Araştırma Makalesi
BibTex RIS Kaynak Göster

Arsenic and Antimony Removal from Water by Zirconium-Coated Water Treatment Plant Sludge

Yıl 2022, , 317 - 339, 15.06.2022
https://doi.org/10.31466/kfbd.1063741

Öz

In this study, the reuse potential of drinking water treatment sludge as an adsorbent was investigated for the removal of arsenic and antimony. A sludge-derived adsorbent, zirconium oxide-coated sludge, was produced by using thermal treatment and zirconium oxide coating processes, and characterization of the adsorbent was investigated. The results showed that zirconium oxide-coated sludge was mainly amorphous and had a high surface area (170 m2g-1). Batch adsorption tests were performed to specify the optimum conditions for arsenic removal. The study revealed that the removal of As (T) was best achieved at pH 3. The initial arsenic concentration descended from 50 μgL-1 to the 0.25 μgL-1 at contact time, 180 min, with the adsorbent dose of 1 gL-1. The isotherm data fitted fine to the Freundlich isotherm model, and adsorption capacity was found to be 7.38 mgg-1. The pseudo-second order model fitted well with the experimental data (R2≥ 0.999). Column performance for arsenic and antimony removal in a fixed bed under continuous flow conditions was also studied. The adsorption process behavior was described successfully by Thomas and Yoon–Nelson models, indicating that the models were suitable for a zirconium oxide-coated sludge fix-bed column design.

Destekleyen Kurum

Dokuz Eylül Üniversitesi

Proje Numarası

BAP 2018.KB.FEN.036

Teşekkür

This study was supported by Dokuz Eylül University, Scientific Research Project Program (Project No: BAP 2018.KB.FEN.036).

Kaynakça

  • Arıkan, S. (2016).Investigation of arsenic adsorption performance of the modified natural materials(Unpublished Doctoral Dissertation).Graduate School of Natural and Applied Sciences, DokuzEylül University, İzmir.
  • Arikan, S., Dolgen, D., and Alpaslan, M.N. (2017).Arsenic removal from aqueous solutions using ironoxide coating sepiolite.Fresenius Environment Bulletin (FEB), 26 (12A), 7634-7642.
  • Baba, A., Tayfur, G. (2011). Groundwater contamination and its effect on health in Turkey.Environ Monit Assess 183, 77–94. https://doi.org/10.1007/s10661-011-1907-z
  • Brion-Roby, R., Gagnon, J., Deschenes, J.S., and Chabot, B. (2018). Development and treatment procedure of arsenic-contaminated water using a new and green chitosan sorbent: Kinetic, isotherm, thermodynamic and dynamic studies. Pure Appl. Chem., 90(1), 63–77.
  • Caporale, A.G., Punamiya, P., Pigna, M., Violante, A., and Sarkar, D. (2013). Effect of particle size of drinking water treatment residuals on the sorption of arsenic in the presence of competing ions.Journal of Hazardous Materials, 260, 644-651. http://dx.doi.org/10.1016/j.jhazmat.2013.06.023
  • Chaudhry, S.A., Zaidi, Z., and Siddiqui, S.I. (2017). Isotherm, kinetic and thermodynamics of arsenic adsorption onto Iron-Zirconium Binary Oxide-Coated Sand (IZBOCS): Modelling and process optimization. Journal of Molecular Liquids, 229, 230-240. http://dx.doi.org/10.1016/j.molliq.2016.12.048
  • Chen, W., Parette, R., Zou, J., Cannon, F.S., and Dempsey, B.A. (2007). Arsenic removal by iron-modified activated carbon. Water Research, 41, 1851-1858. http://dx.doi.org/10.1016/j.watres.2007.01.052
  • Chen, B., Zhou, D., and Zhu, I. (2008).Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures.Environmental Science Technology, 42, 5137-5143.
  • Chaudhry, S.A., Zaidi, Z., and Siddiqui, S.I. (2017). Isotherm, kinetic and thermodynamics of arsenic adsorption onto Iron-Zirconium Binary Oxide-Coated Sand (IZBOCS): Modelling and process optimization. Journal of Moleculer Liquids, 229, 230-240.
  • Dayton, E.A., and Basta, N.T. (2005). A method for determining the phosphorus sorption capacity and amorphous aluminium of aluminium-based drinking water treatment residuals.J. Environ.Qual., 34, 1112.
  • Desta, M.B. (2013). Batch sorption experiments: Langmuir and freundlich isotherm studies for the adsorption of textile metal ions onto teffstraw (Eragrostistef) agricultural waste. Journal of Thermodynamics, vol. 2013, Article ID 375830, 6 pages. https://doi.org/10.1155/2013/375830.
  • Dolgen, D., Kavacık, B., and Alpaslan, M.N. (2019).Emerging options for arsenic removal in remote areas.International Journal of Environmental Research and Technology, IJERAT, 2(1) 01-07. E-ISSN, 2667-4041.
  • Drieheus, W. (2002). Arsenic removal-experience with the GEH process in Germany. Water Science and Technology: Water Supply, 2(2), 275-280.
  • Ghribi, A., and Chlendi, M. (2011).Modeling of fixed bed adsorption: Application to the adsorption of organic dye.Asian Journal of Textile, 1(4), 161-171.
  • Gibbons, M.K, and Gagnon, G.A. (2010).Adsorption of arsenic from a Nova Scotia groundwater onto water treatment residual solids.Water Research, 44, 5740-5749. http://doi.org/10.1016/j.watres.2010.06.050.
  • Ilavsky, J. (2008). Removal of antimony from water by sorption materials.Slovak Journal of Civil Engineering, 2008/2, 1-6.
  • Ippolito, J.A., Barbarick, K.A., and Elliott, H.A. (2011). Drinking water treatment residuals: A review of recent uses. Journal of Environmental Quality, 40(1), 1-12.
  • Kavacik, B., and Dolgen, D. (unpublished). Isıl işlem ile modifiye edilmiş arıtma çamuru kullanılarak sabit yataklı kolonda arsenik ve antimon giderimi. Gazi University Engineering and Architect Faculty Journal. (Acceptance date: 2022, March)
  • Kolbe, F., Weiss, H., Morgenstern, P., Wennrich, R., Lorenz, W., Schurk, K., Stanjek, H., and Daus, B. (2011).Sorption of aqueous antimony and arsenic species onto akagenite.Journal of Colloid an Interface Science, 357, 460-465. http://doi.org/10.1016/j.jcis.2011.01.095.
  • Kumar, A., Ali, M., Kumar, R., Kumar, M., Sagar, P., Pandey, R.K., Akhouri, V., Kumar, V., Anand, G., Niraj, P.K., Rani, R., Kumar, S., Kumar, D., Bishwapriya, A., and Ghosh, A.K. (2021). Arsenic exposure in Indo Gangetic plains of Bihar causing increased cancer risk. Scientifc Reports, 11, 2376.
  • Kundu, S., and Gupta, A.K. (2007).As(III) removal from aqueous medium in fixed bed using iron oxide-coated cement (IOCC): Experimental and modeling studies. Chemical EngineeringJournal, 129, 123-131. http://doi.org/10.1016/j.cej.2006.10.014.
  • Lan, B., Wang, Y., Wang, X., Zhou, X., Kang, Y., and Li, L. (2016). Aqueous arsenic (As) and antimony (Sb) removal by potassium ferrate.Chemical Engineering Journal, 292, 389-397. http://dx.doi.org/10.1016/j.cej.2016.02.019.
  • Lee, S.H., Tanaka, M., Takahashi, Y., and Kim, K.W. (2018). Enhanced adsorption of arsenate and antimonate by calcined Mg/Al layered double hydroxide: Investigation of comparative adsorption mechanism by surface characterization. Chemospher, 211, 903-911. https://doi.org/10.1016/j.chemosphere.2018.07.153.
  • Li, X.H., Dou, X.M., and Li, J.Q. (2012). Antimony (V) removal from water by iron-zirconium bimetal oxide: performance and mechanism. J. Environ. Sci. China, 24(7), 1197-1203. https://doi.org/10.1016/S1001-0742(11)60932-7
  • Li, F., Cao, X., Zhao, I., Wang, J., and Ding, Z. (2014). Effects of mineral additives on biochar formation: carbon retention, stability and properties. Environmental ScienceTechnology, 48, 11211-11217.
  • Lu, H., Zhu, Z., Zhang, H., Zhu, J., and Qiu, Y. (2015). Simultaneous removal of arsenate and antimonate in simulated and practical water samples by adsorption onto Zn/Fe layered double hydroxide. Chemical Engineering Journal, 276, 365-375. http://dx.doi.org/10.1016/j.cej.2015.04.095.
  • Long, X., Wang, T., He, M. (2022).Simultaneous removal of antimony and arsenic by nano-TiO2-crosslinked chitosan (TA-chitosan) beads, Environmental Technology, DOI:10.1080/09593330.2022.2048084
  • Makris, K.C., Sarkar, D., and Datta, R. (2006).Evaluating a drinking water waste by-product as a novel sorbent for arsenic.Chemosphere, 64, 730-741. http://doi.org/10.1016/j.chemosphere.2005.11.054.
  • Masue, Y., Loeppert, R.H., and Kramer, T.A. (2006). Arsenate and arsenite adsorption and desorption behavior on coprecipitatedaluminium: iron hydroxides. Environmental Science&Technology. 41(3), 837-843.
  • Nagar, R., Sarkar, D., Makris, K.C., and Data, R. (2010).Effect of solution chemistry on arsenic sorption by Fe- and Al-based drinking-water treatment residuals.Chemosphere, 78(8), 1028-1035. http://doi.org/10.1016/j.chemosphere.2009.11.034.
  • Nekhunguni, P.M., Tavengwa, N.T., and Tutu, H. (2017). Investigation of As(V) removal from acid mine drainage by iron (hydr) oxide modified zeolite. Journal of Environmental Management, 197, 550-558. http://dx.doi.org/10.1016/j.jenvman.2017.04.038.
  • Ocinski, D., Jacukowicz-Sobala, I., Mazur, P., Raczyk, J., and Kociolek-Balawejder, E. (2016).Water treatment residuals containing iron and manganese oxides for arsenic removal from water- characterization of physicochemical properties and adsorption studies.Chemical Engineering Journal, 294, 210-221. http://dx.doi.org/10.1016/j.cej.2016.02.111.
  • Pal, B.N. (2001).Granular ferric hydroxide for elimination of arsenic from drinking water.Technologies for Removal of Arsenic from Drinking Water. https://archive.unu.edu/env/Arsenic/Pal.pdf.Accessed 03 February 2021.
  • Razali, M., Zhao, Y.Q., and Bruen, M. (2007). Effectiveness of a drinking water treatment sludge in removing different phosphorus species from aqueous solution. Seperation and Purification Technology, 55, 300-306. http://doi.org/10.1016/j.seppur.2006.12.004.
  • Ren, X., Zhang, Z., Luo, H., Hu, B., Dang, Z., Yang, C., and Li, L. (2014).Adsorption of arsenic on modified montmorillonite.Appl. ClaySci. 97, 17-23. http://dx.doi.org/10.1016/j.clay.2014.05.028.
  • Rozada, F., Otero, M., Garcia, A.I., and Moran, A. (2007). Application in fixed bed systems of adsorbents obtained from sewage sludge and discharged tyres. DyesPigm, 72, 47-56.
  • Sasaki, T., Iizuka, A., Watanabe, M., Hongo, T., and Yamasaki, A. (2014). Preparation and performance of arsenate (V) adsorbents derived from concrete wastes. Waste Management, 34(10), 1829-1835. http://dx.doi.org/10.1016/j.wasman.2014.01.001.
  • Shajia, M., Santosh, M., Sarath, K.V., Prakash, P., Deepchand, B., and Divyaa, B.V. (2021). Arsenic contamination of groundwater: A global synopsis with focus on the Indian Peninsula. Geoscience Frontiers, 12, 101079.
  • Shtangeeva, I., Bali, R., and Harris, A. (2011). Bioavailability and toxicity of antimony. Journal of Geochemical Exploration, 110, 40–45.
  • Sidhu, V., Barrett, K., Park, D.Y., Deng, Y., Datta, R., and Sarkar D. (2021). Wood mulch coated with iron-based water treatment residuals for the abatement of metals and phosphorus in simulated stormwater runoff. Environmental Technology & Innovation, 21, 101214. https://doi.org/10.1016/j.eti.2020.101214.
  • Soleimanifar, H., Deng, Y., Wu, L., and Sarkar, D. (2016). Water treatment residual (WTR)-coated wood mulch for alleviation of toxic metals and phosphorus from polluted urban stormwater runoff. Chemosphere, 154, 289-292.
  • Sun, J., Pikaar, I., Sharma, K.R., Keller, J., and Yuan, Z. (2015). Feasibility of sulfide control in sewers by reuse of iron rich drinking water treatment sludge.Water Research, 71, 150-159. http://dx.doi.org/10.1016/j.watres.2014.12.044.
  • Tan, G., Wu, Y., Liu, Y., & Xiao, D. (2018). Removal of Pb(II) ions from aqueous solution by manganese oxide coated rice straw biochar –A low-cost and highly effective sorbent. Journal of the Taiwan Institute of Chemical Engineers, 84, 85-92.
  • Wang, C., Jiang, H., Yuan, N., Pei, Y., and Yan, Z. (2016). Tuning the adsorptive properties of drinking water treatment residue via oxygen-limited heat treatment for environmental recycle.Chemical Engineering Journal, 284, 571-581. http://dx.doi.org/10.1016/j.cej.2015.09.011.
  • Wang, C., Wu, Y., Bai, L., Zhao, Y., Yan, Z., Jiang, H., and Liu, X. (2018).Recycling of drinking water treatment residue as an additional medium in columns for effective P removal from eutrophic surface water. Journal of Environmental Management, 217, 363-372. http://doi.org/10.1016/j.jenvman.2018.03.128.
  • WHO/SDE/WSH, 2003.Antimony in drinking-water. Background document for development of WHO guidelines for drinking-water quality. Retrieved from https://www.who.int/water_sanitation_health/dwq/chemicals/antimony.pdf
  • Xi, J., He, M., and Lin, C. (2010). Adsorption of antimony(V) on kaolinite as a function of pH, ionic strength and humic acid. Environ Earth Sci., 60, 715–722.
  • Xu, Z., Cai, J., and Pan, B. (2013). Mathematically modeling fixed-bed adsorption in aqueous systems. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 14(3), 155-176.
  • Varol, S., Köse, İ. (2018). Effect on human health of the arsenic pollution and hydrogeochemistry of the Yazır Lake wetland (Çavdır-Burdur/Turkey). Environ Sci Pollut Res 25, 16217–16235. https://doi.org/10.1007/s11356-018-1815-7
  • Vieira, B.R.C., Pintor, A.M.A., Boaventura, R.A.R., Botelho, C.M.S. (2017). Arsenic removal from water using iron-coated seaweeds. Journal of Environmental Management, 192, 224-233. http://dx.doi.org/10.1016/j.jenvman.2017.01.054.
  • Zhang, G.S., Qu, J.H., Liu, H.J., Liu, P.R., and Wu, R.C.(2007). Preparation and evaluation of a novel Fe-Mn binary oxide adsorbent for effective arsenite removal.Water Res., 41, 1921-1928. http://doi.org/10.1016/j.watres.2007.02.009.

Zirkonyum Kaplı Su Arıtma Tesisi Çamurları ile Sudan Arsenik ve Antimon Giderimi

Yıl 2022, , 317 - 339, 15.06.2022
https://doi.org/10.31466/kfbd.1063741

Öz

Bu çalışmada, arsenik ve antimon gideriminde içme suyu arıtma çamurlarının adsorban olarak yeniden kullanım potansiyeli araştırılmıştır. Zirkonyum oksit kaplı çamur termal arıtım ve zirkonyum oksit kaplama prosesleriyle üretilmiş ve adsorbanın karakterizasyonu araştırılmıştır. Sonuçlar, zirkonyum oksit kaplı çamurun ağırlıklı olarak amorf olduğu ve yüksek yüzey alanına (170 m2g-1) sahip olduğunu göstermiştir. Arsenik gideriminde optimum koşulların belirlenmesi amacıyla kesikli adsorpsiyon deneyleri gerçekleştirilmiştir. Deney sonucunda optimum pH 3 olarak elde edilmiş, 1 gL-1 adsorban dozunda 180 dk. temas süresinde arsenik konsantrasyonu 50 μgL-1 den 0.25 μgL-1’ye düşmüştür. İzoterm verisi Freundlich izoterm modeline uymuş ve adsorpsiyon kapasitesi 7.38 mgg-1 olarak bulunmuştur. Deneysel verilerin yalancı ikinci derece kinetiğe uyum sağladığı (R2≥ 0.999) saptanmıştır. Ayrıca sürekli akış koşullarında sabit yataklı kolonda arsenik ve antimon gideriminin kolon performansı araştırılmıştır. Adsorpsiyon proses davranışının Thomas ve Yoon–Nelson modelleri tarafından başarıyla tanımlanması, modellerin sabit yataklı kolon dizaynında zirkonyum oksit kaplı çamur için uygun olduğunu göstermektedir. 

Proje Numarası

BAP 2018.KB.FEN.036

Kaynakça

  • Arıkan, S. (2016).Investigation of arsenic adsorption performance of the modified natural materials(Unpublished Doctoral Dissertation).Graduate School of Natural and Applied Sciences, DokuzEylül University, İzmir.
  • Arikan, S., Dolgen, D., and Alpaslan, M.N. (2017).Arsenic removal from aqueous solutions using ironoxide coating sepiolite.Fresenius Environment Bulletin (FEB), 26 (12A), 7634-7642.
  • Baba, A., Tayfur, G. (2011). Groundwater contamination and its effect on health in Turkey.Environ Monit Assess 183, 77–94. https://doi.org/10.1007/s10661-011-1907-z
  • Brion-Roby, R., Gagnon, J., Deschenes, J.S., and Chabot, B. (2018). Development and treatment procedure of arsenic-contaminated water using a new and green chitosan sorbent: Kinetic, isotherm, thermodynamic and dynamic studies. Pure Appl. Chem., 90(1), 63–77.
  • Caporale, A.G., Punamiya, P., Pigna, M., Violante, A., and Sarkar, D. (2013). Effect of particle size of drinking water treatment residuals on the sorption of arsenic in the presence of competing ions.Journal of Hazardous Materials, 260, 644-651. http://dx.doi.org/10.1016/j.jhazmat.2013.06.023
  • Chaudhry, S.A., Zaidi, Z., and Siddiqui, S.I. (2017). Isotherm, kinetic and thermodynamics of arsenic adsorption onto Iron-Zirconium Binary Oxide-Coated Sand (IZBOCS): Modelling and process optimization. Journal of Molecular Liquids, 229, 230-240. http://dx.doi.org/10.1016/j.molliq.2016.12.048
  • Chen, W., Parette, R., Zou, J., Cannon, F.S., and Dempsey, B.A. (2007). Arsenic removal by iron-modified activated carbon. Water Research, 41, 1851-1858. http://dx.doi.org/10.1016/j.watres.2007.01.052
  • Chen, B., Zhou, D., and Zhu, I. (2008).Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures.Environmental Science Technology, 42, 5137-5143.
  • Chaudhry, S.A., Zaidi, Z., and Siddiqui, S.I. (2017). Isotherm, kinetic and thermodynamics of arsenic adsorption onto Iron-Zirconium Binary Oxide-Coated Sand (IZBOCS): Modelling and process optimization. Journal of Moleculer Liquids, 229, 230-240.
  • Dayton, E.A., and Basta, N.T. (2005). A method for determining the phosphorus sorption capacity and amorphous aluminium of aluminium-based drinking water treatment residuals.J. Environ.Qual., 34, 1112.
  • Desta, M.B. (2013). Batch sorption experiments: Langmuir and freundlich isotherm studies for the adsorption of textile metal ions onto teffstraw (Eragrostistef) agricultural waste. Journal of Thermodynamics, vol. 2013, Article ID 375830, 6 pages. https://doi.org/10.1155/2013/375830.
  • Dolgen, D., Kavacık, B., and Alpaslan, M.N. (2019).Emerging options for arsenic removal in remote areas.International Journal of Environmental Research and Technology, IJERAT, 2(1) 01-07. E-ISSN, 2667-4041.
  • Drieheus, W. (2002). Arsenic removal-experience with the GEH process in Germany. Water Science and Technology: Water Supply, 2(2), 275-280.
  • Ghribi, A., and Chlendi, M. (2011).Modeling of fixed bed adsorption: Application to the adsorption of organic dye.Asian Journal of Textile, 1(4), 161-171.
  • Gibbons, M.K, and Gagnon, G.A. (2010).Adsorption of arsenic from a Nova Scotia groundwater onto water treatment residual solids.Water Research, 44, 5740-5749. http://doi.org/10.1016/j.watres.2010.06.050.
  • Ilavsky, J. (2008). Removal of antimony from water by sorption materials.Slovak Journal of Civil Engineering, 2008/2, 1-6.
  • Ippolito, J.A., Barbarick, K.A., and Elliott, H.A. (2011). Drinking water treatment residuals: A review of recent uses. Journal of Environmental Quality, 40(1), 1-12.
  • Kavacik, B., and Dolgen, D. (unpublished). Isıl işlem ile modifiye edilmiş arıtma çamuru kullanılarak sabit yataklı kolonda arsenik ve antimon giderimi. Gazi University Engineering and Architect Faculty Journal. (Acceptance date: 2022, March)
  • Kolbe, F., Weiss, H., Morgenstern, P., Wennrich, R., Lorenz, W., Schurk, K., Stanjek, H., and Daus, B. (2011).Sorption of aqueous antimony and arsenic species onto akagenite.Journal of Colloid an Interface Science, 357, 460-465. http://doi.org/10.1016/j.jcis.2011.01.095.
  • Kumar, A., Ali, M., Kumar, R., Kumar, M., Sagar, P., Pandey, R.K., Akhouri, V., Kumar, V., Anand, G., Niraj, P.K., Rani, R., Kumar, S., Kumar, D., Bishwapriya, A., and Ghosh, A.K. (2021). Arsenic exposure in Indo Gangetic plains of Bihar causing increased cancer risk. Scientifc Reports, 11, 2376.
  • Kundu, S., and Gupta, A.K. (2007).As(III) removal from aqueous medium in fixed bed using iron oxide-coated cement (IOCC): Experimental and modeling studies. Chemical EngineeringJournal, 129, 123-131. http://doi.org/10.1016/j.cej.2006.10.014.
  • Lan, B., Wang, Y., Wang, X., Zhou, X., Kang, Y., and Li, L. (2016). Aqueous arsenic (As) and antimony (Sb) removal by potassium ferrate.Chemical Engineering Journal, 292, 389-397. http://dx.doi.org/10.1016/j.cej.2016.02.019.
  • Lee, S.H., Tanaka, M., Takahashi, Y., and Kim, K.W. (2018). Enhanced adsorption of arsenate and antimonate by calcined Mg/Al layered double hydroxide: Investigation of comparative adsorption mechanism by surface characterization. Chemospher, 211, 903-911. https://doi.org/10.1016/j.chemosphere.2018.07.153.
  • Li, X.H., Dou, X.M., and Li, J.Q. (2012). Antimony (V) removal from water by iron-zirconium bimetal oxide: performance and mechanism. J. Environ. Sci. China, 24(7), 1197-1203. https://doi.org/10.1016/S1001-0742(11)60932-7
  • Li, F., Cao, X., Zhao, I., Wang, J., and Ding, Z. (2014). Effects of mineral additives on biochar formation: carbon retention, stability and properties. Environmental ScienceTechnology, 48, 11211-11217.
  • Lu, H., Zhu, Z., Zhang, H., Zhu, J., and Qiu, Y. (2015). Simultaneous removal of arsenate and antimonate in simulated and practical water samples by adsorption onto Zn/Fe layered double hydroxide. Chemical Engineering Journal, 276, 365-375. http://dx.doi.org/10.1016/j.cej.2015.04.095.
  • Long, X., Wang, T., He, M. (2022).Simultaneous removal of antimony and arsenic by nano-TiO2-crosslinked chitosan (TA-chitosan) beads, Environmental Technology, DOI:10.1080/09593330.2022.2048084
  • Makris, K.C., Sarkar, D., and Datta, R. (2006).Evaluating a drinking water waste by-product as a novel sorbent for arsenic.Chemosphere, 64, 730-741. http://doi.org/10.1016/j.chemosphere.2005.11.054.
  • Masue, Y., Loeppert, R.H., and Kramer, T.A. (2006). Arsenate and arsenite adsorption and desorption behavior on coprecipitatedaluminium: iron hydroxides. Environmental Science&Technology. 41(3), 837-843.
  • Nagar, R., Sarkar, D., Makris, K.C., and Data, R. (2010).Effect of solution chemistry on arsenic sorption by Fe- and Al-based drinking-water treatment residuals.Chemosphere, 78(8), 1028-1035. http://doi.org/10.1016/j.chemosphere.2009.11.034.
  • Nekhunguni, P.M., Tavengwa, N.T., and Tutu, H. (2017). Investigation of As(V) removal from acid mine drainage by iron (hydr) oxide modified zeolite. Journal of Environmental Management, 197, 550-558. http://dx.doi.org/10.1016/j.jenvman.2017.04.038.
  • Ocinski, D., Jacukowicz-Sobala, I., Mazur, P., Raczyk, J., and Kociolek-Balawejder, E. (2016).Water treatment residuals containing iron and manganese oxides for arsenic removal from water- characterization of physicochemical properties and adsorption studies.Chemical Engineering Journal, 294, 210-221. http://dx.doi.org/10.1016/j.cej.2016.02.111.
  • Pal, B.N. (2001).Granular ferric hydroxide for elimination of arsenic from drinking water.Technologies for Removal of Arsenic from Drinking Water. https://archive.unu.edu/env/Arsenic/Pal.pdf.Accessed 03 February 2021.
  • Razali, M., Zhao, Y.Q., and Bruen, M. (2007). Effectiveness of a drinking water treatment sludge in removing different phosphorus species from aqueous solution. Seperation and Purification Technology, 55, 300-306. http://doi.org/10.1016/j.seppur.2006.12.004.
  • Ren, X., Zhang, Z., Luo, H., Hu, B., Dang, Z., Yang, C., and Li, L. (2014).Adsorption of arsenic on modified montmorillonite.Appl. ClaySci. 97, 17-23. http://dx.doi.org/10.1016/j.clay.2014.05.028.
  • Rozada, F., Otero, M., Garcia, A.I., and Moran, A. (2007). Application in fixed bed systems of adsorbents obtained from sewage sludge and discharged tyres. DyesPigm, 72, 47-56.
  • Sasaki, T., Iizuka, A., Watanabe, M., Hongo, T., and Yamasaki, A. (2014). Preparation and performance of arsenate (V) adsorbents derived from concrete wastes. Waste Management, 34(10), 1829-1835. http://dx.doi.org/10.1016/j.wasman.2014.01.001.
  • Shajia, M., Santosh, M., Sarath, K.V., Prakash, P., Deepchand, B., and Divyaa, B.V. (2021). Arsenic contamination of groundwater: A global synopsis with focus on the Indian Peninsula. Geoscience Frontiers, 12, 101079.
  • Shtangeeva, I., Bali, R., and Harris, A. (2011). Bioavailability and toxicity of antimony. Journal of Geochemical Exploration, 110, 40–45.
  • Sidhu, V., Barrett, K., Park, D.Y., Deng, Y., Datta, R., and Sarkar D. (2021). Wood mulch coated with iron-based water treatment residuals for the abatement of metals and phosphorus in simulated stormwater runoff. Environmental Technology & Innovation, 21, 101214. https://doi.org/10.1016/j.eti.2020.101214.
  • Soleimanifar, H., Deng, Y., Wu, L., and Sarkar, D. (2016). Water treatment residual (WTR)-coated wood mulch for alleviation of toxic metals and phosphorus from polluted urban stormwater runoff. Chemosphere, 154, 289-292.
  • Sun, J., Pikaar, I., Sharma, K.R., Keller, J., and Yuan, Z. (2015). Feasibility of sulfide control in sewers by reuse of iron rich drinking water treatment sludge.Water Research, 71, 150-159. http://dx.doi.org/10.1016/j.watres.2014.12.044.
  • Tan, G., Wu, Y., Liu, Y., & Xiao, D. (2018). Removal of Pb(II) ions from aqueous solution by manganese oxide coated rice straw biochar –A low-cost and highly effective sorbent. Journal of the Taiwan Institute of Chemical Engineers, 84, 85-92.
  • Wang, C., Jiang, H., Yuan, N., Pei, Y., and Yan, Z. (2016). Tuning the adsorptive properties of drinking water treatment residue via oxygen-limited heat treatment for environmental recycle.Chemical Engineering Journal, 284, 571-581. http://dx.doi.org/10.1016/j.cej.2015.09.011.
  • Wang, C., Wu, Y., Bai, L., Zhao, Y., Yan, Z., Jiang, H., and Liu, X. (2018).Recycling of drinking water treatment residue as an additional medium in columns for effective P removal from eutrophic surface water. Journal of Environmental Management, 217, 363-372. http://doi.org/10.1016/j.jenvman.2018.03.128.
  • WHO/SDE/WSH, 2003.Antimony in drinking-water. Background document for development of WHO guidelines for drinking-water quality. Retrieved from https://www.who.int/water_sanitation_health/dwq/chemicals/antimony.pdf
  • Xi, J., He, M., and Lin, C. (2010). Adsorption of antimony(V) on kaolinite as a function of pH, ionic strength and humic acid. Environ Earth Sci., 60, 715–722.
  • Xu, Z., Cai, J., and Pan, B. (2013). Mathematically modeling fixed-bed adsorption in aqueous systems. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 14(3), 155-176.
  • Varol, S., Köse, İ. (2018). Effect on human health of the arsenic pollution and hydrogeochemistry of the Yazır Lake wetland (Çavdır-Burdur/Turkey). Environ Sci Pollut Res 25, 16217–16235. https://doi.org/10.1007/s11356-018-1815-7
  • Vieira, B.R.C., Pintor, A.M.A., Boaventura, R.A.R., Botelho, C.M.S. (2017). Arsenic removal from water using iron-coated seaweeds. Journal of Environmental Management, 192, 224-233. http://dx.doi.org/10.1016/j.jenvman.2017.01.054.
  • Zhang, G.S., Qu, J.H., Liu, H.J., Liu, P.R., and Wu, R.C.(2007). Preparation and evaluation of a novel Fe-Mn binary oxide adsorbent for effective arsenite removal.Water Res., 41, 1921-1928. http://doi.org/10.1016/j.watres.2007.02.009.
Toplam 51 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Berna Kavacık 0000-0002-1756-8917

Deniz Dölgen 0000-0002-5888-3032

Proje Numarası BAP 2018.KB.FEN.036
Yayımlanma Tarihi 15 Haziran 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Kavacık, B., & Dölgen, D. (2022). Arsenic and Antimony Removal from Water by Zirconium-Coated Water Treatment Plant Sludge. Karadeniz Fen Bilimleri Dergisi, 12(1), 317-339. https://doi.org/10.31466/kfbd.1063741