Araştırma Makalesi
BibTex RIS Kaynak Göster

Tam Trafik Uyarmalı Sinyalizasyon Sisteminde Gecikmede Sağlanan İyileşmeler

Yıl 2022, Cilt: 15 Sayı: 2, 564 - 577, 15.06.2022
https://doi.org/10.35674/kent.1058968

Öz

Trafik yoğunluğundan kaynaklanan sıkışıklık, yoğun olmayan periyotlardaki gereksiz beklemeler ve zaman kayıpları dikkate alındığında, sinyalize kavşakların gerçek zamanlı olarak yönetilmesinin önemi daha iyi anlaşılır. Trafik uyarmalı sistemler, gerçek zamanlı trafik değerlerine göre süre ataması yaptıkları için, gecikmeleri minimuma indiren ve kavşak performansını artıran, günümüzde yaygın olarak kullanılan sistemlerdir. Bu çalışmada; önceki durumunda sabit zamanlı olarak çalıştırılan, daha sonra tam trafik uyarmalı sinyal sistemine dönüştürülen Polatlı Refik Cesur Kavşağı'nda taşıt başına düşen ortalama gecikme süresindeki azalmanın belirlenmesi amaçlanmaktadır. Kavşağın ilk durumundaki gecikme Webster modeli ile ikinci durumundaki gecikme ise arazi gözlemi yapılarak belirlenmiştir. Çalışmada, taşıt başına ortalama gecikmede %35 azalma sağlanabileceği ayrıca, yıllık 78 bin litre yakıt ve 190 ton CO2 emisyonu tasarrufu sağlanabileceği belirlenmiştir.

Kaynakça

  • Akçelik R., Smit R. & Besley M. (16-18 April 2014). Recalibration of a vehicle power model for fuel and emission estimation and its effect on assessment of alternative intersection treatments. TRB 4th International Roundabout Conference, Seattle, WA, USA.
  • Aktaş Y., Aslan H. ve Pistil F. (29-30 September 2017). Sinyalize kavşaklarda meydana gelen taşıt gecikmelerinin VISSIM simülasyon modellenmesi. 5th International Symposium on Innovative Technologies in Engineering and Science ISITES2017, Baku-Azerbaijan. https://isites.info/PastConferences/ISITES2017/ISITES2017/papers/B8-ISITES2017ID71.pdf
  • Arabacı E., Orman R.Ç., Kılıç B., Hepdeniz K. ve Yitik B. (2019). Environmental impact of vehicles waiting at the signalized intersections: A Case Study of a Four-Phase Intersection. Journal of Applied Sciences of Mehmet Akif Ersoy University, 3(2):229-240. https://doi.org/10.31200/makuubd.570622
  • Başkan, Ö. (2006). İzole sinyalize kavşaklardaki ortalama taşıt gecikmelerinin yapay sinir ağları ile modellenmesi [Yayımlanmamış yüksek lisans tezi]. Pamukkale Üniversitesi Fen Bilimleri Enstitüsü.
  • Bayrakdar, B., Doğan, E. (2021). Adaptif sinyalize kavşaklar için derin öğrenme yaklaşımı ile gecikme modelleri geliştirilmesi. International Journal of Engineering Research and Development, 13(2): 390-405. https://doi.org/10.29137/umagd.843300
  • Brilon W., and Wietholt T. (2013). Experiences with Adaptive Signal Control in Germany. Journal of the Transportation Research Board, 2356(1): 9-16. https://doi.org/10.3141/2356-02
  • Ceylan H., Başkan Ö., Ceylan H. ve Haldenbilen S. (2006). Yaklaşık hesaplama metodu ile sinyalize kavşaklarda gecikme bileşenlerinin matematiksel çözüm. Pamukkale University Journal of Engineering Sciences, 13(2): 279-288.
  • Chong-White C., Millar G., Shaw S., (2013). SCATS and the environment study: an indication of road customer value. Australasian Transport Research Forum 2013 Proceedings, Brisbane, 2–4 October 2013. https://www.australasiantransportresearchforum.org.au/sites/default/files/2013_chong-white_millar_shaw.pdf
  • Çakıcı Z. ve Murat Y.Ş. (2021). Sinyalize Dönel kavşaklarda diferansiyel gelişim algoritması ile sinyal süre optimizasyonu. El-Cezerî Journal of Science and Engineering, 8(2): 635-651. https://doi.org/10.31202/ecjse.861429
  • Çelik M.B., Aktaş A. ve Özdalyan B. (2006). Gerçek yol şartlarında LPG ve benzinle çalışan iki taşıtın emisyon bakımından karşılaştırılması. Uludağ Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 11(1): 45-54.
  • Dion F., Rakha H. & Kang Y. S. (2004). Comparison of delay estimates at under- saturated and over-saturated pre-timed signalized intersections. Transportation Research Part B: Methodological, 38 (2): 99-122. https://doi.org/10.1016/S0191-2615(03)00003-1
  • Elbir T., Bayram A., Kara M., Altıok H., Seyfioğlu R., Ergün P. ve Şimşir S. (2010). İzmir kent merkezinde karayolu trafiğinden kaynaklanan hava kirliliğinin incelenmesi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Mühendislik Bilimler Dergisi, 12 (1): 1-17.
  • Gartner N.H., Tarnoff P.J. & Andrews C.M. (1991). Evaluation of optimized policies for adaptive control strategy. Transportation Research Record, issue number: 1324. http://onlinepubs.trb.org/Onlinepubs/trr/1991/1324/1324-012.pdf
  • Gonca C.K. ve Gülsün, B. (2019). Adaptif trafik yönetim sistemleri. İş Sağlığı ve Güvenliği Akademi Dergisi, 2(1): 32-40.
  • Gündoğan F., Karagöz Z., Koçyiğit N., Karadağ A., Ceylan H. & Murat Y.Ş. (2014). An evaluation of adaptive traffic control system in Istanbul, Turkey. Journal of Traffic and Logistics Engineering, 2(3): 198-201. https://doi.org/10.12720/jtle.2.3.198-201
  • Hunt P.B., Robertson D.I., Bretherton R.D. & Royle M.C. (1982). The SCOOT on-line traffic signal optimization technique. Traffic Enginerring Control, 23(4): 190–192.
  • Ketabbdari, M., (2013). Analysis of Adaptive Traffic Control Systems and design of a Decision Support System for better choice. Politecnico di Milano Facoltà di Ingegneria Civile, Ambientale e Territoriale Master of Science in Civil Engineering for Risk Mitigation
  • Kraus Jr. W., De Souza F.A., Carlson R.C, Papageorgiou, M., Dantas L.D., Kosmatopoulos E.B., Camponogara E.& Aboudolas K. (2010). Cost effective real-time traffic signal control using the TUC strategy. IEEE Intelligent Transportation Systems Magazine, 2(4): 6-17. https://doi.org/10.1109/MITS.2010.939916
  • Lowrie P. R. (1990). SCATS, Sydney Co-Ordinated Adaptive Traffic System: A traffic responsive method of controlling urban traffic. Australia Roads and Traffic Authority, New South Wales, Darlinghurst.
  • Miller A. J. (1963). Settings for fixed-cycle traffic signals. Operational Research Quarterly, 14(4)4: 373-386. https://doi.org/10.2307/3006800
  • Mirchandani P. & Head L. (2001). A real-time traffic signal control system: Architecture, algorithms, and analysis. Transportation. Research Part C, Emerging Technology, 9(6): 415-432. https://doi.org/10.1016/S0968-090X(00)00047-4
  • NCHRP (National Cooperative Highway Research Program) Report 812. (2015). Traffic signal timing manual, Second edition. The Federal Highway Administration (FHWA), U.S. Department of Transportation (DOT).
  • Nie C., Wei H., Shi J. & Zhang M. (2021). Optimizing actuated traffic signal control using license plate recognition data: Methods for modeling and algorithm development. Transportation Research Interdisciplinary Perspectives, 9(2021)100319. https://doi.org/10.1016/j.trip.2021.100319
  • Promraksa T., Satiennam T. & Satiennam W. (2019). Vehicle actuated signal control for low carbon society. International Journal of GEOMATE, 16(55): 86-91. https://doi.org/10.21660/2019.55.4766
  • Samadi S., Rad A.P., Kazemi F.M. & Jafarian H. (2012). Performance evaluation of intelligent adaptive traffic control systems: A case study. Journal of Transportation Technologies, 2:248-259. http://dx.doi.org/10.4236/jtts.2012.23027
  • Shatnawi, I., Ping Y. & Ibrahim K. (2018). Automated intersection delay estimation using the input-output principle and turning movement data. International Journal of Transportation Science and Technology, 7 (2): 137-150. https://doi.org/10.1016/j.ijtst.2018.04.001
  • Stevanovic, A., ( May 2009). Review of adaptive traffic control deployments in larger cities. International Scientific Conference on Mobility and Transport, Munich, Germany.
  • Studer L., Ketabdari M. & Marchionni G. (2015). Analysis of adaptive traffic control systems design of a decision support system for better choices. Journal of Civil & Environmental Engineering, 5(6). https://doi.org/10.4172/2165-784X.1000195
  • Swaminathan N., Rathinavel N., Duraisamy S. & Karuppanan G. (2014). Design of vehicle actuated signal using simulation. GRADEVINAR, 66(7): 635-641. https://doi.org/10.14256/JCE.1008.2014
  • Utpal D., Sujay B. & Brian D. (March 11-13 2010). Comparative safety evaluation of SCATS and pre-timed control system. 51st Annual Transportation Research Forum, Arlington, Virginia. https://doi.org/10.22004/ag.econ.207245
  • Webster F.V. & Cobbe, B. (1966). Traffic signals. Road Research Laboratory, Road ResearchTechnical Paper no:56.
  • Yetiş, Ş.M. ve Çakıcı, Z. (13-14 Kasım 2015). Sezgisel optimizasyon algoritmalarının taşıt gecikmesi problemi üzerine uygulaması. 7. Kentsel Altyapı Sempozyumu, Trabzon, Türkiye. https://www.researchgate.net/publication/281446975_Sezgisel_Optimizasyon_Algoritmalarinin_Tasit_Gecikmesi_Problemi_Uzerine_Uygulamasi
  • Yetiş Ş.M. ve Çakıcı, Z. (24-26 Mayıs 2017). Sinyalize kavşaklarda durma gecikmesi ve kontrol gecikmesi arasındaki ilişkinin incelenmesi. 12. Ulaştırma Kongresi, Adana, Türkiye. https://www.researchgate.net/publication/317184181_Sinyalize_Kavsaklarda_Durma_Gecikmesi_ve_Kontrol_Gecikmesi_Arasindaki_Iliskinin_Incelenmesi

Delay Improvements in Fully Actuated Traffic Signal Systems

Yıl 2022, Cilt: 15 Sayı: 2, 564 - 577, 15.06.2022
https://doi.org/10.35674/kent.1058968

Öz

The importance of real-time control of signalized intersections is better understood when the congestion caused by traffic density, and loss of time in off-peak periods are taken into account. Traffic actuated signal control systems minimize delays and increase the performance of the intersection as they assign time according to the actual traffic volumes. These systems are widely used today. The aim of this study is to determine the decrease in the average delay per vehicle at Polatlı Refik Cesur intersection, which was converted from a pre-timed control to fully actuated control. The delay in the first case of the intersection was determined by the Webster model, and the second case was determined by field observation. In the study, it was found that a 35% reduction in the average delay per vehicle, an annual saving of 78 thousand liters of fuel, and 190 tons of CO2 emission could be achieved.

Kaynakça

  • Akçelik R., Smit R. & Besley M. (16-18 April 2014). Recalibration of a vehicle power model for fuel and emission estimation and its effect on assessment of alternative intersection treatments. TRB 4th International Roundabout Conference, Seattle, WA, USA.
  • Aktaş Y., Aslan H. ve Pistil F. (29-30 September 2017). Sinyalize kavşaklarda meydana gelen taşıt gecikmelerinin VISSIM simülasyon modellenmesi. 5th International Symposium on Innovative Technologies in Engineering and Science ISITES2017, Baku-Azerbaijan. https://isites.info/PastConferences/ISITES2017/ISITES2017/papers/B8-ISITES2017ID71.pdf
  • Arabacı E., Orman R.Ç., Kılıç B., Hepdeniz K. ve Yitik B. (2019). Environmental impact of vehicles waiting at the signalized intersections: A Case Study of a Four-Phase Intersection. Journal of Applied Sciences of Mehmet Akif Ersoy University, 3(2):229-240. https://doi.org/10.31200/makuubd.570622
  • Başkan, Ö. (2006). İzole sinyalize kavşaklardaki ortalama taşıt gecikmelerinin yapay sinir ağları ile modellenmesi [Yayımlanmamış yüksek lisans tezi]. Pamukkale Üniversitesi Fen Bilimleri Enstitüsü.
  • Bayrakdar, B., Doğan, E. (2021). Adaptif sinyalize kavşaklar için derin öğrenme yaklaşımı ile gecikme modelleri geliştirilmesi. International Journal of Engineering Research and Development, 13(2): 390-405. https://doi.org/10.29137/umagd.843300
  • Brilon W., and Wietholt T. (2013). Experiences with Adaptive Signal Control in Germany. Journal of the Transportation Research Board, 2356(1): 9-16. https://doi.org/10.3141/2356-02
  • Ceylan H., Başkan Ö., Ceylan H. ve Haldenbilen S. (2006). Yaklaşık hesaplama metodu ile sinyalize kavşaklarda gecikme bileşenlerinin matematiksel çözüm. Pamukkale University Journal of Engineering Sciences, 13(2): 279-288.
  • Chong-White C., Millar G., Shaw S., (2013). SCATS and the environment study: an indication of road customer value. Australasian Transport Research Forum 2013 Proceedings, Brisbane, 2–4 October 2013. https://www.australasiantransportresearchforum.org.au/sites/default/files/2013_chong-white_millar_shaw.pdf
  • Çakıcı Z. ve Murat Y.Ş. (2021). Sinyalize Dönel kavşaklarda diferansiyel gelişim algoritması ile sinyal süre optimizasyonu. El-Cezerî Journal of Science and Engineering, 8(2): 635-651. https://doi.org/10.31202/ecjse.861429
  • Çelik M.B., Aktaş A. ve Özdalyan B. (2006). Gerçek yol şartlarında LPG ve benzinle çalışan iki taşıtın emisyon bakımından karşılaştırılması. Uludağ Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 11(1): 45-54.
  • Dion F., Rakha H. & Kang Y. S. (2004). Comparison of delay estimates at under- saturated and over-saturated pre-timed signalized intersections. Transportation Research Part B: Methodological, 38 (2): 99-122. https://doi.org/10.1016/S0191-2615(03)00003-1
  • Elbir T., Bayram A., Kara M., Altıok H., Seyfioğlu R., Ergün P. ve Şimşir S. (2010). İzmir kent merkezinde karayolu trafiğinden kaynaklanan hava kirliliğinin incelenmesi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Mühendislik Bilimler Dergisi, 12 (1): 1-17.
  • Gartner N.H., Tarnoff P.J. & Andrews C.M. (1991). Evaluation of optimized policies for adaptive control strategy. Transportation Research Record, issue number: 1324. http://onlinepubs.trb.org/Onlinepubs/trr/1991/1324/1324-012.pdf
  • Gonca C.K. ve Gülsün, B. (2019). Adaptif trafik yönetim sistemleri. İş Sağlığı ve Güvenliği Akademi Dergisi, 2(1): 32-40.
  • Gündoğan F., Karagöz Z., Koçyiğit N., Karadağ A., Ceylan H. & Murat Y.Ş. (2014). An evaluation of adaptive traffic control system in Istanbul, Turkey. Journal of Traffic and Logistics Engineering, 2(3): 198-201. https://doi.org/10.12720/jtle.2.3.198-201
  • Hunt P.B., Robertson D.I., Bretherton R.D. & Royle M.C. (1982). The SCOOT on-line traffic signal optimization technique. Traffic Enginerring Control, 23(4): 190–192.
  • Ketabbdari, M., (2013). Analysis of Adaptive Traffic Control Systems and design of a Decision Support System for better choice. Politecnico di Milano Facoltà di Ingegneria Civile, Ambientale e Territoriale Master of Science in Civil Engineering for Risk Mitigation
  • Kraus Jr. W., De Souza F.A., Carlson R.C, Papageorgiou, M., Dantas L.D., Kosmatopoulos E.B., Camponogara E.& Aboudolas K. (2010). Cost effective real-time traffic signal control using the TUC strategy. IEEE Intelligent Transportation Systems Magazine, 2(4): 6-17. https://doi.org/10.1109/MITS.2010.939916
  • Lowrie P. R. (1990). SCATS, Sydney Co-Ordinated Adaptive Traffic System: A traffic responsive method of controlling urban traffic. Australia Roads and Traffic Authority, New South Wales, Darlinghurst.
  • Miller A. J. (1963). Settings for fixed-cycle traffic signals. Operational Research Quarterly, 14(4)4: 373-386. https://doi.org/10.2307/3006800
  • Mirchandani P. & Head L. (2001). A real-time traffic signal control system: Architecture, algorithms, and analysis. Transportation. Research Part C, Emerging Technology, 9(6): 415-432. https://doi.org/10.1016/S0968-090X(00)00047-4
  • NCHRP (National Cooperative Highway Research Program) Report 812. (2015). Traffic signal timing manual, Second edition. The Federal Highway Administration (FHWA), U.S. Department of Transportation (DOT).
  • Nie C., Wei H., Shi J. & Zhang M. (2021). Optimizing actuated traffic signal control using license plate recognition data: Methods for modeling and algorithm development. Transportation Research Interdisciplinary Perspectives, 9(2021)100319. https://doi.org/10.1016/j.trip.2021.100319
  • Promraksa T., Satiennam T. & Satiennam W. (2019). Vehicle actuated signal control for low carbon society. International Journal of GEOMATE, 16(55): 86-91. https://doi.org/10.21660/2019.55.4766
  • Samadi S., Rad A.P., Kazemi F.M. & Jafarian H. (2012). Performance evaluation of intelligent adaptive traffic control systems: A case study. Journal of Transportation Technologies, 2:248-259. http://dx.doi.org/10.4236/jtts.2012.23027
  • Shatnawi, I., Ping Y. & Ibrahim K. (2018). Automated intersection delay estimation using the input-output principle and turning movement data. International Journal of Transportation Science and Technology, 7 (2): 137-150. https://doi.org/10.1016/j.ijtst.2018.04.001
  • Stevanovic, A., ( May 2009). Review of adaptive traffic control deployments in larger cities. International Scientific Conference on Mobility and Transport, Munich, Germany.
  • Studer L., Ketabdari M. & Marchionni G. (2015). Analysis of adaptive traffic control systems design of a decision support system for better choices. Journal of Civil & Environmental Engineering, 5(6). https://doi.org/10.4172/2165-784X.1000195
  • Swaminathan N., Rathinavel N., Duraisamy S. & Karuppanan G. (2014). Design of vehicle actuated signal using simulation. GRADEVINAR, 66(7): 635-641. https://doi.org/10.14256/JCE.1008.2014
  • Utpal D., Sujay B. & Brian D. (March 11-13 2010). Comparative safety evaluation of SCATS and pre-timed control system. 51st Annual Transportation Research Forum, Arlington, Virginia. https://doi.org/10.22004/ag.econ.207245
  • Webster F.V. & Cobbe, B. (1966). Traffic signals. Road Research Laboratory, Road ResearchTechnical Paper no:56.
  • Yetiş, Ş.M. ve Çakıcı, Z. (13-14 Kasım 2015). Sezgisel optimizasyon algoritmalarının taşıt gecikmesi problemi üzerine uygulaması. 7. Kentsel Altyapı Sempozyumu, Trabzon, Türkiye. https://www.researchgate.net/publication/281446975_Sezgisel_Optimizasyon_Algoritmalarinin_Tasit_Gecikmesi_Problemi_Uzerine_Uygulamasi
  • Yetiş Ş.M. ve Çakıcı, Z. (24-26 Mayıs 2017). Sinyalize kavşaklarda durma gecikmesi ve kontrol gecikmesi arasındaki ilişkinin incelenmesi. 12. Ulaştırma Kongresi, Adana, Türkiye. https://www.researchgate.net/publication/317184181_Sinyalize_Kavsaklarda_Durma_Gecikmesi_ve_Kontrol_Gecikmesi_Arasindaki_Iliskinin_Incelenmesi
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makalesi
Yazarlar

Ebru Arıkan Öztürk 0000-0002-4971-2442

Seda Balaban Bu kişi benim 0000-0002-9178-3260

Yayımlanma Tarihi 15 Haziran 2022
Gönderilme Tarihi 17 Ocak 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 15 Sayı: 2

Kaynak Göster

APA Arıkan Öztürk, E., & Balaban, S. (2022). Tam Trafik Uyarmalı Sinyalizasyon Sisteminde Gecikmede Sağlanan İyileşmeler. Kent Akademisi, 15(2), 564-577. https://doi.org/10.35674/kent.1058968

International Refereed and Indexed Journal of Urban Culture and Management | Kent Kültürü ve Yönetimi Uluslararası Hakemli İndeksli Dergi

Information, Communication, Culture, Art and Media Services (ICAM Network) www.icamnetwork.net

Address: Ahmet Emin Fidan Culture and Research Center, Evkaf Neigh. No: 34 Fatsa Ordu
Tel: +90452 310 20 30 Faks: +90452 310 20 30 | E-Mail: (int): info@icamnetwork.net | (TR) bilgi@icamnetwork.net