Araştırma Makalesi
BibTex RIS Kaynak Göster

Origami Temelli Matematik Ders Planı Değerlendirme Rubriği: Geçerlik ve Güvenirlik Çalışması

Yıl 2022, Cilt: 23 Sayı: Özel Sayı, 259 - 286, 26.03.2022

Öz

Origami zamanla matematik eğitiminde farklı yaş ve becerilerdeki öğrenciler için kullanılan bir öğretim aracı haline gelmiştir. Origami temelli matematik derslerinin başarıya ulaşabilmesi bu derslerin etkili bir şekilde planlanması gerekmektedir. Origami temelli matematik dersleri için hazırlanan planlar ne kadar önemli olsa da alanyazında bu ders planlarını değerlendirebilmek için hazırlanmış bir ölçme aracı olmadığı görülmektedir. Bu bağlamda, bu çalışma ile origami temelli matematik ders planlarını değerlendirmeye yönelik geçerli ve güvenilir bir rubrik geliştirilmesi amaçlanmıştır. Bu çalışmada, detaylı bir alanyazın incelemesi ve uzman görüşleri sonrasında son hali verilen 11 maddeden ve 3 dereceden (zayıf, orta ve iyi) oluşan origami temelli matematik ders planı değerlendirme rubriğinin geçerlik ve güvenirlik kanıtları sunulmuştur. Açımlayıcı faktör analizi sonuçları rubriğin tek faktörlü yapıda olduğunu göstermiştir. Ayrıca, faktör yük ve ortak varyans değerleri incelendiğinde tüm maddelerin rubrik için uygun olduğu görülmüştür. Güvenirlik kanıtı sağlamak adına hesaplanan Cronbach Alfa, Pearson Korelasyon ve Cohen’s Kappa değerleri de rubriğin iç tutarlılığının yüksek olduğunu ve ayrıca farklı kodlayıcılar tarafından değerlendirildiğinde de benzer sonuçlar verdiğini göstermiştir. Bu sebeplerle, geliştirilen rubriğin öğretmen ve öğretmen adaylarının hazırladıkları origami temelli matematik ders planlarını değerlendirme amacıyla kullanılabilecek geçerli ve güvenilir bir ölçme aracı olduğu sonucuna varılmıştır.

Kaynakça

  • Arıcı, S. & Aslan-Tutak, F. (2015). The effect of origami based instruction on spatial visualization, geometry achievement, and geometric reasoning. International Journal of Science and Mathematics Education, 13, 179-200. doi: 10.1007/s10763-013-9487-8
  • Baicker, K. (2004). Origami math: Grades 2–3. New York, NY: Teaching Resources.
  • Boakes, N. (2008). Origami-mathematics lessons: Paper folding as a teaching tool. Mathidues, 1(1), 1-9.
  • Boakes, N. (2009). Origami instruction in the middle school mathematics classroom: Its impact on spatial visualization and geometry knowledge of students. Research in Middle Level Education Online, 32(7), 1-12. https://doi.org/10.1080/19404476.2009.11462060
  • Boz, B. (2015). İki boyutlu kâğıtlardan üç boyutlu origami küpüne yolculuk. Journal of Inquiry Based Activities, 5(1), 20-33.
  • Brualdi, A. (1998). Implementing performance assessment in the classroom. Practical Assessment, Research, and Evaluation, 6(2), 1-6. https://doi.org/10.7275/kgwx-6q70
  • Budinski, N., Lavicza, Z. & Fenyvesi, K. (2018). Ideas for using GeoGebra and Origami in teaching regular polyhedrons lessons. K-12 STEM Education, 4(1), 297-303.
  • Budinski, N., Lavicza, Z., Fenyvesi, K. & Milinković, D. (2020). Developing primary school students’ formal geometric definitions knowledge by connecting origami and technology. International Electronic Journal of Mathematics Education, 15(2), 1-10. doi: 10.29333/iejme/6266
  • Büyüköztürk, S. (2002). Sosyal Bilimler İçin Veri Analizi El Kitabı, Ankara: Pegem A Yayıncılık.
  • Canadas, M., Molina, M., Gallardo, S., Martinez-Santaolalla, M. & Penas, M. (2010). Let’s teach geometry. Mathematics Teaching, 218, 32-37.
  • Cipoletti, B. & Wilson, N. (2004). Turning origami into the language of mathematics. Mathematics Teaching in the Middle School, 10(1), 26-31. https://doi.org/10.5951/MTMS.10.1.0026 Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20(1), 37-46. https://doi.org/10.1177/001316446002000104
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Hillside, NJ: Erlbaum.
  • Costello, A. B. & Osborne, J. (2005). Best practices in exploratory factor analysis: four recommendations for getting the most from your analysis. Practical Assessment Research and Evaluation, 10(7), 1-9. https://doi.org/10.7275/jyj1-4868
  • Çakmak, S., Işıksal, M. & Koç, Y. (2014). Investigating effect of origami based mathematics instruction on elementary students’ spatial skills and perceptions. The Journal of Educational Research, 107, 59-68. https://doi.org/10.1080/00220671.2012.753861
  • Çaylan, B., Takunyacı, M., Masal, M., Masal, E. & Ergene, Ö. (2017). Origami ile matematik dersi süresince ilköğretim matematik öğretmeni adaylarının Van Hiele geometrik düşünme düzeyleri ile origami inançları arasındaki ilişkinin belirlenmesi. Journal of Multidisciplinary Studies in Education, 1(1), 24-35.
  • Çokluk, Ö., Şekercioğlu, G. & Büyüköztürk, Ş. (2010). Sosyal bilimler için çok değişkenli istatistik: SPSS ve Lisrel uygulamaları. Ankara: Pegem A Yayıncılık
  • DeYoung, M. J. (2009). Math in the box. Mathematics Teaching in the Middle School, 15(3), 134-141. https://doi.org/10.5951/MTMS.15.3.0134
  • Edison, C. (2011). Narratives of success: Teaching origami in low-income/urban communities. In P. Wang-Iverson, R. J. Lang ve M. Yim (Eds.), Origami 5: Fifth international meeting of origami science, mathematics and education (pp.165-175). New York: CRC Press.
  • Fiol, M. L., Dasquens, N. & Prat, M. (2011). Student teachers introduce origami in kindergarten and primary schools: Froebel revisited. In P. Wang-Iverson, R. J. Lang ve M. Yim (Eds.), Origami 5: Fifth international meeting of origami science, mathematics and education (pp. 151-165). New York: CRC Press.
  • Georgeson, J. (2011). Fold in origami and unfold math. Mathematics Teaching in Middle School, 16(6), 354-361. https://doi.org/10.5951/MTMS.16.6.0354
  • Golan, M. (2011). Origametria and the Van Hiele Theory of teaching geometry. In P. Wang-Iverson, R. J. Lang ve M. Yim (Eds.), Origami 5: Fifth international meeting of origami science, mathematics and education (pp. 141-151). New York: CRC Press.
  • Golan, M. & Jackson, P. (2010). Origametria: A program to teach geometry and to develop learning skills using the art of origami. Retrieved from: http://www.emotive.co.il/origami/db/pdf/996_golan_article.pdf
  • Goodrich, A. H. (2001). The effects of instructional rubrics on learning to write. Current Issues in Education, 4(4), 1-22. Higginson, W. & Colgan, L. (2001). Algebraic thinking through origami. Mathematics Teaching in the Middle School, 6(6), 343-349. https://doi.org/10.5951/MTMS.6.6.0343
  • Masal, M., Ergene, Ö., Takunyacı, M. & Masal, E. (2018). Öğretmen adaylarının origaminin matematik derslerinde kullanımı hakkındaki görüşleri. International Journal of Educational Studies in Mathematics, 5(2), 56-65.
  • Mastin, M. (2007). Storytelling + origami = storigami mathematics. Teaching Children Mathematics, 14(4), 206-212. https://doi.org/10.5951/TCM.14.4.0206
  • Mertler, C. A. (2000). Designing scoring rubrics for your classroom. Practical Assessment, Research, and Evaluation, 7(25), 1-8. https://doi.org/10.7275/gcy8-0w24
  • Milli Eğitim Bakanlığı (MEB). (2018). Matematik dersi öğretim programı: İlkokul ve ortaokul 1, 2, 3, 4, 5, 6, 7 ve 8. sınıflar. T.C. Milli Eğitim Bakanlığı: Ankara. Erişim adresi: https://mufredat.meb.gov.tr/Dosyalar/201813017165445-MATEMAT%C4%B0K%20%C3%96%C4%9ERET%C4%B0M%20PROGRAMI%202018v.pdf
  • Moskal, B. M., & Leydens, J. A. (2001). Scoring rubric development: Validity and reliability. Practical Assessment, Research, and Evaluation, 7(10), 1-6. https://doi.org/10.7275/q7rm-gg74
  • Pallant, J. (2007). SPSS Survival manual: A step by step guide to data analysis using SPSS for windows (3rd edition). Berkshire, England: Open University Press.
  • Panasuk, R. M. & Todd, J. (2005). Effectiveness of lesson planning: Factor analysis. Journal of Instructional Psychology, 32(3), 215-232.
  • Serra, M. (1994). Patty paper geometry. Emeryville: Key Curriculum Press
  • Stevens, J. (2002). Applied multivariate statistics for the social sciences. Mahwah, NJ: Erlbaum.
  • Sze, S. (2005). An analysis of constructivism and the ancient art of origami. Dunleavy: Niagara University. Retrieved from: http://www.eric.ed.gov/PDFS/ED490350.pdf
  • Tuğrul, B. & Kavici, M. (2002). Kağıt katlama sanatı ve öğrenme. Pamukkale Üniversitesi Eğitim Fakültesi Dergisi, 1(11), 1-17.
  • Uygun, T. (2019). Implementation of middle school mathematics teachers’ origami-based lessons and their views about student learning. Ondokuz Mayıs Üniversitesi Eğitim Fakültesi Dergisi, 38(2), 154-171.
  • Wares, A. & Elstak, I. (2017). Origami, geometry and art. International Journal of Mathematical Education in Science and Technology, 48(2), 317-324. https://doi.org/10.1080/0020739X.2016.1238521
  • Yuzawa, M. & Bart, W. M. (2002). Young children’s learning of size comparison strategies: Effect of origami exercises. The Journal of Genetic Psychology, 163(4), 459-478. https://doi.org/10.1080/00221320209598696

Validity and Reliability Evidences of the Origami based Mathematics Lesson Plan Evaluation Rubric

Yıl 2022, Cilt: 23 Sayı: Özel Sayı, 259 - 286, 26.03.2022

Öz

Origami became an instructional tool in mathematics education that can be used for students in various ages and abilities. Developing effective lesson plans is one of the prerequisites of successful origami based mathematics lessons. However, there was no rubric in the available literature developed to evaluate the effectiveness of origami based mathematics lesson plans. In this study, it is aimed to present validity and reliability evidences for a rubric to be used to evaluate origami based mathematics lesson plans. The rubric items were developed after a detailed literature review and getting two experts’ opinions. Exploratory factor analysis results indicated that the rubric has one dimension, and all the items in the rubric has satisfactory item factor loadings and communalities. Furthermore, Cronbach Alpha, Pearson R and Cohen’s Kappa values were calculated in order to present reliability evidences. Calculated values indicated that the rubric has high internal consistency and there is a high degree of agreement between two coders who coded the same lesson plans independently. Validity and reliability analyses showed that origami based mathematics lesson plan evaluation rubric is a valid and reliable scale that can be used to evaluate the origami based lesson plans that are developed by teachers or teacher candidates.

Kaynakça

  • Arıcı, S. & Aslan-Tutak, F. (2015). The effect of origami based instruction on spatial visualization, geometry achievement, and geometric reasoning. International Journal of Science and Mathematics Education, 13, 179-200. doi: 10.1007/s10763-013-9487-8
  • Baicker, K. (2004). Origami math: Grades 2–3. New York, NY: Teaching Resources.
  • Boakes, N. (2008). Origami-mathematics lessons: Paper folding as a teaching tool. Mathidues, 1(1), 1-9.
  • Boakes, N. (2009). Origami instruction in the middle school mathematics classroom: Its impact on spatial visualization and geometry knowledge of students. Research in Middle Level Education Online, 32(7), 1-12. https://doi.org/10.1080/19404476.2009.11462060
  • Boz, B. (2015). İki boyutlu kâğıtlardan üç boyutlu origami küpüne yolculuk. Journal of Inquiry Based Activities, 5(1), 20-33.
  • Brualdi, A. (1998). Implementing performance assessment in the classroom. Practical Assessment, Research, and Evaluation, 6(2), 1-6. https://doi.org/10.7275/kgwx-6q70
  • Budinski, N., Lavicza, Z. & Fenyvesi, K. (2018). Ideas for using GeoGebra and Origami in teaching regular polyhedrons lessons. K-12 STEM Education, 4(1), 297-303.
  • Budinski, N., Lavicza, Z., Fenyvesi, K. & Milinković, D. (2020). Developing primary school students’ formal geometric definitions knowledge by connecting origami and technology. International Electronic Journal of Mathematics Education, 15(2), 1-10. doi: 10.29333/iejme/6266
  • Büyüköztürk, S. (2002). Sosyal Bilimler İçin Veri Analizi El Kitabı, Ankara: Pegem A Yayıncılık.
  • Canadas, M., Molina, M., Gallardo, S., Martinez-Santaolalla, M. & Penas, M. (2010). Let’s teach geometry. Mathematics Teaching, 218, 32-37.
  • Cipoletti, B. & Wilson, N. (2004). Turning origami into the language of mathematics. Mathematics Teaching in the Middle School, 10(1), 26-31. https://doi.org/10.5951/MTMS.10.1.0026 Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20(1), 37-46. https://doi.org/10.1177/001316446002000104
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Hillside, NJ: Erlbaum.
  • Costello, A. B. & Osborne, J. (2005). Best practices in exploratory factor analysis: four recommendations for getting the most from your analysis. Practical Assessment Research and Evaluation, 10(7), 1-9. https://doi.org/10.7275/jyj1-4868
  • Çakmak, S., Işıksal, M. & Koç, Y. (2014). Investigating effect of origami based mathematics instruction on elementary students’ spatial skills and perceptions. The Journal of Educational Research, 107, 59-68. https://doi.org/10.1080/00220671.2012.753861
  • Çaylan, B., Takunyacı, M., Masal, M., Masal, E. & Ergene, Ö. (2017). Origami ile matematik dersi süresince ilköğretim matematik öğretmeni adaylarının Van Hiele geometrik düşünme düzeyleri ile origami inançları arasındaki ilişkinin belirlenmesi. Journal of Multidisciplinary Studies in Education, 1(1), 24-35.
  • Çokluk, Ö., Şekercioğlu, G. & Büyüköztürk, Ş. (2010). Sosyal bilimler için çok değişkenli istatistik: SPSS ve Lisrel uygulamaları. Ankara: Pegem A Yayıncılık
  • DeYoung, M. J. (2009). Math in the box. Mathematics Teaching in the Middle School, 15(3), 134-141. https://doi.org/10.5951/MTMS.15.3.0134
  • Edison, C. (2011). Narratives of success: Teaching origami in low-income/urban communities. In P. Wang-Iverson, R. J. Lang ve M. Yim (Eds.), Origami 5: Fifth international meeting of origami science, mathematics and education (pp.165-175). New York: CRC Press.
  • Fiol, M. L., Dasquens, N. & Prat, M. (2011). Student teachers introduce origami in kindergarten and primary schools: Froebel revisited. In P. Wang-Iverson, R. J. Lang ve M. Yim (Eds.), Origami 5: Fifth international meeting of origami science, mathematics and education (pp. 151-165). New York: CRC Press.
  • Georgeson, J. (2011). Fold in origami and unfold math. Mathematics Teaching in Middle School, 16(6), 354-361. https://doi.org/10.5951/MTMS.16.6.0354
  • Golan, M. (2011). Origametria and the Van Hiele Theory of teaching geometry. In P. Wang-Iverson, R. J. Lang ve M. Yim (Eds.), Origami 5: Fifth international meeting of origami science, mathematics and education (pp. 141-151). New York: CRC Press.
  • Golan, M. & Jackson, P. (2010). Origametria: A program to teach geometry and to develop learning skills using the art of origami. Retrieved from: http://www.emotive.co.il/origami/db/pdf/996_golan_article.pdf
  • Goodrich, A. H. (2001). The effects of instructional rubrics on learning to write. Current Issues in Education, 4(4), 1-22. Higginson, W. & Colgan, L. (2001). Algebraic thinking through origami. Mathematics Teaching in the Middle School, 6(6), 343-349. https://doi.org/10.5951/MTMS.6.6.0343
  • Masal, M., Ergene, Ö., Takunyacı, M. & Masal, E. (2018). Öğretmen adaylarının origaminin matematik derslerinde kullanımı hakkındaki görüşleri. International Journal of Educational Studies in Mathematics, 5(2), 56-65.
  • Mastin, M. (2007). Storytelling + origami = storigami mathematics. Teaching Children Mathematics, 14(4), 206-212. https://doi.org/10.5951/TCM.14.4.0206
  • Mertler, C. A. (2000). Designing scoring rubrics for your classroom. Practical Assessment, Research, and Evaluation, 7(25), 1-8. https://doi.org/10.7275/gcy8-0w24
  • Milli Eğitim Bakanlığı (MEB). (2018). Matematik dersi öğretim programı: İlkokul ve ortaokul 1, 2, 3, 4, 5, 6, 7 ve 8. sınıflar. T.C. Milli Eğitim Bakanlığı: Ankara. Erişim adresi: https://mufredat.meb.gov.tr/Dosyalar/201813017165445-MATEMAT%C4%B0K%20%C3%96%C4%9ERET%C4%B0M%20PROGRAMI%202018v.pdf
  • Moskal, B. M., & Leydens, J. A. (2001). Scoring rubric development: Validity and reliability. Practical Assessment, Research, and Evaluation, 7(10), 1-6. https://doi.org/10.7275/q7rm-gg74
  • Pallant, J. (2007). SPSS Survival manual: A step by step guide to data analysis using SPSS for windows (3rd edition). Berkshire, England: Open University Press.
  • Panasuk, R. M. & Todd, J. (2005). Effectiveness of lesson planning: Factor analysis. Journal of Instructional Psychology, 32(3), 215-232.
  • Serra, M. (1994). Patty paper geometry. Emeryville: Key Curriculum Press
  • Stevens, J. (2002). Applied multivariate statistics for the social sciences. Mahwah, NJ: Erlbaum.
  • Sze, S. (2005). An analysis of constructivism and the ancient art of origami. Dunleavy: Niagara University. Retrieved from: http://www.eric.ed.gov/PDFS/ED490350.pdf
  • Tuğrul, B. & Kavici, M. (2002). Kağıt katlama sanatı ve öğrenme. Pamukkale Üniversitesi Eğitim Fakültesi Dergisi, 1(11), 1-17.
  • Uygun, T. (2019). Implementation of middle school mathematics teachers’ origami-based lessons and their views about student learning. Ondokuz Mayıs Üniversitesi Eğitim Fakültesi Dergisi, 38(2), 154-171.
  • Wares, A. & Elstak, I. (2017). Origami, geometry and art. International Journal of Mathematical Education in Science and Technology, 48(2), 317-324. https://doi.org/10.1080/0020739X.2016.1238521
  • Yuzawa, M. & Bart, W. M. (2002). Young children’s learning of size comparison strategies: Effect of origami exercises. The Journal of Genetic Psychology, 163(4), 459-478. https://doi.org/10.1080/00221320209598696
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Alan Eğitimleri
Bölüm Araştırma Makaleleri
Yazarlar

Okan Arslan 0000-0001-9305-2691

Yayımlanma Tarihi 26 Mart 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 23 Sayı: Özel Sayı

Kaynak Göster

APA Arslan, O. (2022). Origami Temelli Matematik Ders Planı Değerlendirme Rubriği: Geçerlik ve Güvenirlik Çalışması. Ahi Evran Üniversitesi Kırşehir Eğitim Fakültesi Dergisi, 23(Özel Sayı), 259-286. https://doi.org/10.29299/kefad.942307

2562219122   19121   19116   19117     19118       19119       19120     19124