Araştırma Makalesi
BibTex RIS Kaynak Göster

Topology Optimization of Freight Wagon Chassis Under Multi Loading Conditions

Yıl 2022, , 593 - 604, 15.12.2022
https://doi.org/10.31466/kfbd.1078425

Öz

In this study, planning performance values in a freight wagon chassis geometry are discussed. Container-carrying type chassis were preferred as freight wagons, topology optimization, 2020 simulation, was used for the traditional freight wagon for the optimization add-on. 1023 steel material was chosen as the material for the FEA analysis. Within the safety limits required for freight wagons, the traditional freight wagon has been lightened by 14.51 percent. Although the freight wagon was lighter, it gave uniform results in the load distribution, thus reducing the manufacturing costs of a standard freight wagon. The legal load limitations in railway management have been brought to the sum of the wagon weight and the load. Weight improvements in the tare of any freight car mean more loads can be carried. With this study, it has been observed that a conventional freight wagon chassis has a positive effect not only on manufacturing costs but also on operating costs.

Kaynakça

  • Baek, S. H., Cho, S. S., & Joo, W. S. (2008). Fatigue life prediction based on the rainflow cycle counting method for the end beam of a freight car bogie. International Journal of Automotive Technology, 9(1), 95-101.
  • Bojović, N. J. (2002). A general system theory approach to rail freight car fleet sizing. European Journal of Operational Research, 136(1), 136-172.
  • Cazacu, R., & Grama, L. (2014). Overview of structural topology optimization methods for plane and solid structures. Annals of the University of Oradea, Fascicle of Management and Technological Engineering, 23(3), 1583-1591.
  • Challis, V. J., Roberts, A. P., Grotowski, J. F., Zhang, L.-C., & Sercombe, T. B. (2010). Prototypes for bone implant scaffolds designed via topology optimization and manufactured by solid freeform fabrication. Advanced Engineering Materials, 12(11), 1106-1110.
  • Escobar, J. M., Cascón, J. M., Rodríguez, E., & Montenegro, R. (2011). A new approach to solid modeling with trivariate T-splines based on mesh optimization. Computer Methods in Applied Mechanics and Engineering, 200(45-46), 3210-3222.
  • Holmberg, K., Joborn, M., & Lundgren, J. T. (1998). Improved empty freight car distribution. Transportation Science, 32(2), 163-173.
  • Karagöz, N., & Acar, H. İ. (2020). Dinamik Fren Kullanımının Yük Vagonu Tekerleklerine Gelen Isıl Yüke Etkisinin Gerçek İşletme Şartlarında Deneysel Olarak İncelenmesi. Demiryolu Mühendisliği, 12, 43-51.
  • Kazakis, G., Kanellopoulos, I., Sotiropoulos, S., & Lagaros, N. D. (2017). Topology optimization aided structural design: Interpretation, computational aspects and 3D printing. Heliyon, 3(10), e00431.
  • Kovalev, R., Lysikov, N., Mikheev, G., Pogorelov, D., Simonov, V., Yazykov, V., Zakharov, S., Zharov, I., Goryacheva, I., & Soshenkov, S. (2009). Freight car models and their computer-aided dynamic analysis. Multibody System Dynamics, 22(4), 399-423.
  • Kumar, M., Jha, A. K., Bhagoria, Y., & Gupta, P. (2021). A review to explore different meshless methods in various Structural problems. IOP Conference Series: Materials Science and Engineering, 1116(1), 012119.
  • Kumar, M., Rajiyan, J., & Gupta, P. (2021). A computational approach for solving elasto-statics problems. Materials Today: Proceedings, 46, 6876-6879.
  • Pugliesi, E. A., & Decanini, M. M. (2011). Cartographic design of in-car route guidance for color-blind users. International Cartographic Conference.
  • Ramos, A. P. M., Pugliesi, E. A., Oliveira, R. F. de, Tachibana, V. M., & Decanini, M. M. S. (2018). Evaluation of usability of maps of different scales presented in an in-car route guidance and navigation system. Boletim de Ciências Geodésicas, 24, 383-406.
  • Shinde, A., Rawat, K. S., Mahajan, R., Pardeshi, V., & Kamanna, B. (2017). Design and Analysis of Flywheel for Different Geometries and Materials. Global Journal of Enterprise Information System, 9(1), 95-99.
  • Sigmund, O. (1994). Design of material structures using topology optimization [PhD Thesis]. Technical University of Denmark Denmark.
  • Slavov, S., & Konsulova-Bakalova, M. (2019). Optimizing weight of housing elements of two-stage reducer by using the topology management optimization capabilities integrated in SOLIDWORKS: A case study. Machines, 7(1), 9.
  • Stein, K., Tezduyar, T. E., & Benney, R. (2004). Automatic mesh update with the solid-extension mesh moving technique. Computer Methods in Applied Mechanics and Engineering, 193(21-22), 2019-2032.
  • Vardaan, K., & Kumar, P. (2022). Design, analysis, and optimization of thresher machine flywheel using Solidworks simulation. Materials Today: Proceedings.
  • Zhou, Q., Grinspun, E., Zorin, D., & Jacobson, A. (2016). Mesh arrangements for solid geometry. ACM Transactions on Graphics (TOG), 35(4), 1-15.

Çoklu Yükleme Koşulları Altında Yük Vagonu Şasisinin Topoloji Optimizasyonu

Yıl 2022, , 593 - 604, 15.12.2022
https://doi.org/10.31466/kfbd.1078425

Öz

Bu çalışmada bir yük vagonu şasi geometrisinde planlama performans değerleri ele alınmıştır. Yük vagonu olarak konteyner taşınabilen tipte şasiler tercih edilmiştir. optimizasyon metodu olarak topoloji optimizasyonu kullanılmıştır. Sonlu elemanlar (FEA) analizi için malzeme olarak 1023 çelik malzeme tercih edilmiştir. Yük vagonları için gerekli güvenlik limitleri dahilinde çalışma sonucunda geleneksel yük vagonunu %14,51 hafifletilmiştir. Yük vagonu daha hafif olmasına rağmen yük dağılımında da düzenli sonuçlar elde edilmiştir böylece standart bir yük vagonunun imalat maliyetleri düşürülmüştür. Demiryolu işletmeciliğinde yasal yük sınırlamaları vagon ağırlığı ve yükün toplamına kadardır. Herhangi bir yük vagonun darasındaki ağırlık iyileştirmeleri daha fazla yük taşınabileceği anlamına gelmektedir. Bu çalışma ile geleneksel bir yük vagonu şasisinin yalnızca imalat maliyetleri değil işletme maliyetlerine olumlu etkisi olduğu gözlemlenmiştir.

Kaynakça

  • Baek, S. H., Cho, S. S., & Joo, W. S. (2008). Fatigue life prediction based on the rainflow cycle counting method for the end beam of a freight car bogie. International Journal of Automotive Technology, 9(1), 95-101.
  • Bojović, N. J. (2002). A general system theory approach to rail freight car fleet sizing. European Journal of Operational Research, 136(1), 136-172.
  • Cazacu, R., & Grama, L. (2014). Overview of structural topology optimization methods for plane and solid structures. Annals of the University of Oradea, Fascicle of Management and Technological Engineering, 23(3), 1583-1591.
  • Challis, V. J., Roberts, A. P., Grotowski, J. F., Zhang, L.-C., & Sercombe, T. B. (2010). Prototypes for bone implant scaffolds designed via topology optimization and manufactured by solid freeform fabrication. Advanced Engineering Materials, 12(11), 1106-1110.
  • Escobar, J. M., Cascón, J. M., Rodríguez, E., & Montenegro, R. (2011). A new approach to solid modeling with trivariate T-splines based on mesh optimization. Computer Methods in Applied Mechanics and Engineering, 200(45-46), 3210-3222.
  • Holmberg, K., Joborn, M., & Lundgren, J. T. (1998). Improved empty freight car distribution. Transportation Science, 32(2), 163-173.
  • Karagöz, N., & Acar, H. İ. (2020). Dinamik Fren Kullanımının Yük Vagonu Tekerleklerine Gelen Isıl Yüke Etkisinin Gerçek İşletme Şartlarında Deneysel Olarak İncelenmesi. Demiryolu Mühendisliği, 12, 43-51.
  • Kazakis, G., Kanellopoulos, I., Sotiropoulos, S., & Lagaros, N. D. (2017). Topology optimization aided structural design: Interpretation, computational aspects and 3D printing. Heliyon, 3(10), e00431.
  • Kovalev, R., Lysikov, N., Mikheev, G., Pogorelov, D., Simonov, V., Yazykov, V., Zakharov, S., Zharov, I., Goryacheva, I., & Soshenkov, S. (2009). Freight car models and their computer-aided dynamic analysis. Multibody System Dynamics, 22(4), 399-423.
  • Kumar, M., Jha, A. K., Bhagoria, Y., & Gupta, P. (2021). A review to explore different meshless methods in various Structural problems. IOP Conference Series: Materials Science and Engineering, 1116(1), 012119.
  • Kumar, M., Rajiyan, J., & Gupta, P. (2021). A computational approach for solving elasto-statics problems. Materials Today: Proceedings, 46, 6876-6879.
  • Pugliesi, E. A., & Decanini, M. M. (2011). Cartographic design of in-car route guidance for color-blind users. International Cartographic Conference.
  • Ramos, A. P. M., Pugliesi, E. A., Oliveira, R. F. de, Tachibana, V. M., & Decanini, M. M. S. (2018). Evaluation of usability of maps of different scales presented in an in-car route guidance and navigation system. Boletim de Ciências Geodésicas, 24, 383-406.
  • Shinde, A., Rawat, K. S., Mahajan, R., Pardeshi, V., & Kamanna, B. (2017). Design and Analysis of Flywheel for Different Geometries and Materials. Global Journal of Enterprise Information System, 9(1), 95-99.
  • Sigmund, O. (1994). Design of material structures using topology optimization [PhD Thesis]. Technical University of Denmark Denmark.
  • Slavov, S., & Konsulova-Bakalova, M. (2019). Optimizing weight of housing elements of two-stage reducer by using the topology management optimization capabilities integrated in SOLIDWORKS: A case study. Machines, 7(1), 9.
  • Stein, K., Tezduyar, T. E., & Benney, R. (2004). Automatic mesh update with the solid-extension mesh moving technique. Computer Methods in Applied Mechanics and Engineering, 193(21-22), 2019-2032.
  • Vardaan, K., & Kumar, P. (2022). Design, analysis, and optimization of thresher machine flywheel using Solidworks simulation. Materials Today: Proceedings.
  • Zhou, Q., Grinspun, E., Zorin, D., & Jacobson, A. (2016). Mesh arrangements for solid geometry. ACM Transactions on Graphics (TOG), 35(4), 1-15.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Emre Görgün 0000-0002-1971-456X

Yayımlanma Tarihi 15 Aralık 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Görgün, E. (2022). Çoklu Yükleme Koşulları Altında Yük Vagonu Şasisinin Topoloji Optimizasyonu. Karadeniz Fen Bilimleri Dergisi, 12(2), 593-604. https://doi.org/10.31466/kfbd.1078425