs, A., Champramary, S., Roszik, R., Patocskai, Z., Münsterkötter, M., Huynh, T., Indic, B., Vágvölgyi, C., Sipos, G. & Kredics, L. (2019). Towards the biological control of devastating forest pathogens from the genus Armillaria. Forests, 10, 1013. doi:10.3390/f10111013.
  • Doepel, R. F. (1962) "Plant diseases: Armillaria root rot of fruit trees,"Journal of the Department of Agriculture, Western Australia, Series 4, 3(1), Article 8.
  • Downer, A. J. & Lacan, I. (2020). Armillaria Root Rot UC IPM Pest Note. UC IPM Pest Notes. K. Windbiel-Rojas, A. Sutherland and B. Messenger-Sikes. UC ANR. 74171.
  • Dunaev, A. V. & Afanasenkova, O. V. (2009). Macromycetes infecting English oak in forest-steppe oak groves, Zashchita i Karantin Rasteniĭ, No.2 51.
  • Dumas, M. T. & Boyonoski, N. W. (1992). Scanning electron microscopy of mycoparasitism of Armillaria rhizomorphs by species of Trichoderma. European Journal of Forest Pathology, 22, 379-383.
  • Erdem, R. (1956). Kestanenin abiyotik ve biyotik düşmanları üzerine araştırmalar. İstanbul Üniversitesi Orman Fakültesi Yayınları. Yayın No: 662, 36.
  • Emmert, E. A. B. & Handelsman, J. (1999). Biocontrol of plant disease: a (Gram-) positive perspective, FEMS Microbiology Letters, 171(1), 1-9.
  • Hagle, S. K. & Shaw, C. G. (1991). Avoiding and reducing losses from Armillaria root disease. ‘‘In: Armillaria Root Disease. Forest service Agriculture Handbook No. 691” (C.G. Shaw, G.A. Kile, eds.). Washington, D.C., USDA, 157-173.
  • Hood, I. A., Redfern, D. B. & Kile, G. A. (1991). Armillaria in planted hosts. In: ‘‘Armillaria Root Disease. Forest service Agriculture Handbook No. 691” (C.G. Shaw, G.A. Kile, eds.). Washington, D.C., USDA, 122–149.
  • Jibril, S. M, Jakada, B. H., Kutama, A. S. & Umar, H. Y. (2016). Plant and Pathogens. Pathogen Recognision, Invasion and Plant Defense Mechanism. International Journal of Current Microbiology and Applied Sciences ISSN, 5(6), 2319-7706.
  • Keča N. (2009). In vitro interactions between Armillaria species and potential biocontrol fungi. Bulletin of the Faculty of Forestry, 100, 129-142.
  • Keča, N., Karadžić, D. & Woodward, S. (2009). Ecology of Armillaria species in managed forests and plantations in Serbia. Forest Pathology, 39, 217-231.
  • Kelley, M. B., Fierke, M. K. & Stephen, F. M. (2009). Identification and distribution of Armillaria species associated with an oak decline event in the Arkansas Ozarks. Forest Pathology, 39(6) 397-404.
  • Kile, G. A. & Watling, R. (1988). Identification and occurrence of Australian Armillaria species, including A. pallidula sp. nov. and comparative studies between them and non-Australian tropical and Indian Armillaria. Transactions of the British Mycological Society, 91, 305 - 315.
  • Kubicek, C. P. & Harman, G. E., (2002). Trichoderma and Gliocladium. Basic Biology, Taxonomy and Genetics, ISBN 0-203-48355-3, 9-34.
  • Kumar, M. & Ashraf, S. (2017). Role of Trichoderma spp. as a Biocontrol Agent of Fungal Plant Pathogens, in book: Probiotics and Plant Health. DOI: 10.1007/978-981-10-3473-2_23, 497-506.
  • Lehtijärvi, A., Doğmuş-Lehtijärvi, H. T. & Aday, A. G. (2012). Armillaria ostoyae associated with dying 60-year-old Scots pines in northern Turkey. Forest Pathology, 42, 267–269.
  • Lohwag, K. (1957). Ein Beitrag zur Pilzflora der Türkei. İstanbul Üniversitesi Orman Fakültesi Dergisi, 7(1), 118-128.
  • Luisi, N., Sicoli, G. & Lerario, P. (1996). Observations on Armillaria occurrence in declining oak woods of southern Italy. Annales des Sciences Forestières, 53, 389-394
  • Miller S. B., Gasic, K., Reighard, G. R, Henderson, W. G, Rollins, P. A., Vassalos, M. & Schnabel, G. (2020) Preventative root collar excavation reduces peach tree mortality caused by Armillaria root rot on replant sites. Plant Disease, 104, 1274-1279.
  • Mitchell, E. K. (1950). Some contributions to the biology of Armillaria mellea (Vahl ex fr.) Quel, Doctoral Thesis, University of Glasgow.
  • Mukhopadhyay, R. & Kumar, D. (2020). Trichoderma: a beneficial antifungal agent and insights into its mechanism of biocontrol potential. Egyptian Journal of Biological Pest Control, 30, 133.
  • Morrison, D. J., Williams, R. E. & Whitney, R. D. (1991). Infection, disease development, diagnosis and detection. In C. G. Shaw III & G. A. Kile, (Eds.), Armillaria root disease. Agricultural handbook no. 691.Washington, D.C., USDA, Forest Service, 62–75.
  • O’Brien, P. A. (2017). Biological control of plant diseases. Australasian Plant Pathology, 46(4) DOI: 10.1007/s13313-017-0481-4.
  • Park K. H., Oh, S. Y., Park M. S., Kim, M. S., Klopfenstein, N. B., Kim, N. K., Park, J. Y., Kim, J. J., Han, S. K., Lee, J. K. & Lim, Y. W. (2017). Re-evaluation of Armillaria and Desarmillaria in South Korea based on ITS/tef1 sequences and morphological characteristics. Forest Pathology, 47, e12447.
  • Pildain, M. B., Coetzee, M. P. A., Wingfield, B. D., Wingfield, M. J. & Rajchenberg, M. (2010). Taxonomy of Armillaria in the Patagonian forests of Argentina. Mycologia, 102, 392–403.
  • Rossnev, B. & Petkov, P. (2000). Health tatus and pathological problems in the oak forest of northeastern Bulgaria. Lesotekhnicheski Universitet. Yubileen sbornik nauchni dokladi: 75 godini visshe lesotekhnichesko obrazovanie v B"lgariya. Sektsiya Gorsko Stopanstvo, 109-114
  • Selik, M. (1973). Türkiye odunsu bitkileri, özellikle orman ağaçlarında hastalık amili ve odun tahrip eden mantarlar. İ.Ü., Orman Fakültesi Yayınları. Yayın No: 1948, 55.
  • Schimitschek, E. (1937). Observations of forest entomology and protection in Turkey. Nr. 1, Observations of forest entomology and protection in countrysides: Ayancik-Gokirmak-Gokceagac-Kastamonu-Kure-Daday-Ilgaz Dagi-Cankiri. High Agricultural Institution Publications, 74, 46 (in German).
  • Shaw, C. G. & Kile, G. A. (1991). Armillaria Root Disease. Agriculture Handbook No. 691. United States Department of Agriculture, Forest Service, Washington, D.C., 233.
  • Sharma, J. K. & Sankaran, K. V. (1988). Biocontrol of Rust and Leaf Spot Diseases. In: Mukerji KG, Garg KL (eds) Biocontrol of Plant Diseases, 2, CRC Press, Boca Raton, 1-23.
  • Sipos, G., Anderson, J. B. & Nagy, L. G. (2018). Armillaria, Current Biology, 28 (7), 297-298.
  • Williams-Woodward, J. L. (2013). 2011 Georgia Plant Disease Loss Estimates. Cooperative Extension Service, University of Georgia, College of Agricultural & Environmental Sciences, Annual Publication, 102-4.
  • Wingfield, B. D., Maphosa, L., Coetzee, M. P. A., Mwenje, E. & Wingfield, M. J. (2009). Characterisation of Zimbabwean Armillaria using IGS-1 sequences and AFLP analysis. Fungal Diversity. 34, 187-196. Worrall, J. (2004). Armillaria root disease. The Plant Health Instructor. DOI:10.1094/PHI-I-2004-0706-01.
  • Yüksel, B. (2016). Türkiye’de Meşe Ormanının Önemli Zararlıları ve Yönetimi. Marmara Ormancılık Araştırma Enstitüsü Uluslararası Katılımlı Meşe Çalıştayı Bildiriler ve Sonuç Bildirgesi. 18-20 Ekim 2016, İğneada/Kırklareli.
  • Yüksel, B. & Tekel, S. (2020). Düzce Üniversitesi Konuralp Kampüsü Makrofungusları. D.Ü. Ormancılık Dergisi. 16(2), 161-178.
There are 44 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Ayşe Mehtap Aslan This is me

Beşir Yüksel This is me

Nuray Öztürk This is me

Publication Date March 31, 2022
Published in Issue Year 2022 Volume: 22 Issue: 1

Cite

APA Aslan, A. M., Yüksel, B., & Öztürk, N. (2022). Antagonistic Effects of Trichoderma Species in Biocontrol of Armillaria Root Rot Disease In Vitro Conditions. Kastamonu University Journal of Forestry Faculty, 22(1), 17-23. https://doi.org/10.17475/kastorman.1095712
AMA Aslan AM, Yüksel B, Öztürk N. Antagonistic Effects of Trichoderma Species in Biocontrol of Armillaria Root Rot Disease In Vitro Conditions. Kastamonu University Journal of Forestry Faculty. March 2022;22(1):17-23. doi:10.17475/kastorman.1095712
Chicago Aslan, Ayşe Mehtap, Beşir Yüksel, and Nuray Öztürk. “Antagonistic Effects of Trichoderma Species in Biocontrol of Armillaria Root Rot Disease In Vitro Conditions”. Kastamonu University Journal of Forestry Faculty 22, no. 1 (March 2022): 17-23. https://doi.org/10.17475/kastorman.1095712.
EndNote Aslan AM, Yüksel B, Öztürk N (March 1, 2022) Antagonistic Effects of Trichoderma Species in Biocontrol of Armillaria Root Rot Disease In Vitro Conditions. Kastamonu University Journal of Forestry Faculty 22 1 17–23.
IEEE A. M. Aslan, B. Yüksel, and N. Öztürk, “Antagonistic Effects of Trichoderma Species in Biocontrol of Armillaria Root Rot Disease In Vitro Conditions”, Kastamonu University Journal of Forestry Faculty, vol. 22, no. 1, pp. 17–23, 2022, doi: 10.17475/kastorman.1095712.
ISNAD Aslan, Ayşe Mehtap et al. “Antagonistic Effects of Trichoderma Species in Biocontrol of Armillaria Root Rot Disease In Vitro Conditions”. Kastamonu University Journal of Forestry Faculty 22/1 (March 2022), 17-23. https://doi.org/10.17475/kastorman.1095712.
JAMA Aslan AM, Yüksel B, Öztürk N. Antagonistic Effects of Trichoderma Species in Biocontrol of Armillaria Root Rot Disease In Vitro Conditions. Kastamonu University Journal of Forestry Faculty. 2022;22:17–23.
MLA Aslan, Ayşe Mehtap et al. “Antagonistic Effects of Trichoderma Species in Biocontrol of Armillaria Root Rot Disease In Vitro Conditions”. Kastamonu University Journal of Forestry Faculty, vol. 22, no. 1, 2022, pp. 17-23, doi:10.17475/kastorman.1095712.
Vancouver Aslan AM, Yüksel B, Öztürk N. Antagonistic Effects of Trichoderma Species in Biocontrol of Armillaria Root Rot Disease In Vitro Conditions. Kastamonu University Journal of Forestry Faculty. 2022;22(1):17-23.

14178  14179       14165           14166           14167            14168