Araştırma Makalesi
BibTex RIS Kaynak Göster

Comparison of the Rheological Behavior of Iso- and Syndiotactic Polypropylenes

Yıl 2022, , 1108 - 1121, 15.12.2022
https://doi.org/10.31466/kfbd.1099271

Öz

The rheological behavior of iso- and syndiotactic polypropylenes (iPP and sPP) for two different temperatures of 175 and 190˚C at atmospheric pressure is analyzed employing the Yahsi-Dinc-Tav (YDT) non-Newtonian viscosity model. The predicted viscosity with shear rates of 0.093 to 93.91 s-1 on PPs is compared with the corresponding estimations from the Cross-like model. The obtained results from the YDT model deviate from the reported experimental observations with 1.041 for iPP and 1.86 for sPP. From the zero shear viscosity correlation to temperature- and vacancy fraction- dependent thermo-occupancy function, Yh = Yh(h, T), viscosity parameters were ascertained and associated with polymer tacticity. From the zero shear viscosity relation, an increase in Yh = Yh(h, T) function and hole fraction loss results in increased viscosity. The dependence of the derivative of logarithm of viscosity (viscoholibility) on vacancy fraction, as a function of pressure and temperature, h=h(P,T), procured from Simha-Somcynsky hole theory displays an exponentially decreasing behavior.

Kaynakça

  • Amer, I., van Reenen, A., Mokrani, T. (2015). Molecular weight and tacticity effect on morphological and mechanical properties of Ziegler–Natta catalyzed isotactic polypropylenes. Polymeros, 25(6), 566-563. doi: 10.1590/0104-1428.2158
  • Dinc, F. S., Sedlacek, T., Tav, C., and Yahsi, U. (2014). On the Non-Newtonian Viscous Behavior of Polymer Melts in Terms of Temperature and Pressure-Dependent Hole Fraction. Journal of Applied Polymer Science, 131(15), 40541-40510. doi: 10.1002/app.40540
  • Doolittle, A. K. (1951). Studies in Newtonian Flow .1. The Dependence of the Viscosity of Liquids on Temperature. Journal of Applied Physics, 22(8), 1031-1035.
  • Doolittle, A. K. (1951b). Studies in Newtonian Flow .2. The Dependence of the Viscosity of Liquids on Free-Space. Journal of Applied Physics, 22(12), 1471-1475.
  • Doolittle, A. K. (1952). Studies in Newtonian Flow .3. The Dependence of the Viscosity of Liquids on Molecular Weight and Free Space (in Homologous Series). Journal of Applied Physics, 23(2), 236-239. doi: 10.1063/1.1702182
  • Eckstein, A., Friedrich, C., Lobbrecht, A., Spitz, R. and R. Mulhaupt. (1997). Comparison of the viscoelastic properties of syndio- and isotactic polypropylenes. Acta Polymer, 48, 41-46. doi:10.1002/actp.1997.010480107
  • Fetters, L. J., Lohse, D. J., Richter, D., Witten, T. A., Zirkel, A. (1994). Connection between Polymer Molecular Weight, Density, Chain Dimensions, and Melt Viscoelastic Properties. 27(17), 4639-. doi:10.1021/ma00095a001
  • Hieber, C. A., and Chiang, H. H. (1992). Shear-Rate-Dependence Modeling of Polymer Melt Viscosity. Polymer Engineering and Science, 32(14), 931-938. doi: 10.1002/pen.760321404
  • Huang, T., Miura, M., Nobukawa, S., Yamaguchi, M. (2015). Chain Packing and Its Anomalous Effect on Mechanical Toughness for Poly(lactic acid). Biomacromolecules, 16(5), 1660-1666. doi:10.1021/acs.biomac.5b00293
  • Jones, T. D., Chaffin, K. A., and Bates, F. S. (2002). Effect of Tacticity on Coil Dimensions and Thermodynamic Properties of Polypropylene. Macromolecules, 35, 5061-5068. doi: 10.1021/ma011547g
  • Kadijk, S. E., and Vandenbrule, B. H. A. A. (1994). On the Pressure Dependency of the Viscosity of Molten Polymers. Polymer Engineering and Science, 34(20), 1535-1546. doi: 10.1002/pen.760342004
  • Loos, J., Buhk, M., Petermann, J. (1996). Morphological studies on syndiotactic polypropylene prepared by ansa-metallocenes. Polymer Bulletin, 37(3), 387-391. doi:10.1016/0032-3861(96)82907-7
  • Madkour, T. M., Soldera, A. (2001). Tacticity induced molecular microstructure dependence of the configurational properties of metallocene-synthesized polypropylenes. European Polymer Journal, 37(6), 1105-1113. doi:10.1016/S0014-3057(00)00227-5
  • Müller, M. (2008). Miscibility behavior and single chain properties in polymer blends: a bond fluctuation model study. Macromolecular Theory and Simulations, 8(4), 343-374. doi:10.1002/(SICI)1521-3919(19990701)8:4<343::AID-MATS343>3.0.CO;2-F
  • Panagiotis-Nikolaos, T., Argyropoulou, D. V., Anogiannakis, S. D.,, & and Theodorou, D. N. (2018). Tacticity Effect on the Conformational Properties of Polypropylene and Poly(ethylene−propylene) Copolymers. Macromolecules, 51(17), 6878-6891. doi:10.1021/acs.macromol.8b01099
  • Rojo, E., Fernandez, M., Munoz, M. E., and Santamaria, A. (2006). Relation between PVT measurements and linear viscosity in isotactic and syndiotactic polypropylenes. Polymer, 47(23), 7853-7858. doi: 10.1016/j.polymer.2006.09.019
  • Sahin-Dinc, F. (2015). Hole Fraction Dependence on Linear Viscosity of PS, PP and ABS. International Polymer Processing, 30(5), 585-592. doi: 10.3139/217.3101
  • Sahin-Dinc, F., Sorrentino, A., Tav, C., Yahsi, U. (2015). The Effect of Hole Fraction on Viscosity in Atactic and Syndiotactic Polystyrenes. International Journal of Thermophysics, 36(9), 3239-3254. doi: 10.1007/s10765-015-1990-4
  • Sahin-Dinc, F., Yahsi, U., Sedlacek, T. (2019). Interrelationships of Pressure-Dependent Hole Fraction and Elongational Viscosity in Polymer Melts. Advances in Polymer Technology, 2019, 1-16. doi:10.1155/2019/9493769
  • Sahin-Dinc, F. (2022). Free volume vacancy behaviour and dynamic viscosity of diesel fuels with additives at elevated temperature and pressure: thermo-occupancy function. International Journal of Oil, Gas and Coal Technology, 30(2), 209-228. doi: 10.1504/IJOGCT.2022.122624
  • Sahin, F., Tav, C., and Yahsi, U. (2006). Linking the viscous and vacancy behavior of mixtures of high-molecular-weight hydrocarbons. International Journal of Thermophysics, 27(5), 1501-1514.
  • Sedlacek, T., Cermak, R., Hausnerova, B., Zatloukal, M., Boldizar, A., and Saha, P. (2005). On PVT and rheological measurements of polymer melts - Correction of the hole fraction-viscosity relationship. International Polymer Processing, 20(3), 286-295. doi: 10.3139/217.1890
  • Simha, R., and Somcynsk.T. (1969). On Statistical Thermodynamics of Spherical and Chain Molecule Fluids. Macromolecules, 2(4), 342-350 doi: 10.1021/ma60010a005
  • Utracki, L. A. (1983a). Pressure-Dependence of Newtonian Viscosity. Polymer Engineering and Science, 23(8), 446-451. doi: 10.1002/pen.760230806
  • Utracki, L. A. (1983b). Temperature and Pressure-Dependence of Liquid Viscosity. Canadian Journal of Chemical Engineering, 61(5), 753-758. doi: 10.1002/cjce.5450610518
  • Utracki, L. A. (1985). A Method of Computation of the Pressure Effect on Melt Viscosity. Polymer Engineering and Science, 25(11), 655-668. doi: 10.1002/pen.760251104
  • Utracki, L. A. (1986). Correlation between PVT Behavior and the Zero-Shear Viscosity of Liquid-Mixtures. Journal of Rheology, 30(4), 829-841. doi: 10.1122/1.549911
  • Utracki, L. A., and Sedlacek, T. (2007). Free volume dependence of polymer viscosity. Rheologica Acta, 46(4), 479-494. doi: 10.1007/s00397-006-0133-z
  • Wang, S., Nies, E. (1998). A theory for compressible binary lattice polymers: influence of chain conformational properties. Journal of Chemical Physics, 109(13), 5639-5650. doi: 10.1063/1.477182
  • Xu, R., Zhang, P., Wang, H., Chen, X., Xiong, J., Su, J., Peng Chen, P., and Zhang, Z. (2019). Structure and Properties of a Metallocene Polypropylene Resin with Low Melting Temperature for Melt Spinning Fiber Application. Polymers, 11(729). doi: 10.3390/polym11040729
  • Yahsi, U. (1998). Interrelationships between P-V-T and flow behavior of linear and nonlinear hydrocarbons. Polymer Engineering and Science, 38(3), 464-470. doi: 10.1002/pen.10208
  • Yahsi, U. (1999). Viscous behavior of linear and three-branch alkanes: Linking the equilibrium and transport theories. Journal of Polymer Science Part B-Polymer Physics, 37(9), 879-887. doi: 10.1002/(SICI)1099-0488(19990501)
  • Yahsi, U., and Sahin, F. (2004). Linking the viscous and vacancy behavior of high molecular weight hydrocarbons. Rheologica Acta, 43(2), 159-167. doi: 10.1007/S00397-003-0330-Y

İzo- ve Sindiyotaktik Polipropilenlerin Reolojik Davranışının Karşılaştırılması

Yıl 2022, , 1108 - 1121, 15.12.2022
https://doi.org/10.31466/kfbd.1099271

Öz

Newtonyen olmayan Yahşi-Dinç-Tav (YDT) viskozite modeli kullanılarak, izotaktik ve sindiyotaktik polipropilenlerin (iPP ve sPP) atmosfer basıncında 175 ve 190˚C'lik iki farklı sıcaklık için reolojik davranışı analiz edilmiştir. PP'ler üzerinde 0.093 ila 93.91 s-1 kayma gerinimleri ile tahmin edilen kayma viskozitesi, Cross-benzeri modelden karşılık gelen tahminlerle karşılaştırılır. YDT modelinden elde edilen sonuçlar, iPP için 1.041 ve sPP için 1.86 ile, bildirilen deneysel gözlemlerden sapmaktadır. Sıcaklık ve boşluk kesri ile ilişkili ısıl-doluluk fonksiyonu, Yh = Yh(h, T), ile sıfır kayma viskozite ilişkisinden, viskozite parametreleri belirlendi ve bu parametreler polimer taktisitesi ile ilişkilendirildi. Sıfır kayma viskozite ilişkisinden, Yh fonksiyonundaki bir artış ve boşluk fraksiyonu kaybı viskozitenin artmasıyla sonuçlanır. Viskozite logaritmasının (viskoholabilite) türevinin, Simha-Somcynsky boşluk teorisinden sağlanan sıcaklığın ve basıncın fonksiyonu olan boşluk kesrine, h=h(P,T) bağlılığı, üstel azalan bir davranış sergiler.

Kaynakça

  • Amer, I., van Reenen, A., Mokrani, T. (2015). Molecular weight and tacticity effect on morphological and mechanical properties of Ziegler–Natta catalyzed isotactic polypropylenes. Polymeros, 25(6), 566-563. doi: 10.1590/0104-1428.2158
  • Dinc, F. S., Sedlacek, T., Tav, C., and Yahsi, U. (2014). On the Non-Newtonian Viscous Behavior of Polymer Melts in Terms of Temperature and Pressure-Dependent Hole Fraction. Journal of Applied Polymer Science, 131(15), 40541-40510. doi: 10.1002/app.40540
  • Doolittle, A. K. (1951). Studies in Newtonian Flow .1. The Dependence of the Viscosity of Liquids on Temperature. Journal of Applied Physics, 22(8), 1031-1035.
  • Doolittle, A. K. (1951b). Studies in Newtonian Flow .2. The Dependence of the Viscosity of Liquids on Free-Space. Journal of Applied Physics, 22(12), 1471-1475.
  • Doolittle, A. K. (1952). Studies in Newtonian Flow .3. The Dependence of the Viscosity of Liquids on Molecular Weight and Free Space (in Homologous Series). Journal of Applied Physics, 23(2), 236-239. doi: 10.1063/1.1702182
  • Eckstein, A., Friedrich, C., Lobbrecht, A., Spitz, R. and R. Mulhaupt. (1997). Comparison of the viscoelastic properties of syndio- and isotactic polypropylenes. Acta Polymer, 48, 41-46. doi:10.1002/actp.1997.010480107
  • Fetters, L. J., Lohse, D. J., Richter, D., Witten, T. A., Zirkel, A. (1994). Connection between Polymer Molecular Weight, Density, Chain Dimensions, and Melt Viscoelastic Properties. 27(17), 4639-. doi:10.1021/ma00095a001
  • Hieber, C. A., and Chiang, H. H. (1992). Shear-Rate-Dependence Modeling of Polymer Melt Viscosity. Polymer Engineering and Science, 32(14), 931-938. doi: 10.1002/pen.760321404
  • Huang, T., Miura, M., Nobukawa, S., Yamaguchi, M. (2015). Chain Packing and Its Anomalous Effect on Mechanical Toughness for Poly(lactic acid). Biomacromolecules, 16(5), 1660-1666. doi:10.1021/acs.biomac.5b00293
  • Jones, T. D., Chaffin, K. A., and Bates, F. S. (2002). Effect of Tacticity on Coil Dimensions and Thermodynamic Properties of Polypropylene. Macromolecules, 35, 5061-5068. doi: 10.1021/ma011547g
  • Kadijk, S. E., and Vandenbrule, B. H. A. A. (1994). On the Pressure Dependency of the Viscosity of Molten Polymers. Polymer Engineering and Science, 34(20), 1535-1546. doi: 10.1002/pen.760342004
  • Loos, J., Buhk, M., Petermann, J. (1996). Morphological studies on syndiotactic polypropylene prepared by ansa-metallocenes. Polymer Bulletin, 37(3), 387-391. doi:10.1016/0032-3861(96)82907-7
  • Madkour, T. M., Soldera, A. (2001). Tacticity induced molecular microstructure dependence of the configurational properties of metallocene-synthesized polypropylenes. European Polymer Journal, 37(6), 1105-1113. doi:10.1016/S0014-3057(00)00227-5
  • Müller, M. (2008). Miscibility behavior and single chain properties in polymer blends: a bond fluctuation model study. Macromolecular Theory and Simulations, 8(4), 343-374. doi:10.1002/(SICI)1521-3919(19990701)8:4<343::AID-MATS343>3.0.CO;2-F
  • Panagiotis-Nikolaos, T., Argyropoulou, D. V., Anogiannakis, S. D.,, & and Theodorou, D. N. (2018). Tacticity Effect on the Conformational Properties of Polypropylene and Poly(ethylene−propylene) Copolymers. Macromolecules, 51(17), 6878-6891. doi:10.1021/acs.macromol.8b01099
  • Rojo, E., Fernandez, M., Munoz, M. E., and Santamaria, A. (2006). Relation between PVT measurements and linear viscosity in isotactic and syndiotactic polypropylenes. Polymer, 47(23), 7853-7858. doi: 10.1016/j.polymer.2006.09.019
  • Sahin-Dinc, F. (2015). Hole Fraction Dependence on Linear Viscosity of PS, PP and ABS. International Polymer Processing, 30(5), 585-592. doi: 10.3139/217.3101
  • Sahin-Dinc, F., Sorrentino, A., Tav, C., Yahsi, U. (2015). The Effect of Hole Fraction on Viscosity in Atactic and Syndiotactic Polystyrenes. International Journal of Thermophysics, 36(9), 3239-3254. doi: 10.1007/s10765-015-1990-4
  • Sahin-Dinc, F., Yahsi, U., Sedlacek, T. (2019). Interrelationships of Pressure-Dependent Hole Fraction and Elongational Viscosity in Polymer Melts. Advances in Polymer Technology, 2019, 1-16. doi:10.1155/2019/9493769
  • Sahin-Dinc, F. (2022). Free volume vacancy behaviour and dynamic viscosity of diesel fuels with additives at elevated temperature and pressure: thermo-occupancy function. International Journal of Oil, Gas and Coal Technology, 30(2), 209-228. doi: 10.1504/IJOGCT.2022.122624
  • Sahin, F., Tav, C., and Yahsi, U. (2006). Linking the viscous and vacancy behavior of mixtures of high-molecular-weight hydrocarbons. International Journal of Thermophysics, 27(5), 1501-1514.
  • Sedlacek, T., Cermak, R., Hausnerova, B., Zatloukal, M., Boldizar, A., and Saha, P. (2005). On PVT and rheological measurements of polymer melts - Correction of the hole fraction-viscosity relationship. International Polymer Processing, 20(3), 286-295. doi: 10.3139/217.1890
  • Simha, R., and Somcynsk.T. (1969). On Statistical Thermodynamics of Spherical and Chain Molecule Fluids. Macromolecules, 2(4), 342-350 doi: 10.1021/ma60010a005
  • Utracki, L. A. (1983a). Pressure-Dependence of Newtonian Viscosity. Polymer Engineering and Science, 23(8), 446-451. doi: 10.1002/pen.760230806
  • Utracki, L. A. (1983b). Temperature and Pressure-Dependence of Liquid Viscosity. Canadian Journal of Chemical Engineering, 61(5), 753-758. doi: 10.1002/cjce.5450610518
  • Utracki, L. A. (1985). A Method of Computation of the Pressure Effect on Melt Viscosity. Polymer Engineering and Science, 25(11), 655-668. doi: 10.1002/pen.760251104
  • Utracki, L. A. (1986). Correlation between PVT Behavior and the Zero-Shear Viscosity of Liquid-Mixtures. Journal of Rheology, 30(4), 829-841. doi: 10.1122/1.549911
  • Utracki, L. A., and Sedlacek, T. (2007). Free volume dependence of polymer viscosity. Rheologica Acta, 46(4), 479-494. doi: 10.1007/s00397-006-0133-z
  • Wang, S., Nies, E. (1998). A theory for compressible binary lattice polymers: influence of chain conformational properties. Journal of Chemical Physics, 109(13), 5639-5650. doi: 10.1063/1.477182
  • Xu, R., Zhang, P., Wang, H., Chen, X., Xiong, J., Su, J., Peng Chen, P., and Zhang, Z. (2019). Structure and Properties of a Metallocene Polypropylene Resin with Low Melting Temperature for Melt Spinning Fiber Application. Polymers, 11(729). doi: 10.3390/polym11040729
  • Yahsi, U. (1998). Interrelationships between P-V-T and flow behavior of linear and nonlinear hydrocarbons. Polymer Engineering and Science, 38(3), 464-470. doi: 10.1002/pen.10208
  • Yahsi, U. (1999). Viscous behavior of linear and three-branch alkanes: Linking the equilibrium and transport theories. Journal of Polymer Science Part B-Polymer Physics, 37(9), 879-887. doi: 10.1002/(SICI)1099-0488(19990501)
  • Yahsi, U., and Sahin, F. (2004). Linking the viscous and vacancy behavior of high molecular weight hydrocarbons. Rheologica Acta, 43(2), 159-167. doi: 10.1007/S00397-003-0330-Y
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Fatma Dinç 0000-0001-7707-3062

Yayımlanma Tarihi 15 Aralık 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Dinç, F. (2022). Comparison of the Rheological Behavior of Iso- and Syndiotactic Polypropylenes. Karadeniz Fen Bilimleri Dergisi, 12(2), 1108-1121. https://doi.org/10.31466/kfbd.1099271