Araştırma Makalesi
BibTex RIS Kaynak Göster

EDM Hızlı Delik Delme Parametrelerinin Kerf ve İşlem Süresine Etkileri

Yıl 2022, , 663 - 675, 15.12.2022
https://doi.org/10.31466/kfbd.1105006

Öz

Bu çalışmada konvansiyonel yöntemlerle delinmesi maliyetli ve zor olan yüksek sertlikteki (60-62HRC) X153CrMoV12 soğuk iş takım çeliğine elektro erozyonla hızlı delik delme tezgahında 3 mm pirinç elektrotlar kullanılarak delikler delinmiştir. Bu kapsamda üç farklı amper (5, 6, 7 A), üç farklı voltaj (1, 2, 3 V), altı farklı ark süresi (18, 22, 24, 26, 28, 29 μs), dört farklı bekleme süresi (3, 6, 8, 10 μs) parametrelerinin işleme süresi ve delinen deliklerde oluşan kerf üzerine etkileri makro analizler ve analitik ölçümlerle tespit edilmiştir. Yapılan analizler neticesinde kerf açısına ve işleme zamanına etkisi en yüksek parametrenin işleme akımı olduğu tespit edilmiştir. Akım, voltaj ve ark süresinin artması işleme süresini azaltırken, bekleme süresinin artmasıyla işleme süresi artmıştır. Genel olarak elektrot malzemesinin içerisinden ve dışarısından dielektrik sıvı püskürtülmesiyle aşınan partiküllerin ortamdan tahliye edilmesine bağlı olarak işleme parametrelerinin kerf üzerinde doğrusal olmayan bir etki yaptığı tespit edilmiştir. En düşük kerf açısı ve en yüksek işleme süresine maksimum akım değeri 7A, 3V voltaj, 29 μs ark süresi ve 3 μs bekleme süresi çalışma parametreleri kullanılarak ulaşılmıştır. Ayrıca delik giriş çapında 170 μm, çıkış çapında ise 220 μm boyutsal tamlık elde edilmiştir.

Teşekkür

Bu çalışmadaki Oscarmax SD400 EDM makinasının çalıştırılmasında görev alan Haier Europe, Candy-Hoover kalıphane çalışanlarına, mikroskobik görüntülerin elde edilmesine olanak sağlayan MEGEM (meslek edindirme ve geliştirme merkezi) ve mekanik test laboratuvarı teknik sorumlusu / Teknik Öğretmen Yasin ÖZEN’e teşekkür ederim.

Kaynakça

  • Ahmed, A., Tanjilul, M., Rahman, M., & Kumar, A. S. (2020). Ultrafast drilling of Inconel 718 using hybrid EDM with different electrode materials. The International Journal of Advanced Manufacturing Technology, 106(5), 2281-2294. https://doi.org/10.1007/s00170-019-04769-w
  • Aragaw, E. M., Gärtner, E., & Schubert, A. (2020). Combined laser hardening and laser surface texturing forming tool 1.2379. Procedia CIRP, 94, 914-918. https://doi.org/10.1016/j.procir.2020.09.072
  • Ceritbinmez, F. (2021), "An investigation on cutting of the cold work steel X153CrMoV12 by WEDM", Aircraft Engineering and Aerospace Technology, Vol. 93 No. 10, pp. 1674-1680. https://doi.org/10.1108/AEAT-01-2021-0028
  • Ceritbinmez, F. & Yapıcı, A. (2021). Sleipner Soğuk İş Takım Çeliğinin Elektro-Erozyon Tezgahında Bakır Krom Zirkonyum Alaşımı Elektrot ile İşlenmesinde İşleme Parametrelerinin Kerf ve Yüzey Pürüzlülüğü Üzerine Etkisinin İncelenmesi . Karadeniz Fen Bilimleri Dergisi , 11 (2) , 570-583. https://doi.org/10.31466/kfbd.948444
  • Chiou, A. H., Tsao, C. C., & Hsu, C. Y. (2015). A study of the machining characteristics of micro EDM milling and its improvement by electrode coating. The International Journal of Advanced Manufacturing Technology, 78(9), 1857-1864.
  • Feng, Y., Guo, Y., Ling, Z., & Zhang, X. (2019). Micro-holes EDM of superalloy Inconel 718 based on a magnetic suspension spindle system. The International Journal of Advanced Manufacturing Technology, 101(5), 2015-2026. https://doi.org/10.1007/s00170-018-3075-6
  • Günen, A., Ceritbinmez, F., Patel, K., Akhtar, M. A., Mukherjee, S., Kanca, E., & Karakas, M. S. (2022). WEDM machining of MoNbTaTiZr refractory high entropy alloy. CIRP Journal of Manufacturing Science and Technology, 38, 547-559. https://doi.org/10.1016/j.cirpj.2022.05.021
  • Gov, K. (2017). The effects of the dielectric liquid temperature on the hole geometries drilled by electro erosion. The International Journal of Advanced Manufacturing Technology, 92(1), 1255-1262. https://doi.org/10.1007/s00170-017-0231-3
  • https://www.saglammetal.com/tr/celik/takim-celikleri/soguk-is-takim-celikleri/12379-x153crmov12 (Erişim 11.04.2022)
  • Jahan, M.P. (2013). Micro-Electrical Discharge Machining. In: Davim, J. (eds) Nontraditional Machining Processes. Springer, London. https://doi.org/10.1007/978-1-4471-5179-1_4
  • Kliuev, M., & Wegener, K. (2020). Method of Machining Diffusors in Inconel 718 Turbine Blades for Film Cooling using EDM Drilling and Shaping. Procedia CIRP, 95, 511-515. https://doi.org/10.1016/j.procir.2020.10.001
  • Kumar, K., Singh, V., Katyal, P., & Sharma, N. (2019). EDM μ-drilling in Ti-6Al-7Nb: experimental investigation and optimization using NSGA-II. The International Journal of Advanced Manufacturing Technology, 104(5), 2727-2738. https://doi.org/10.1007/s00170-019-04012-6
  • Kuppan, P., Rajadurai, A., & Narayanan, S. (2008). Influence of EDM process parameters in deep hole drilling of Inconel 718. The International Journal of Advanced Manufacturing Technology, 38(1), 74-84. https://doi.org/10.1007/s00170-007-1084-y
  • Liu, H., & Bai, J. (2020). The Tool Electrode Wear and Gap Fluid Field Simulation Analysis in Micro-EDM Drilling of Micro-hole Array. Procedia CIRP, 95, 220-225. https://doi.org/10.1016/j.procir.2020.02.278
  • Maccarini, G., Pellegrini, G., & Ravasio, C. (2020). Effects of the properties of workpiece, electrode and dielectric fluid in micro-EDM drilling process. Procedia Manufacturing, 51, 834-841. DOI:10.1016/j.promfg.2020.10.117
  • Nas, E. , Zurnacı, E. & Yıldırım, S. (2021). Sertleştirilmiş AISI H13 Takım Çeliğinin Delme Performansını İyileştirmek İçin Elektro Erozyon İşleme Parametrelerinin Taguchi Yöntemi Kullanılarak Modellenmesi ve Optimizasyonu . Gazi Mühendislik Bilimleri Dergisi , 7 (2) , 99-110 . https://dx.doi.org/10.30855/gmbd.2021.02.03
  • Ni, H., Gong, H., Dong, Y. H., Fang, F. Z., & Wang, Y. (2018). A comparative investigation on hybrid EDM for drilling small deep holes. The International Journal of Advanced Manufacturing Technology, 95(1), 1465-1472. https://doi.org/10.1007/s00170-017-1282-1
  • Ociepa, M., Jenek, M., & Kuryło, P. (2021). The Geometric Surface Structure of EN X153CrMoV12 Tool Steel after Finish Turning Using PCBN Cutting Tools. Coatings, 11(4), 428. https://doi.org/10.3390/coatings11040428
  • Paul, G., Roy, S., Sarkar, S., Hanumaiah, N., & Mitra, S. (2013). Investigations on influence of process variables on crater dimensions in micro-EDM of γ-titanium aluminide alloy in dry and oil dielectric media. The International Journal of Advanced Manufacturing Technology, 65(5), 1009-1017. https://doi.org/10.1007/s00170-012-4235-8
  • Sapkal, S. U., & Jagtap, P. S. (2018). Optimization of micro EDM drilling process parameters for titanium alloy by rotating electrode. Procedia Manufacturing, 20, 119-126. https://doi.org/10.1016/j.promfg.2018.02.017
  • Singh, N., & Bharti, P. S. (2022). Multi-Objective parametric optimization during micro-EDM drilling of Ti-6Al-4 V using teaching learning Based optimization algorithm. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2022.03.257
  • Singh, S. K., Mali, H. S., Unune, D. R., Abdul-Rani, A. M., & Wojciechowski, S. (2022). Material independent effectiveness of workpiece vibration in μ-EDM drilling. Journal of Materials Research and Technology, 18, 531-546. https://doi.org/10.1016/j.jmrt.2022.02.063
  • Singh, R., Dhami, S. S., & Rajput, N. (2022). Comparison of EDM and ECM machined AISI 304 steel: Surface roughness, hardness and morphological characteristics. Materials Today: Proceedings, 48, 965-974. https://doi.org/10.1016/j.matpr.2021.06.031
  • Skrabalak, G. (2018). Influence of electrode tool length on the micro EDM drilling performance. Procedia CIRP, 68, 594-598. https://doi.org/10.1016/j.procir.2017.12.120
  • Tanjilul, M., Ahmed, A., Kumar, A. S., & Rahman, M. (2018). A study on EDM debris particle size and flushing mechanism for efficient debris removal in EDM-drilling of Inconel 718. Journal of Materials Processing Technology, 255, 263-274. https://doi.org/10.1016/j.jmatprotec.2017.12.016
  • Weiwen, X., Junqi, W., & Wansheng, Z. (2018). Break-out detection for high-speed small hole drilling EDM based on machine learning. Procedia CIRP, 68, 569-574. https://doi.org/10.1016/j.procir.2017.12.115
  • Ye, L., Xi, X., Bellotti, M., Qian, J., & Reynaerts, D. (2020). Investigation of advanced control schemes for high-speed small-hole EDM drilling. Procedia CIRP, 95, 539-544. DOI:10.1016/j.procir.2020.02.263
  • Younis, M. A., Abbas, M. S., Gouda, M. A., Mahmoud, F. H., & Abd Allah, S. A. (2015). Effect of electrode material on electrical discharge machining of tool steel surface. Ain Shams Engineering Journal, 6(3), 977-986. https://doi.org/10.1016/j.asej.2015.02.001

Effects of EDM Fast Drilling Parameters on Kerf and Process Time

Yıl 2022, , 663 - 675, 15.12.2022
https://doi.org/10.31466/kfbd.1105006

Öz

In this study, holes were drilled on X153CrMoV12 cold work tool steel with high hardness (60-62HRC), which is difficult and costly to drill with conventional methods, using 3 mm brass electrodes on a fast hole drilling machine by electro-erosion. In this context, the effects of three different amperes (5, 6, 7 A), three different voltages (1, 2, 3 V), six different pulse on-time (18, 22, 24, 26, 28, 29 μs), four different pulse off-time (3, 6, 8, 10 μs) parameters on the processing time and the Kerf formed in the drilled holes were determined by macro analysis and analytical measurements. As a result of the analysis, it has been determined that the parameter with the highest effect on the kerf angle and machining time is the machining current. The processing time increased with the increase of the pulse off time on the other hand the increase in current, voltage and pulse on time decreased the machining time. In general, it has been determined that the processing parameters have a non-linear effect on the kerf due to the pressure flushing of dielectric liquid from the inside and outside of the electrode material, and the evacuation of the abraded particles from the environment. The lowest kerf angle and the highest processing time were achieved using the operating parameters of 7A maximum current, 3V voltage, 29 μs pulse on time and 3 μs pulse off time. In addition, a dimensional accuracy of 170 μm in the hole inlet diameter and 220 μm in the output diameter was obtained.

Kaynakça

  • Ahmed, A., Tanjilul, M., Rahman, M., & Kumar, A. S. (2020). Ultrafast drilling of Inconel 718 using hybrid EDM with different electrode materials. The International Journal of Advanced Manufacturing Technology, 106(5), 2281-2294. https://doi.org/10.1007/s00170-019-04769-w
  • Aragaw, E. M., Gärtner, E., & Schubert, A. (2020). Combined laser hardening and laser surface texturing forming tool 1.2379. Procedia CIRP, 94, 914-918. https://doi.org/10.1016/j.procir.2020.09.072
  • Ceritbinmez, F. (2021), "An investigation on cutting of the cold work steel X153CrMoV12 by WEDM", Aircraft Engineering and Aerospace Technology, Vol. 93 No. 10, pp. 1674-1680. https://doi.org/10.1108/AEAT-01-2021-0028
  • Ceritbinmez, F. & Yapıcı, A. (2021). Sleipner Soğuk İş Takım Çeliğinin Elektro-Erozyon Tezgahında Bakır Krom Zirkonyum Alaşımı Elektrot ile İşlenmesinde İşleme Parametrelerinin Kerf ve Yüzey Pürüzlülüğü Üzerine Etkisinin İncelenmesi . Karadeniz Fen Bilimleri Dergisi , 11 (2) , 570-583. https://doi.org/10.31466/kfbd.948444
  • Chiou, A. H., Tsao, C. C., & Hsu, C. Y. (2015). A study of the machining characteristics of micro EDM milling and its improvement by electrode coating. The International Journal of Advanced Manufacturing Technology, 78(9), 1857-1864.
  • Feng, Y., Guo, Y., Ling, Z., & Zhang, X. (2019). Micro-holes EDM of superalloy Inconel 718 based on a magnetic suspension spindle system. The International Journal of Advanced Manufacturing Technology, 101(5), 2015-2026. https://doi.org/10.1007/s00170-018-3075-6
  • Günen, A., Ceritbinmez, F., Patel, K., Akhtar, M. A., Mukherjee, S., Kanca, E., & Karakas, M. S. (2022). WEDM machining of MoNbTaTiZr refractory high entropy alloy. CIRP Journal of Manufacturing Science and Technology, 38, 547-559. https://doi.org/10.1016/j.cirpj.2022.05.021
  • Gov, K. (2017). The effects of the dielectric liquid temperature on the hole geometries drilled by electro erosion. The International Journal of Advanced Manufacturing Technology, 92(1), 1255-1262. https://doi.org/10.1007/s00170-017-0231-3
  • https://www.saglammetal.com/tr/celik/takim-celikleri/soguk-is-takim-celikleri/12379-x153crmov12 (Erişim 11.04.2022)
  • Jahan, M.P. (2013). Micro-Electrical Discharge Machining. In: Davim, J. (eds) Nontraditional Machining Processes. Springer, London. https://doi.org/10.1007/978-1-4471-5179-1_4
  • Kliuev, M., & Wegener, K. (2020). Method of Machining Diffusors in Inconel 718 Turbine Blades for Film Cooling using EDM Drilling and Shaping. Procedia CIRP, 95, 511-515. https://doi.org/10.1016/j.procir.2020.10.001
  • Kumar, K., Singh, V., Katyal, P., & Sharma, N. (2019). EDM μ-drilling in Ti-6Al-7Nb: experimental investigation and optimization using NSGA-II. The International Journal of Advanced Manufacturing Technology, 104(5), 2727-2738. https://doi.org/10.1007/s00170-019-04012-6
  • Kuppan, P., Rajadurai, A., & Narayanan, S. (2008). Influence of EDM process parameters in deep hole drilling of Inconel 718. The International Journal of Advanced Manufacturing Technology, 38(1), 74-84. https://doi.org/10.1007/s00170-007-1084-y
  • Liu, H., & Bai, J. (2020). The Tool Electrode Wear and Gap Fluid Field Simulation Analysis in Micro-EDM Drilling of Micro-hole Array. Procedia CIRP, 95, 220-225. https://doi.org/10.1016/j.procir.2020.02.278
  • Maccarini, G., Pellegrini, G., & Ravasio, C. (2020). Effects of the properties of workpiece, electrode and dielectric fluid in micro-EDM drilling process. Procedia Manufacturing, 51, 834-841. DOI:10.1016/j.promfg.2020.10.117
  • Nas, E. , Zurnacı, E. & Yıldırım, S. (2021). Sertleştirilmiş AISI H13 Takım Çeliğinin Delme Performansını İyileştirmek İçin Elektro Erozyon İşleme Parametrelerinin Taguchi Yöntemi Kullanılarak Modellenmesi ve Optimizasyonu . Gazi Mühendislik Bilimleri Dergisi , 7 (2) , 99-110 . https://dx.doi.org/10.30855/gmbd.2021.02.03
  • Ni, H., Gong, H., Dong, Y. H., Fang, F. Z., & Wang, Y. (2018). A comparative investigation on hybrid EDM for drilling small deep holes. The International Journal of Advanced Manufacturing Technology, 95(1), 1465-1472. https://doi.org/10.1007/s00170-017-1282-1
  • Ociepa, M., Jenek, M., & Kuryło, P. (2021). The Geometric Surface Structure of EN X153CrMoV12 Tool Steel after Finish Turning Using PCBN Cutting Tools. Coatings, 11(4), 428. https://doi.org/10.3390/coatings11040428
  • Paul, G., Roy, S., Sarkar, S., Hanumaiah, N., & Mitra, S. (2013). Investigations on influence of process variables on crater dimensions in micro-EDM of γ-titanium aluminide alloy in dry and oil dielectric media. The International Journal of Advanced Manufacturing Technology, 65(5), 1009-1017. https://doi.org/10.1007/s00170-012-4235-8
  • Sapkal, S. U., & Jagtap, P. S. (2018). Optimization of micro EDM drilling process parameters for titanium alloy by rotating electrode. Procedia Manufacturing, 20, 119-126. https://doi.org/10.1016/j.promfg.2018.02.017
  • Singh, N., & Bharti, P. S. (2022). Multi-Objective parametric optimization during micro-EDM drilling of Ti-6Al-4 V using teaching learning Based optimization algorithm. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2022.03.257
  • Singh, S. K., Mali, H. S., Unune, D. R., Abdul-Rani, A. M., & Wojciechowski, S. (2022). Material independent effectiveness of workpiece vibration in μ-EDM drilling. Journal of Materials Research and Technology, 18, 531-546. https://doi.org/10.1016/j.jmrt.2022.02.063
  • Singh, R., Dhami, S. S., & Rajput, N. (2022). Comparison of EDM and ECM machined AISI 304 steel: Surface roughness, hardness and morphological characteristics. Materials Today: Proceedings, 48, 965-974. https://doi.org/10.1016/j.matpr.2021.06.031
  • Skrabalak, G. (2018). Influence of electrode tool length on the micro EDM drilling performance. Procedia CIRP, 68, 594-598. https://doi.org/10.1016/j.procir.2017.12.120
  • Tanjilul, M., Ahmed, A., Kumar, A. S., & Rahman, M. (2018). A study on EDM debris particle size and flushing mechanism for efficient debris removal in EDM-drilling of Inconel 718. Journal of Materials Processing Technology, 255, 263-274. https://doi.org/10.1016/j.jmatprotec.2017.12.016
  • Weiwen, X., Junqi, W., & Wansheng, Z. (2018). Break-out detection for high-speed small hole drilling EDM based on machine learning. Procedia CIRP, 68, 569-574. https://doi.org/10.1016/j.procir.2017.12.115
  • Ye, L., Xi, X., Bellotti, M., Qian, J., & Reynaerts, D. (2020). Investigation of advanced control schemes for high-speed small-hole EDM drilling. Procedia CIRP, 95, 539-544. DOI:10.1016/j.procir.2020.02.263
  • Younis, M. A., Abbas, M. S., Gouda, M. A., Mahmoud, F. H., & Abd Allah, S. A. (2015). Effect of electrode material on electrical discharge machining of tool steel surface. Ain Shams Engineering Journal, 6(3), 977-986. https://doi.org/10.1016/j.asej.2015.02.001
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Ferhat Ceritbinmez 0000-0002-5615-3124

Yayımlanma Tarihi 15 Aralık 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Ceritbinmez, F. (2022). EDM Hızlı Delik Delme Parametrelerinin Kerf ve İşlem Süresine Etkileri. Karadeniz Fen Bilimleri Dergisi, 12(2), 663-675. https://doi.org/10.31466/kfbd.1105006