BibTex RIS Kaynak Göster

KİMYA ÖĞRETMEN ADAYLARININ ASİTLİK KAVRAMI İLE İLGİLİ ANLAMALARININ ÇİZİMLERLE DEĞERLENDİRİLMESİ

Yıl 2017, Cilt: 18 Özel Sayı, 103 - 124, 01.11.2017

Öz

Kimya öğretmen adaylarının asitlik kavramı ile ilgili anlamalarını ve alternatif kavramalarını çizimler yoluyla belirlemeyi amaçlayan bu çalışma nitel yaklaşımı esas alan bir tarama çalışmasıdır. Çalışma, 109 kimya öğretmen adayı ile yürütüldü. Öğretmen adaylarının asitlik kavramı ile ilgili imajlarının mikroskobik boyutta çizimlerle tespit etmek için bu amaca uygun iki açık uçlu sorudan oluşan test veri toplama aracı olarak kullanıldı. Çalışma sonucunda kimya öğretmen adaylarının çoğunun asitlik kavramı ile ilgili iyonlaşma, hidratasyon, stokiyometri, derişim, derişik/seyreltik gibi kavramlarda bilimsel görüşe uygun olmayan imajlara sahip oldukları belirlendi. Öğretmen adaylarının bir asidin kuvvetini; bağ kuvvetine, ortamdaki türlerin cinsleri veya sayısına bağlı olarak açıkladıkları tespit edildi. Ayrıca öğretmen adaylarının “kuvvetli asitler iyonlaşmaz”, “ortamdaki H3O+ sayısı arttıkça asitlik kuvveti artar”, “derişik asitler iyonlaşmaz, seyreltik asitler iyonlaşır” gibi alternatif kavramalara sahip oldukları belirlendi.

Kaynakça

  • Ağgül Yalçın, F. (2011). Fen bilgisi öğretmen adayların asit-baz konusunda sahip oldukları kavram yanılgılarının sınıf düzeylerine göre değişiminin incelenmesi. Journal of Turkish Science Education, 8(3), 161-172.
  • Atasoy, B. (2004). Fen öğrenimi ve öğretimi (2. basım). Ankara:Asil Yayıncılık.
  • Barke, H. D., Hazari, A., & Yitbarek, S. (2009). Students’ misconceptions and how to overcome them. In Barke, H. D., Hazari, A., & Yitbarek, S (Eds.), Misconceptions in Chemistry (pp 23-36). Berlin, Heidelberg: Springer.
  • Ben-Zvi, R., Eylon, B., & Silberstein, J. (1988). Theories, principles and laws. Education in Chemistry, 25(3), 89–92.
  • Bhattacharyya, G. (2006). Practitioner development in organic chemistry: How graduate students conceptualize organic acids. Chemistry Education Research and Practice, 7(4), 240-247.
  • Boz, Y. (2009). Turkrsh prospective chemistry teachers’ alternative conceptions about acids and bases. School Science and Mathematics, 109(4), 212-222.
  • Canpolat, N., Pınarbaşı, T., Bayrakçeken, S. ve Geban, Ö. (2004). Kimyadaki bazı yaygın yanlış kavramalar. GÜ, Gazi Eğitim Fakültesi Dergisi, 24(1), 135-146.
  • Carter, C. S., & Brickhouse, N. W. (1989). What makes chemistry difficult? Alternate perceptions. Journal of Chemical Education, 66(3), 223-225.
  • Çetingül, İ. ve Geban, Ö. (2011). Using conceptual change texts with analogies for misconceptions in acids and bases. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi 41, 112-123.
  • Cronin-Jones, L. L. (2005). Using drawings to assess student perceptions of schoolyard habitats: A case study of reform-based research in the United States. Canadian Journal of Environmental Education, 10(1), 225-240.
  • Davidowitz, B., Chittleborough, G., & Murray, E. (2010). Student-generated submicro diagrams: a useful tool for teaching and learning chemical equations and stoichiometry. Chemistry Education Research and Practice, 11(3), 154-164.
  • Demircioğlu, F., Özdemir, S., Özmen H., Cındıl T. ve Yıldız M. F. (2012). Fen bilgisi öğretmen adaylarının asit-baz kavramlarıyla ilgili yanılgılarının tespiti. X. UFBMEK, 27-30 Haziran 2012, Niğde: Niğde Üniversitesi.
  • Demircioğlu, G., Ayas, A., & Demircioğlu, H., (2005), Conceptual change achieved through a new teaching program on acids and bases, Chemistry Education: Research and Practice, 6(1), 36-51.
  • Devetak, I., & Glazar, S.A. (2009). The influence of 16-year-old students' gender, mental abilities, and motivation on their reading and drawing submicrorepresentations achievements. International Journal of Science Education, 32(12), 1561-1593.
  • Dierks, W. (1981). Teaching the mole. Twenty years of discussion-and the future? European Journal of Science Education, 3(2), 145-58.
  • Duis, J. M. (2011). Organic chemistry educators’ perspectives on fundamental concepts and misconceptions: An exploratory study. Journal of Chemical Education, 88(3)
  • Gess-Newsome, J. (2015). A model of teacher professional knowledge and skill including PCK: Results of the thinking from the PCK summit. In A. Berry, P. Friedrichsen, & J. Loughran (Eds.), Re-examining pedagogical content knowledge in science education (pp. 28-42). New York, NY: Routledge.
  • Gilbert, J., & Treagust, D. (2009). Multiple Representations in Chemical Education. Models and Modelling. (vol.4). Springer.
  • Herron, J.D. (1996). The chemistry classromm. formulas for successful teaching. Washington, DC: American Chemical Society.
  • Hewson, P. W., & Hewson, M. G. B. (1984). The role of conceptual conflict in conceptual change and the design of science instruction. Instructional Science, 13(1), 1-13.
  • Huddle, P. A., & Pillay, A. E. (1996). An in‐ depth study of misconceptions in stoichiometry and chemical equilibrium at a South African university. Journal of Research in Science Teaching, 33(1), 65-77.
  • Jasien, P. G. (2011). What do you mean that “strong” doesn't mean “powerful”?. Journal of Chemical Education, 88(9), 1247-1249.
  • Johnstone, A. H. (1991). Why is science difficult to learn? Things are seldom what they seem. Journal of computer assisted learning, 7(2), 75-83.
  • Kala, N., Yaman, F., & Ayas, A. (2013). The effectiveness of predict–observe–explain technique in probing students’understanding about acid–base chemistry: a case for the concepts of ph, poh, and strength. International Journal of Science and Mathematics Education, 11(3), 555-574.
  • Kelly R. M., & Jones L. L., (2008), Investigating students’ ability to transfer ideas learned from molecular animations to the dissolution process. Journal of Chemical Education, 85(2), 303–309.
  • Kern, A. L., Wood, N. B., Roehrig, G. H., & Nyachwaya, J. (2010). A qualitative report of the ways high school chemistry students attempt to represent a chemical reaction at the atomic/molecular level. Chemistry Education Research and Practice, 11(3), 165-172.
  • Köseoğlu F., Budak E. ve Kavak N., (2002). Yapılandırıcı öğrenme teorisine dayanan ders materyali-öğretmen adaylarına asit-baz konusu ile ilgili kavramların öğretilmesi, V. Ulusal Fen Bilimleri ve Matematik Eğitimi Kongresi, Orta Doğu Teknik Üniversitesi-Ankara.
  • Metin, M. (2011). Effects of teaching material based on 5E model removed pre-service teachers’ misconceptions about acids-bases. Bulgarian Journal of Science and Education Policy (BJSEP), 5(2), 274-302.
  • Morgil, İ., Yılmaz, A., Şen, O. ve Yavuz, S. (2002). Öğrencilerin asit-baz konusunda kavram yanılgıları ve farklı madde türlerinin kavram yanılgılarını saptama amacıyla kullanımı. V. Ulusal Fen Bilimleri ve Matematik Eğitimi Kongresi, Orta Doğu Teknik Üniversitesi, Ankara. http://www.old.fedu.metu.edu.tr/ufbmek- 5/netscape/b_kitabi/PDF/Kimya/Bildiri/t175DD.pdf
  • Mulford, D. R., & Robinson, W. R. (2002). An inventory for alternate conceptions among first-semester general chemistry students. Journal of Chemical Education, 79(6), 739-744.
  • Nakhleh, M. B. (1992). Why some students don’t learn chemistry. Journal of Chemical Education, 69(3), 191-195.
  • Noor Dayana, A. H., Mohamad, B. A. Juhazren, J., & Noraffandy, Y.(2010). Learning Acids and Bases through inquiry based website IEEE Conference on Open Systems, ICOS, Kuala Lumpur.
  • Novick, S., & Nussbaum, J. (1978). Junior high school pupils’ understanding of the particulate nature of the matter: An ınterview study. Science Education. 62(3)
  • Özmen, H. (2005). Kimya öğretiminde yanlış kavramalar: Bir literatür araştırması. G.Ü. Türk Eğitim Bilimleri Dergisi, 3(1), 23-45.
  • Pabuçcu, A. ve Geban, Ö. (2015). 5E öğrenme döngüsüne göre düzenlenmiş uygulamaların asit-baz konusundaki kavram yanılgılarına etkisi. Abant İzzet Baysal Üniversitesi Eğitim Fakültesi Dergisi, 15(1), 191-206.
  • Ross, B., & Munby, H. (1991). Concept mapping and misconceptions: A study of high school students’ understandings of acids and bases. International Journal of Science Education, 13(1), 11-23.
  • Singh, Y. S., & Nath, R. (2007). Research Methodology. New-Delhi: A.P.H. Publishing Corporation.
  • Smith, K. J., & Metz, P.A. (1996). Evaluating student understanding of solution chemistry through microscopic representations. Journal of Chemical Education, 73(3), 233- 235.
  • Taber, K. S., & Coll R., (2002), Bonding, In Gilbert J. K., Jong O. D., Justi R., Treagust D. F., & Van Driel J. H. (Eds.) Chemical education: towards research-based practice (pp. 213–234). The Netherlands: Kluwer Academic Publishers.
  • Taber, K. (2002). Chemical misconceptions: Prevention, diagnosis and cure (Vol. I). London: Royal Society of Chemistry.
  • Tümay, H. (2016). Emergence, learning difficulties, and misconceptions in chemistry undergraduate students’ conceptualizations of acid strength. Science & Education, 25(1-2), 21-46.
  • Türk, G. E., Akkuş, H. Ve Tüzün, Ü. N. (2014). Fen bilgisi öğretmen adaylarının çözünme ile ilgili imajları. Erzincan Üniversitesi Eğitim Fakültesi Dergisi, 16(2), 65-84.
  • Wandersee, J. H., Mintzes, J. J., Novak, J. D. (1994). Research on alternative conceptions in science. In Gabel, D. L. (Ed.), Handbook of Research on Science Teaching and Learning (pp. 177-210). New York: Macmillan.
  • Yakmacı-Güzel, B. (2013). 12. Sınıf öğrencilerinin bazı temalardaki kimya kavram yanılgılarının belirlenmesi ve bu bulguların etkili kullanımına dair öneriler. Boğaziçi Üniversitesi Eğitim Dergisi, 30(2), 5-26.
  • Yıldırım, A. & Şimşek, H. (2008). Sosyal bilimlerde nitel araştırma yöntemler. (7.basım). Ankara: Seçkin.

Evaluating Chemistry Preservice Teachers’ Concepts Of Acidity Through Drawings

Yıl 2017, Cilt: 18 Özel Sayı, 103 - 124, 01.11.2017

Öz

This study was designed as a survey model and aimed to determine chemistry preservice teachers’ concepts of acidity and alternative conceptions through sub-microscopic drawings. It involved 109 preservice chemistry teachers. Two open ended questions for determining their images of acidity through microscopic drawings were used as a data collection tool. The results revealed that most of the participants have images that are not in accord with scientific thought about acidity, specifically regarding ionization, hydration, stoichiometry, concentration, concentrated/dilute. It was determined that preservice teachers explain the acid strength by bond strength and the amount and elements of molecules and ions present in solution. It was also determined that preservice teachers have alternative conceptions such as: “strong acids do not ionize,” “acidity increases as the number of H3O+ in a solution increases,” and, “concentrated acids do not ionize, but diluted acids do.”

Kaynakça

  • Ağgül Yalçın, F. (2011). Fen bilgisi öğretmen adayların asit-baz konusunda sahip oldukları kavram yanılgılarının sınıf düzeylerine göre değişiminin incelenmesi. Journal of Turkish Science Education, 8(3), 161-172.
  • Atasoy, B. (2004). Fen öğrenimi ve öğretimi (2. basım). Ankara:Asil Yayıncılık.
  • Barke, H. D., Hazari, A., & Yitbarek, S. (2009). Students’ misconceptions and how to overcome them. In Barke, H. D., Hazari, A., & Yitbarek, S (Eds.), Misconceptions in Chemistry (pp 23-36). Berlin, Heidelberg: Springer.
  • Ben-Zvi, R., Eylon, B., & Silberstein, J. (1988). Theories, principles and laws. Education in Chemistry, 25(3), 89–92.
  • Bhattacharyya, G. (2006). Practitioner development in organic chemistry: How graduate students conceptualize organic acids. Chemistry Education Research and Practice, 7(4), 240-247.
  • Boz, Y. (2009). Turkrsh prospective chemistry teachers’ alternative conceptions about acids and bases. School Science and Mathematics, 109(4), 212-222.
  • Canpolat, N., Pınarbaşı, T., Bayrakçeken, S. ve Geban, Ö. (2004). Kimyadaki bazı yaygın yanlış kavramalar. GÜ, Gazi Eğitim Fakültesi Dergisi, 24(1), 135-146.
  • Carter, C. S., & Brickhouse, N. W. (1989). What makes chemistry difficult? Alternate perceptions. Journal of Chemical Education, 66(3), 223-225.
  • Çetingül, İ. ve Geban, Ö. (2011). Using conceptual change texts with analogies for misconceptions in acids and bases. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi 41, 112-123.
  • Cronin-Jones, L. L. (2005). Using drawings to assess student perceptions of schoolyard habitats: A case study of reform-based research in the United States. Canadian Journal of Environmental Education, 10(1), 225-240.
  • Davidowitz, B., Chittleborough, G., & Murray, E. (2010). Student-generated submicro diagrams: a useful tool for teaching and learning chemical equations and stoichiometry. Chemistry Education Research and Practice, 11(3), 154-164.
  • Demircioğlu, F., Özdemir, S., Özmen H., Cındıl T. ve Yıldız M. F. (2012). Fen bilgisi öğretmen adaylarının asit-baz kavramlarıyla ilgili yanılgılarının tespiti. X. UFBMEK, 27-30 Haziran 2012, Niğde: Niğde Üniversitesi.
  • Demircioğlu, G., Ayas, A., & Demircioğlu, H., (2005), Conceptual change achieved through a new teaching program on acids and bases, Chemistry Education: Research and Practice, 6(1), 36-51.
  • Devetak, I., & Glazar, S.A. (2009). The influence of 16-year-old students' gender, mental abilities, and motivation on their reading and drawing submicrorepresentations achievements. International Journal of Science Education, 32(12), 1561-1593.
  • Dierks, W. (1981). Teaching the mole. Twenty years of discussion-and the future? European Journal of Science Education, 3(2), 145-58.
  • Duis, J. M. (2011). Organic chemistry educators’ perspectives on fundamental concepts and misconceptions: An exploratory study. Journal of Chemical Education, 88(3)
  • Gess-Newsome, J. (2015). A model of teacher professional knowledge and skill including PCK: Results of the thinking from the PCK summit. In A. Berry, P. Friedrichsen, & J. Loughran (Eds.), Re-examining pedagogical content knowledge in science education (pp. 28-42). New York, NY: Routledge.
  • Gilbert, J., & Treagust, D. (2009). Multiple Representations in Chemical Education. Models and Modelling. (vol.4). Springer.
  • Herron, J.D. (1996). The chemistry classromm. formulas for successful teaching. Washington, DC: American Chemical Society.
  • Hewson, P. W., & Hewson, M. G. B. (1984). The role of conceptual conflict in conceptual change and the design of science instruction. Instructional Science, 13(1), 1-13.
  • Huddle, P. A., & Pillay, A. E. (1996). An in‐ depth study of misconceptions in stoichiometry and chemical equilibrium at a South African university. Journal of Research in Science Teaching, 33(1), 65-77.
  • Jasien, P. G. (2011). What do you mean that “strong” doesn't mean “powerful”?. Journal of Chemical Education, 88(9), 1247-1249.
  • Johnstone, A. H. (1991). Why is science difficult to learn? Things are seldom what they seem. Journal of computer assisted learning, 7(2), 75-83.
  • Kala, N., Yaman, F., & Ayas, A. (2013). The effectiveness of predict–observe–explain technique in probing students’understanding about acid–base chemistry: a case for the concepts of ph, poh, and strength. International Journal of Science and Mathematics Education, 11(3), 555-574.
  • Kelly R. M., & Jones L. L., (2008), Investigating students’ ability to transfer ideas learned from molecular animations to the dissolution process. Journal of Chemical Education, 85(2), 303–309.
  • Kern, A. L., Wood, N. B., Roehrig, G. H., & Nyachwaya, J. (2010). A qualitative report of the ways high school chemistry students attempt to represent a chemical reaction at the atomic/molecular level. Chemistry Education Research and Practice, 11(3), 165-172.
  • Köseoğlu F., Budak E. ve Kavak N., (2002). Yapılandırıcı öğrenme teorisine dayanan ders materyali-öğretmen adaylarına asit-baz konusu ile ilgili kavramların öğretilmesi, V. Ulusal Fen Bilimleri ve Matematik Eğitimi Kongresi, Orta Doğu Teknik Üniversitesi-Ankara.
  • Metin, M. (2011). Effects of teaching material based on 5E model removed pre-service teachers’ misconceptions about acids-bases. Bulgarian Journal of Science and Education Policy (BJSEP), 5(2), 274-302.
  • Morgil, İ., Yılmaz, A., Şen, O. ve Yavuz, S. (2002). Öğrencilerin asit-baz konusunda kavram yanılgıları ve farklı madde türlerinin kavram yanılgılarını saptama amacıyla kullanımı. V. Ulusal Fen Bilimleri ve Matematik Eğitimi Kongresi, Orta Doğu Teknik Üniversitesi, Ankara. http://www.old.fedu.metu.edu.tr/ufbmek- 5/netscape/b_kitabi/PDF/Kimya/Bildiri/t175DD.pdf
  • Mulford, D. R., & Robinson, W. R. (2002). An inventory for alternate conceptions among first-semester general chemistry students. Journal of Chemical Education, 79(6), 739-744.
  • Nakhleh, M. B. (1992). Why some students don’t learn chemistry. Journal of Chemical Education, 69(3), 191-195.
  • Noor Dayana, A. H., Mohamad, B. A. Juhazren, J., & Noraffandy, Y.(2010). Learning Acids and Bases through inquiry based website IEEE Conference on Open Systems, ICOS, Kuala Lumpur.
  • Novick, S., & Nussbaum, J. (1978). Junior high school pupils’ understanding of the particulate nature of the matter: An ınterview study. Science Education. 62(3)
  • Özmen, H. (2005). Kimya öğretiminde yanlış kavramalar: Bir literatür araştırması. G.Ü. Türk Eğitim Bilimleri Dergisi, 3(1), 23-45.
  • Pabuçcu, A. ve Geban, Ö. (2015). 5E öğrenme döngüsüne göre düzenlenmiş uygulamaların asit-baz konusundaki kavram yanılgılarına etkisi. Abant İzzet Baysal Üniversitesi Eğitim Fakültesi Dergisi, 15(1), 191-206.
  • Ross, B., & Munby, H. (1991). Concept mapping and misconceptions: A study of high school students’ understandings of acids and bases. International Journal of Science Education, 13(1), 11-23.
  • Singh, Y. S., & Nath, R. (2007). Research Methodology. New-Delhi: A.P.H. Publishing Corporation.
  • Smith, K. J., & Metz, P.A. (1996). Evaluating student understanding of solution chemistry through microscopic representations. Journal of Chemical Education, 73(3), 233- 235.
  • Taber, K. S., & Coll R., (2002), Bonding, In Gilbert J. K., Jong O. D., Justi R., Treagust D. F., & Van Driel J. H. (Eds.) Chemical education: towards research-based practice (pp. 213–234). The Netherlands: Kluwer Academic Publishers.
  • Taber, K. (2002). Chemical misconceptions: Prevention, diagnosis and cure (Vol. I). London: Royal Society of Chemistry.
  • Tümay, H. (2016). Emergence, learning difficulties, and misconceptions in chemistry undergraduate students’ conceptualizations of acid strength. Science & Education, 25(1-2), 21-46.
  • Türk, G. E., Akkuş, H. Ve Tüzün, Ü. N. (2014). Fen bilgisi öğretmen adaylarının çözünme ile ilgili imajları. Erzincan Üniversitesi Eğitim Fakültesi Dergisi, 16(2), 65-84.
  • Wandersee, J. H., Mintzes, J. J., Novak, J. D. (1994). Research on alternative conceptions in science. In Gabel, D. L. (Ed.), Handbook of Research on Science Teaching and Learning (pp. 177-210). New York: Macmillan.
  • Yakmacı-Güzel, B. (2013). 12. Sınıf öğrencilerinin bazı temalardaki kimya kavram yanılgılarının belirlenmesi ve bu bulguların etkili kullanımına dair öneriler. Boğaziçi Üniversitesi Eğitim Dergisi, 30(2), 5-26.
  • Yıldırım, A. & Şimşek, H. (2008). Sosyal bilimlerde nitel araştırma yöntemler. (7.basım). Ankara: Seçkin.
Toplam 45 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Research Article
Yazarlar

Ayşe Çelik Bu kişi benim

Nurcan Oluk Bu kişi benim

Sinem Üner Bu kişi benim

Burcu Ulutaş Bu kişi benim

Hüseyin Akkuş Bu kişi benim

Yayımlanma Tarihi 1 Kasım 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 18 Özel Sayı

Kaynak Göster

APA Çelik, A., Oluk, N., Üner, S., Ulutaş, B., vd. (2017). KİMYA ÖĞRETMEN ADAYLARININ ASİTLİK KAVRAMI İLE İLGİLİ ANLAMALARININ ÇİZİMLERLE DEĞERLENDİRİLMESİ. Ahi Evran Üniversitesi Kırşehir Eğitim Fakültesi Dergisi, 18, 103-124.

2562219122   19121   19116   19117     19118       19119       19120     19124