Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of Copper Removal by Conditioned Zeolite - Clinoptilolite Mineral

Yıl 2023, , 97 - 113, 15.03.2023
https://doi.org/10.31466/kfbd.1179342

Öz

In this study, Cu(II) removal with three different types of clinoptilolite, which is natural (H-Zt), chemically conditioned (KOH-Zt), and loaded with Fe3O4 magnetic nanoparticles after chemical conditioning (KOH-Zt/Fe3O4), was investigated depending on concentration and pH in the first step. Then, the studies were continued with the adsorbent KOH-Zt with the best efficiency, and the effects of contact time, initial metal concentration, adsorbent dosage, and temperature were investigated. It was observed that chemical conditioning with KOH was more effective in removing Cu(II) and 77.61% removal was achieved at 30 mg/L Cu(II) concentration. Maximum Cu(II) adsorption capacity is 8.91 mg/g at 50 mg/L Cu(II) concentration. It was understood that the Langmuir isotherm model best describes the adsorption equilibrium. Adsorption kinetic data is compatible with second-order reaction kinetics. Thermodynamic calculations show that adsorption is spontaneous and endothermic. All the data obtained from the study show that the KOH-Zt adsorbent obtained after chemical conditioning applied on clinoptilolite, which is an effective and inexpensive adsorbent, is preferable for Cu(II) adsorption.

Kaynakça

  • Amin, M. T., Alazba, A. A., and Shafiq, M. (2017). Effective adsorption of methylene blue dye using activated carbon developed from the rosemary plant: Isotherms and kinetic studies. Desalination and Water Treatment, 74, 336-345.
  • Argun, M. E., Dursun, S., Ozdemir, C., and Karatas, M. (2007). Heavy metal adsorption by modified oak sawdust: Thermodynamics and kinetics. Journal of Hazardous Materials, 141(1), 77-85.
  • Bakici Tanaydin, Z., Tanaydin, M. K., Demi̇rkiran, N., and İnce, M. (2020). Adsorption of copper and cadmium with perlite and comparison of adsorption properties. International Journal of Pure and Applied Sciences. 6(2), 208-218.
  • Canpolat, M., Altunkaynak, Y., and Yavuz, Ö. (2022). Studies on the equilibrium, kinetic, and thermodynamic properties of waste orange peel in the removal of copper (II) ions from aqueous solutions. Afyon Kocatepe University Journal of Sciences and Engineering, 22(3), 498-507.
  • Cebeci, M. S., and Şentürk, İ. (2020). Tarımsal atık materyal kullanılarak sucul çözeltiden Chrysoidine Y boyasının giderimi. International Journal of Multidisciplinary Studies and Innovative Technologies, 4(1), 18-28.
  • Cheng, D., Ngo, H. H., Guo, W., Chang, S. W., Nguyen, D. D., Zhang, X., Varjani, S., and Liu, Y. (2020). Feasibility study on a new pomelo peel derived biochar for tetracycline antibiotics removal in swine wastewater. Science of The Total Environment, 720, 137662.
  • Çoruh, S., Turan, G., Akdemir, A., and Ergun, O. N. (2009). The influence of chemical conditioning on the removal of copper ions from aqueous solutions by using clinoptilolite. Environmental Progress & Sustainable Energy, 28(2), 202-211.
  • Darama, S. E., and Çoruh, S. (2020). Investigation of the removal of malachite green and copper ions by dual system using natural and biochar pea shells. Bulletin of Biotechnology, 1(2), 46-51.
  • Dubinin, M. M., Zaverina, E. D., and Radushkevich, L. V. (1947). Sorption and structure of active carbons ı. adsorption of organic vapors. Zhurnal Fizicheskoi Khimii, 21, 1351-1362.
  • Elboughdiri, N. (2020). The use of natural zeolite to remove heavy metals Cu (II), Pb (II) and Cd (II), from industrial wastewater. Cogent Engineering, 7(1), 1782623.
  • Freundlich, H.M.F. (1906). Over the Adsorption in Solution. The Journal of Physical Chemistry, 57, 385-471.
  • Geyikçi, F., Çoruh, S., and Kılıç, E. (2013). Development of experimental results by artificial neural network model for adsorption of Cu 2+ using single wall carbon nanotubes. Separation Science and Technology, 48(10), 1490-1499.
  • Hamdaoui, O., and Naffrechoux, E. (2007). Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon Part I. Two-parameter models and equations allowing determination of thermodynamic parameters. Journal of Hazardous Materials, 147(1-2), 381-394.
  • Ho, Y. S., and McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34(5), 451-465.
  • Hui, K. S., Chao, C. Y. H., Kot, S. C. (2005). Removal of mixed heavy metal ions in wastewater by zeolite 4A and residual products from recycled coal fly ash. Journal of Hazardous Materials, 127(1-3), 89-101.
  • Inglezakis, V. J., Loizidou, M. D., Grigoropoulou, H. P. (2003). Ion Exchange of Pb2+, Cu2+, Fe3+, and Cr3+ on natural clinoptilolite: selectivity determination and influence of acidity on metal uptake. J. Colloid Interface Sci., 261, 49–54.
  • Jain, M., Yadav, M., Kohout, T., Lahtinen, M., Garg, V. K., and Sillanpää, M. (2018). Development of iron oxide/activated carbon nanoparticle composite for the removal of Cr(VI), Cu(II) and Cd(II) ions from aqueous solution. Water Resources and Industry, 20, 54-74.
  • Jianlong, W., Yi, Q., Horan, N., and Stentiford, E. (2000). Bioadsorption of pentachlorophenol (PCP) from aqueous solution by activated sludge biomass. Bioresource Technology, 75(2), 157-161.
  • Kayalvizhi, K., Alhaji, N. M. I., Saravanakkumar, D., Mohamed, S. B., Kaviyarasu, K., Ayeshamariam, A., Al-Mohaimeed, A. M., AbdelGawwad, M. R., and Elshikh, M. S. (2022). Adsorption of copper and nickel by using sawdust chitosan nanocomposite beads – A kinetic and thermodynamic study. Environmental Research, 203, 111814.
  • Keklikcioğlu Çakmak, N., and Topal Canbaz, G. (2020). TiO2 nanopartikülü ve TiO2/Aktif Çamur sentezi ile sulu çözeltiden Cu (II) iyonlarının adsorpsiyonu. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 10(1), 86-98.
  • Korkmaz, M., Özmeti̇n, C., Fil, B. A., and Yaşar, Y. (2012). Determination of parameters affecting copper removal from solutions by clinoptilolite: adsorption ısotherm and thermodynamic. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 3(1), 47-54.
  • Langmuir, I. (1918). The adsorptıon of gases on plane surfaces of glass, mıca and platınum. Journal of the American Chemical Society, 40(9), 1361-1403.
  • Li, W., Zhang, L., Peng, J., Li, N., Zhang, S., and Guo, S. (2008). Tobacco stems as a low cost adsorbent for the removal of Pb(II) from wastewater: Equilibrium and kinetic studies. Industrial Crops and Products, 28(3), 294-302.
  • Onursal, N., Dal, M. C., Kul, A. R., and Yavuz, Ö. (2020). Removal of cu(II) ions from aqueous envıronment vıa natural mıxed clay, examınatıon of isotherm, kınetıc and thermodynamıc parameters. Euroasia Journal of Mathematics, Engineering, Natural & Medical Sciences, 7(9), 85-103.
  • Özüdoğru, Y., and Merdi̇van, M. (2017). Metilen mavisinin modifiye edilmiş Cystoseira barbata (STACKHOUSE) C. Agardh kullanılarak biyosorpsiyonu. Trakya University Journal of Natural Sciences. 18(2), 81-87.
  • Rukayat, O. O., Usman, M. F., Elizabeth, O. M., Abosede, O. O., and Faith, I. U. (2021). Kinetic adsorption of heavy metal (Copper) on rubber (Hevea Brasiliensis) leaf powder. South African Journal of Chemical Engineering, 37, 74-80.
  • San Andres, M. P., Marina, M. I., and Vera, S. (1995). Spectrophotometric determination of Copper(II), Nickel(II), and Cobalt(II) as complexes with sodium diethyldithiocarbamate in the anionic micellar media of dodecylsulfate salts. Analyst, 120, 255-259.
  • Senturk, I., Buyukgungor, H., and Geyikci, F. (2016). Biosorption of phenol from aqueous solutions by the Aspergillus niger biomass: Comparison of linear and non-linear regression analysis. Desalination and Water Treatment, 57(41), 19529-19539.
  • Sharma, P., Pandey, A. K., Kim, S.-H., Singh, S. P., Chaturvedi, P., and Varjani, S. (2021). Critical review on microbial community during in-situ bioremediation of heavy metals from industrial wastewater. Environmental Technology & Innovation, 24, 101826.
  • Shukla, S. R., and Pai, R. S. (2005). Adsorption of Cu(II), Ni(II) and Zn(II) on modified jute fibres. Bioresource Technology, 96(13), 1430-1438.
  • Şenel, G. U. (2020). Adsorption of Copper (II) from aqueous solution by using carbonized peanut hull: Determination of the equilibrium, kinetic and thermodynamic parameters. Anadolu Çevre ve Hayvancılık Bilimleri Dergisi, 5(2), 131-137.
  • Şenol, H., and Açikel, Ü. (2018). Investigation of adsorption of Cu (II) heavy metal with bentonite. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 7(2), 231-242.
  • Şentürk, İ., and Alzein, M. (2020a). Adsorption of Acid Violet 17 onto acid-activated pistachio shell: Isotherm, kinetic and thermodynamic studies. Acta Chim. Slov., 67(1), 55-69.
  • Şentürk, İ., and Alzein, M. (2020b). Adsorptive removal of basic blue 41 using pistachio shell adsorbent—Performance in batch and column system. Sustainable Chemistry and Pharmacy, 16, 100254.
  • Şentürk, İ., and Yıldız, M. R. (2020a). Highly efficient removal from aqueous solution by adsorption of Maxilon Red GRL dye using activated pine sawdust. Korean Journal of Chemical Engineering, 37(6), 985-999.
  • Şentürk, İ., and Yildiz, M. (2020b). Doğal ve aktive edilen çam talaşı ile sucul çözeltiden adsorpsiyonla bazik sarı 28 giderimi. Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 9(2), 746-759.
  • Şimşek, Y. (2018). Sulu çözeltiden bakır (II) adsorpsiyon sürecinin optimizasyonunda yüzey yanıt metodolojisinin uygulanması. Academic Platform Journal of Engineering and Science, 6(3), 182-191.
  • Temkin, M. I. (1941). Adsorption Equilibrium and the Kinetics of Processes on Nonhomogeneous Surfaces and in the Interaction between Adsorbed Molecules. Zhurnal Fiziche- skoi Khimii, 15, 296-332.
  • Topal Canbaz, G., Açikel, U., and Sağ Açikel, Y. (2022). ZnO-Kitosan kompoziti ile ağır metal giderimi. European Journal of Science and Technology, 35, 603-609.
  • USEPA 2002. National Recommended Water Quality Criteria. Office of Water, 822-R-02-047.
  • Weber, W. J. and Morris, J. C. (1963) Kinetics of Adsorption on Carbon from Solutions. Journal of the Sanitary Engineering Division, 89, 31-39.
  • Wu, F. C., Tseng, R. L., and Juang, R. S. (2009). Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems. Chemical Engineering Journal, 150(2-3), 366-373.
  • Yazici Karabulut, B., and Atasoy, A. D. (2019). Ağır metallerin çeşitli gözenekli malzemeler üzerinde adsorpsiyonu. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23(2), 427-432.
  • Yildiz, S. (2017). Kinetic and ısotherm analysis of Cu(II) adsorption onto almond shell (Prunus Dulcis). Ecological Chemistry and Engineering S, 24(1), 87-106.
  • URL-1: https://www.rotamining.com/wp-content/uploads/2017/07/ROTA_URUNBILGISI.pdf, (Erişim Tarihi: 22 Ağustos 2022).

Şartlandırılmış Zeolit - Klinoptilolit Minerali ile Bakır Gideriminin Araştırılması

Yıl 2023, , 97 - 113, 15.03.2023
https://doi.org/10.31466/kfbd.1179342

Öz

Bu çalışmada ilk etapta doğal (H-Zt), kimyasal şartlandırma yapılmış (KOH-Zt) ve şartlandırma sonrası Fe3O4 manyetik nanopartiküller ile yükleme yapılmış (KOH-Zt/Fe3O4) olmak üzere üç farklı klinoptilolit ile Cu(II) giderimi konsantrasyon ve pH’ya bağlı olarak araştırılmıştır. Ardından en iyi verim alınan adsorbent KOH-Zt ile çalışmalara devam edilerek, temas süresi, başlangıç metal konsantrasyonu, adsorbent dozajı ve sıcaklığın etkisi araştırılmıştır. KOH ile kimyasal şartlandırma işleminin Cu(II) gideriminde daha etkili olduğu, 30 mg/L Cu(II) konsantrasyonunda %77,61 giderim sağlandığı görülmüştür. Maksimum Cu(II) adsorpsiyon kapasitesi 50 mg/L Cu(II) konsantrasyonunda 8,91 mg/g’dır. Langmuir izoterm modelinin adsorpsiyon dengesini en iyi tanımladığı anlaşılmıştır. Adsorpsiyon kinetik verisi ikinci derece reaksiyon kinetiği ile uyumludur. Termodinamik hesaplar adsorpsiyonun kendiliğinden ve endotermik olduğunu göstermektedir. Çalışmadan elde edilen tüm veriler etkili ve ucuz bir adsorbent olan klinoptilolit üzerine uygulanan kimyasal şartlandırma sonrası elde edilen KOH-Zt adsorbentin, Cu(II) adsorpsiyonu için tercih edilebilir olduğunu göstermektedir.

Kaynakça

  • Amin, M. T., Alazba, A. A., and Shafiq, M. (2017). Effective adsorption of methylene blue dye using activated carbon developed from the rosemary plant: Isotherms and kinetic studies. Desalination and Water Treatment, 74, 336-345.
  • Argun, M. E., Dursun, S., Ozdemir, C., and Karatas, M. (2007). Heavy metal adsorption by modified oak sawdust: Thermodynamics and kinetics. Journal of Hazardous Materials, 141(1), 77-85.
  • Bakici Tanaydin, Z., Tanaydin, M. K., Demi̇rkiran, N., and İnce, M. (2020). Adsorption of copper and cadmium with perlite and comparison of adsorption properties. International Journal of Pure and Applied Sciences. 6(2), 208-218.
  • Canpolat, M., Altunkaynak, Y., and Yavuz, Ö. (2022). Studies on the equilibrium, kinetic, and thermodynamic properties of waste orange peel in the removal of copper (II) ions from aqueous solutions. Afyon Kocatepe University Journal of Sciences and Engineering, 22(3), 498-507.
  • Cebeci, M. S., and Şentürk, İ. (2020). Tarımsal atık materyal kullanılarak sucul çözeltiden Chrysoidine Y boyasının giderimi. International Journal of Multidisciplinary Studies and Innovative Technologies, 4(1), 18-28.
  • Cheng, D., Ngo, H. H., Guo, W., Chang, S. W., Nguyen, D. D., Zhang, X., Varjani, S., and Liu, Y. (2020). Feasibility study on a new pomelo peel derived biochar for tetracycline antibiotics removal in swine wastewater. Science of The Total Environment, 720, 137662.
  • Çoruh, S., Turan, G., Akdemir, A., and Ergun, O. N. (2009). The influence of chemical conditioning on the removal of copper ions from aqueous solutions by using clinoptilolite. Environmental Progress & Sustainable Energy, 28(2), 202-211.
  • Darama, S. E., and Çoruh, S. (2020). Investigation of the removal of malachite green and copper ions by dual system using natural and biochar pea shells. Bulletin of Biotechnology, 1(2), 46-51.
  • Dubinin, M. M., Zaverina, E. D., and Radushkevich, L. V. (1947). Sorption and structure of active carbons ı. adsorption of organic vapors. Zhurnal Fizicheskoi Khimii, 21, 1351-1362.
  • Elboughdiri, N. (2020). The use of natural zeolite to remove heavy metals Cu (II), Pb (II) and Cd (II), from industrial wastewater. Cogent Engineering, 7(1), 1782623.
  • Freundlich, H.M.F. (1906). Over the Adsorption in Solution. The Journal of Physical Chemistry, 57, 385-471.
  • Geyikçi, F., Çoruh, S., and Kılıç, E. (2013). Development of experimental results by artificial neural network model for adsorption of Cu 2+ using single wall carbon nanotubes. Separation Science and Technology, 48(10), 1490-1499.
  • Hamdaoui, O., and Naffrechoux, E. (2007). Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon Part I. Two-parameter models and equations allowing determination of thermodynamic parameters. Journal of Hazardous Materials, 147(1-2), 381-394.
  • Ho, Y. S., and McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34(5), 451-465.
  • Hui, K. S., Chao, C. Y. H., Kot, S. C. (2005). Removal of mixed heavy metal ions in wastewater by zeolite 4A and residual products from recycled coal fly ash. Journal of Hazardous Materials, 127(1-3), 89-101.
  • Inglezakis, V. J., Loizidou, M. D., Grigoropoulou, H. P. (2003). Ion Exchange of Pb2+, Cu2+, Fe3+, and Cr3+ on natural clinoptilolite: selectivity determination and influence of acidity on metal uptake. J. Colloid Interface Sci., 261, 49–54.
  • Jain, M., Yadav, M., Kohout, T., Lahtinen, M., Garg, V. K., and Sillanpää, M. (2018). Development of iron oxide/activated carbon nanoparticle composite for the removal of Cr(VI), Cu(II) and Cd(II) ions from aqueous solution. Water Resources and Industry, 20, 54-74.
  • Jianlong, W., Yi, Q., Horan, N., and Stentiford, E. (2000). Bioadsorption of pentachlorophenol (PCP) from aqueous solution by activated sludge biomass. Bioresource Technology, 75(2), 157-161.
  • Kayalvizhi, K., Alhaji, N. M. I., Saravanakkumar, D., Mohamed, S. B., Kaviyarasu, K., Ayeshamariam, A., Al-Mohaimeed, A. M., AbdelGawwad, M. R., and Elshikh, M. S. (2022). Adsorption of copper and nickel by using sawdust chitosan nanocomposite beads – A kinetic and thermodynamic study. Environmental Research, 203, 111814.
  • Keklikcioğlu Çakmak, N., and Topal Canbaz, G. (2020). TiO2 nanopartikülü ve TiO2/Aktif Çamur sentezi ile sulu çözeltiden Cu (II) iyonlarının adsorpsiyonu. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 10(1), 86-98.
  • Korkmaz, M., Özmeti̇n, C., Fil, B. A., and Yaşar, Y. (2012). Determination of parameters affecting copper removal from solutions by clinoptilolite: adsorption ısotherm and thermodynamic. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 3(1), 47-54.
  • Langmuir, I. (1918). The adsorptıon of gases on plane surfaces of glass, mıca and platınum. Journal of the American Chemical Society, 40(9), 1361-1403.
  • Li, W., Zhang, L., Peng, J., Li, N., Zhang, S., and Guo, S. (2008). Tobacco stems as a low cost adsorbent for the removal of Pb(II) from wastewater: Equilibrium and kinetic studies. Industrial Crops and Products, 28(3), 294-302.
  • Onursal, N., Dal, M. C., Kul, A. R., and Yavuz, Ö. (2020). Removal of cu(II) ions from aqueous envıronment vıa natural mıxed clay, examınatıon of isotherm, kınetıc and thermodynamıc parameters. Euroasia Journal of Mathematics, Engineering, Natural & Medical Sciences, 7(9), 85-103.
  • Özüdoğru, Y., and Merdi̇van, M. (2017). Metilen mavisinin modifiye edilmiş Cystoseira barbata (STACKHOUSE) C. Agardh kullanılarak biyosorpsiyonu. Trakya University Journal of Natural Sciences. 18(2), 81-87.
  • Rukayat, O. O., Usman, M. F., Elizabeth, O. M., Abosede, O. O., and Faith, I. U. (2021). Kinetic adsorption of heavy metal (Copper) on rubber (Hevea Brasiliensis) leaf powder. South African Journal of Chemical Engineering, 37, 74-80.
  • San Andres, M. P., Marina, M. I., and Vera, S. (1995). Spectrophotometric determination of Copper(II), Nickel(II), and Cobalt(II) as complexes with sodium diethyldithiocarbamate in the anionic micellar media of dodecylsulfate salts. Analyst, 120, 255-259.
  • Senturk, I., Buyukgungor, H., and Geyikci, F. (2016). Biosorption of phenol from aqueous solutions by the Aspergillus niger biomass: Comparison of linear and non-linear regression analysis. Desalination and Water Treatment, 57(41), 19529-19539.
  • Sharma, P., Pandey, A. K., Kim, S.-H., Singh, S. P., Chaturvedi, P., and Varjani, S. (2021). Critical review on microbial community during in-situ bioremediation of heavy metals from industrial wastewater. Environmental Technology & Innovation, 24, 101826.
  • Shukla, S. R., and Pai, R. S. (2005). Adsorption of Cu(II), Ni(II) and Zn(II) on modified jute fibres. Bioresource Technology, 96(13), 1430-1438.
  • Şenel, G. U. (2020). Adsorption of Copper (II) from aqueous solution by using carbonized peanut hull: Determination of the equilibrium, kinetic and thermodynamic parameters. Anadolu Çevre ve Hayvancılık Bilimleri Dergisi, 5(2), 131-137.
  • Şenol, H., and Açikel, Ü. (2018). Investigation of adsorption of Cu (II) heavy metal with bentonite. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 7(2), 231-242.
  • Şentürk, İ., and Alzein, M. (2020a). Adsorption of Acid Violet 17 onto acid-activated pistachio shell: Isotherm, kinetic and thermodynamic studies. Acta Chim. Slov., 67(1), 55-69.
  • Şentürk, İ., and Alzein, M. (2020b). Adsorptive removal of basic blue 41 using pistachio shell adsorbent—Performance in batch and column system. Sustainable Chemistry and Pharmacy, 16, 100254.
  • Şentürk, İ., and Yıldız, M. R. (2020a). Highly efficient removal from aqueous solution by adsorption of Maxilon Red GRL dye using activated pine sawdust. Korean Journal of Chemical Engineering, 37(6), 985-999.
  • Şentürk, İ., and Yildiz, M. (2020b). Doğal ve aktive edilen çam talaşı ile sucul çözeltiden adsorpsiyonla bazik sarı 28 giderimi. Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 9(2), 746-759.
  • Şimşek, Y. (2018). Sulu çözeltiden bakır (II) adsorpsiyon sürecinin optimizasyonunda yüzey yanıt metodolojisinin uygulanması. Academic Platform Journal of Engineering and Science, 6(3), 182-191.
  • Temkin, M. I. (1941). Adsorption Equilibrium and the Kinetics of Processes on Nonhomogeneous Surfaces and in the Interaction between Adsorbed Molecules. Zhurnal Fiziche- skoi Khimii, 15, 296-332.
  • Topal Canbaz, G., Açikel, U., and Sağ Açikel, Y. (2022). ZnO-Kitosan kompoziti ile ağır metal giderimi. European Journal of Science and Technology, 35, 603-609.
  • USEPA 2002. National Recommended Water Quality Criteria. Office of Water, 822-R-02-047.
  • Weber, W. J. and Morris, J. C. (1963) Kinetics of Adsorption on Carbon from Solutions. Journal of the Sanitary Engineering Division, 89, 31-39.
  • Wu, F. C., Tseng, R. L., and Juang, R. S. (2009). Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems. Chemical Engineering Journal, 150(2-3), 366-373.
  • Yazici Karabulut, B., and Atasoy, A. D. (2019). Ağır metallerin çeşitli gözenekli malzemeler üzerinde adsorpsiyonu. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23(2), 427-432.
  • Yildiz, S. (2017). Kinetic and ısotherm analysis of Cu(II) adsorption onto almond shell (Prunus Dulcis). Ecological Chemistry and Engineering S, 24(1), 87-106.
  • URL-1: https://www.rotamining.com/wp-content/uploads/2017/07/ROTA_URUNBILGISI.pdf, (Erişim Tarihi: 22 Ağustos 2022).
Toplam 45 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

İlknur Şentürk 0000-0002-8217-2281

Yayımlanma Tarihi 15 Mart 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Şentürk, İ. (2023). Şartlandırılmış Zeolit - Klinoptilolit Minerali ile Bakır Gideriminin Araştırılması. Karadeniz Fen Bilimleri Dergisi, 13(1), 97-113. https://doi.org/10.31466/kfbd.1179342