Araştırma Makalesi
BibTex RIS Kaynak Göster

Yapıştırma ile Oluşturulmuş Al-Çe Katmanlı Sacların Dizilime Bağlı Olarak Mekanik Özelliklerinin Belirlenmesi

Yıl 2023, , 114 - 134, 15.03.2023
https://doi.org/10.31466/kfbd.1181238

Öz

Katmanlı saclar iki veya daha fazla metalin farklı yöntemler ile birleştirilmesi ile oluşturulan kompozit yapılardır. Sac metaller haddeleme yöntemi ile üretildikleri için yöne bağlı olarak farklı mekanik özellikler gösterebilirler. Dolayısı ile bu sacların birleştirilmesi ile oluşturulan katmanlı sacların da dizilim yönlerine göre farklı özellik göstermesi beklenir. Bu çalışma kapsamında alüminyum ile çelik sacların birleştirilmesi ile oluşturulmuş katmanlı sacların mekanik özellikleri incelenmiştir. Çalışmada öncelikle tekil ve katmanlı sacların mekanik özellikleri çekme testi ile belirlenmiştir. Çekme testi sonucunda elde edilen akma gerilmesi, kopma dayanımı, uzama miktarı, pekleşme üsteli gibi farklı parametreler karşılaştırılmıştır. Ayrıca sacların anizotropi katsayıları belirlenerek derin çekme işlemlerinde oluşabilecek olan kulaklanma durumu hakkında yorum yapılmıştır. Çalışma sonucunda katmanlı sacların mekanik özelliklerinin kendisi oluşturan sacların mekanik özelliklerinin arasında olduğu belirlenmiştir. Ayrıca alüminyum sac üzerine hadde yönüne göre farklı dik, paralel ve diagonal şekilde çelik sac yapıştırılarak anizotropik özelliklerin minimize edilebileceği belirlenmiştir. Dolayısı ile derin çekme gibi sac metal şekillendirme işlemlerinde daha kısa kulak yükseklikleri elde etmek mümkün olmaktadır.

Destekleyen Kurum

TÜBİTAK; YÖK; OMÜ

Proje Numarası

1649B031405081; ÖYP; PYO.MUH.1905.16.002

Teşekkür

Bu çalışma TÜBİTAK tarafından 2211-A Genel Yurt İçi Doktora Burs Programı 2014/2 (Başvuru numarası: 1649B031405081) ile desteklenmiştir. Bu çalışma, Yüksek Öğretim Kurulu (YÖK) Öğretim Üyesi Yetiştirme Programı (ÖYP) kapsamında hazırlanmıştır. Bu çalışma PYO.MUH.1905.16.002 nolu Bilimsel Araştırma Projesi olarak Ondokuz Mayıs Üniversitesi tarafından desteklenmiştir.

Kaynakça

  • Aghchai, A.J.,, Shakeri, M., and Dariani, B.M., (2013). Influences of material properties of components on formability of two-layer metallic sheets. The International Journal of Advanced Manufacturing Technology, 66(5–8), 809–823.
  • Aghchai, A.J.,, Shakeri, M., and Mollaei-Dariani, B., (2008). Theoretical and experimental formability study of two-layer metallic sheet (Al1100/St12). Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 222(9), 1131–1138.
  • ASTM-E517-00, (2011). Standard Test Method for Plastic Strain Ratio r for Sheet Metal. ASTM Standard.
  • ASTM-E8/E8M-15a, (2015). Standard Test Methods for Tension Testing of Metallic Materials. ASTM Standard.
  • Choi, S.H.,, Kim, K.H.,, Oh, K.H., and Lee, D.N., (1997). Tensile deformation behavior of stainless steel clad aluminum bilayer sheet. Materials Science and Engineering A, 222(2), 158–165.
  • Fereshteh-Saniee, F.,, Alavi-Nia, A., and Atrian-Afyani, A., (2008). An experimental investigation on the deep drawing process of steel–brass bimetal sheets. Proceedings of metal forming p. Krakow, Poland.
  • Harhash, M., (2017). Forming Behaviour of Multilayer Metal/Polimer/Metal Systems. Technische Universitat Clausthal.
  • Kagzi, S.A.,, Gandhi, A.H.,, Dave, H.K., and Raval, H.K., (2016). An analytical model for bending and springback of bimetallic sheets. Mechanics of Advanced Materials and Structures, 23(1), 80–88.
  • Kim, I.K., and Hong, S.I.G., (2013). Roll-bonded tri-layered Mg/Al/stainless steel clad composites and their deformation and fracture behavior. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 44(8), 3890–3900.
  • Kim, K.J.,, Kim, D.,, Choi, S.H.,, Chung, K.,, Shin, K.S.,, Barlat, F., et al., (2003). Formability of AA5182/polypropylene/AA5182 sandwich sheets. Journal of Materials Processing Technology, 139(1–3), 1–7.
  • Lesuer, D.R.,, Syn, C.K.,, Sherby, O.D.,, Wadsworth, J.,, Lewandowski, J.J., and Hunt, W.H., (1996). Mechanical behaviour of laminated metal composites. International Materials Reviews, 41(5), 169–197.
  • Lichtenecker, K., (1926). Dielectric constant of natural and synthetic mixtures. Phys. Z, 27, 115.
  • Maleki, H.,, Bagherzadeh, S.,, Mollaei-Dariani, B., and Abrinia, K., (2013). Analysis of bonding behavior and critical reduction of two-layer strips in clad cold rolling process. Journal of materials engineering and performance, 22(4), 917–925.
  • Oya, T.,, Tiesler, N.,, Kawanishi, S.,, Yanagimoto, J., and Koseki, T., (2010). Experimental and numerical analysis of multilayered steel sheets upon bending. Journal of Materials Processing Technology, 210(14), 1926–1933.
  • Polymex, (2020). P-3002 Poliüretan Protolin Döküm Reçinesi. URL https://www.polymex.com.tr/urunler/p-3002-poliuretan-protolin-dokum-recinesi/ [accessed 10 February 2017]
  • Reuß, A., (1929). Berechnung der fließgrenze von mischkristallen auf grund der plastizitätsbedingung für einkristalle. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 9(1), 49–58.
  • Reyes, G., and Kang, H., (2007). Mechanical behavior of lightweight thermoplastic fiber–metal laminates. Journal of Materials Processing Technology, 186(1), 284–290.
  • Satheeshkumar, V., and Narayanan, R.G., (2014). Investigation on the influence of adhesive properties on the formability of adhesive-bonded steel sheets. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 228(3), 405–425.
  • Standard, A., (2013). ASTM E8/E8M-13a. Standard test methods for tension testing of metallic materials.
  • Uscinowicz, R., (2013). Experimental identification of yield surface of Al-Cu bimetallic sheet. Composites Part B: Engineering, 55, 96–108.
  • Uscinowicz, R., (2019). Characterization of Directional Elastoplastic Properties of Al/Cu Bimetallic Sheet. Journal of Materials Engineering and Performance, 28(3), 1350–1359.
  • Voigt, W., (1889). Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper. Annalen der physik, 274(12), 573–587.
  • Z. Marciniak, J.L. Duncan, (2002). Mechanics of Sheet. Butterworth Heinemann: Springer.
  • Zahedi, A.,, Mollaei Dariani, B.,, Mirnia, M.J.,, Dariani, B.M., and Mirnia, M.J., (2019). Experimental determination and numerical prediction of necking and fracture forming limit curves of laminated Al/Cu sheets using a damage plasticity model. International Journal of Mechanical Sciences, 153–154, 341–358.

Change of Mechanical Properties of Al-St Layered Sheets Formed by Adhesion Depending on Sheet Arrangement

Yıl 2023, , 114 - 134, 15.03.2023
https://doi.org/10.31466/kfbd.1181238

Öz

Layered sheets are composite structures that combine two or more metals with different methods. Since sheet metals are produced by the rolling method, they can show different mechanical properties depending on the direction. Therefore, it is expected that the layered sheets formed by combining them will show different properties according to their arrangement directions. In this study, the mechanical properties of laminated sheets formed by combining aluminum and steel sheets were investigated. The mechanical properties of single and layered sheets were determined by the tensile test. Different parameters such as yield stress, tensile strength, elongation, and hardening exponent were compared as a result of the tensile test. In addition, anisotropy coefficients of the sheets were determined, and comments were made about the earing situation that may occur in deep drawing processes. As a result of the study, it was determined that the mechanical properties of the layered sheets are between the mechanical properties of the sheets that form them. In addition, it has been determined that anisotropic properties can be minimized by bonding steel sheets in different alignments on the aluminium sheet according to the rolling direction. Therefore, obtaining shorter ear heights in sheet metal forming processes such as deep drawing will be possible.

Proje Numarası

1649B031405081; ÖYP; PYO.MUH.1905.16.002

Kaynakça

  • Aghchai, A.J.,, Shakeri, M., and Dariani, B.M., (2013). Influences of material properties of components on formability of two-layer metallic sheets. The International Journal of Advanced Manufacturing Technology, 66(5–8), 809–823.
  • Aghchai, A.J.,, Shakeri, M., and Mollaei-Dariani, B., (2008). Theoretical and experimental formability study of two-layer metallic sheet (Al1100/St12). Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 222(9), 1131–1138.
  • ASTM-E517-00, (2011). Standard Test Method for Plastic Strain Ratio r for Sheet Metal. ASTM Standard.
  • ASTM-E8/E8M-15a, (2015). Standard Test Methods for Tension Testing of Metallic Materials. ASTM Standard.
  • Choi, S.H.,, Kim, K.H.,, Oh, K.H., and Lee, D.N., (1997). Tensile deformation behavior of stainless steel clad aluminum bilayer sheet. Materials Science and Engineering A, 222(2), 158–165.
  • Fereshteh-Saniee, F.,, Alavi-Nia, A., and Atrian-Afyani, A., (2008). An experimental investigation on the deep drawing process of steel–brass bimetal sheets. Proceedings of metal forming p. Krakow, Poland.
  • Harhash, M., (2017). Forming Behaviour of Multilayer Metal/Polimer/Metal Systems. Technische Universitat Clausthal.
  • Kagzi, S.A.,, Gandhi, A.H.,, Dave, H.K., and Raval, H.K., (2016). An analytical model for bending and springback of bimetallic sheets. Mechanics of Advanced Materials and Structures, 23(1), 80–88.
  • Kim, I.K., and Hong, S.I.G., (2013). Roll-bonded tri-layered Mg/Al/stainless steel clad composites and their deformation and fracture behavior. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 44(8), 3890–3900.
  • Kim, K.J.,, Kim, D.,, Choi, S.H.,, Chung, K.,, Shin, K.S.,, Barlat, F., et al., (2003). Formability of AA5182/polypropylene/AA5182 sandwich sheets. Journal of Materials Processing Technology, 139(1–3), 1–7.
  • Lesuer, D.R.,, Syn, C.K.,, Sherby, O.D.,, Wadsworth, J.,, Lewandowski, J.J., and Hunt, W.H., (1996). Mechanical behaviour of laminated metal composites. International Materials Reviews, 41(5), 169–197.
  • Lichtenecker, K., (1926). Dielectric constant of natural and synthetic mixtures. Phys. Z, 27, 115.
  • Maleki, H.,, Bagherzadeh, S.,, Mollaei-Dariani, B., and Abrinia, K., (2013). Analysis of bonding behavior and critical reduction of two-layer strips in clad cold rolling process. Journal of materials engineering and performance, 22(4), 917–925.
  • Oya, T.,, Tiesler, N.,, Kawanishi, S.,, Yanagimoto, J., and Koseki, T., (2010). Experimental and numerical analysis of multilayered steel sheets upon bending. Journal of Materials Processing Technology, 210(14), 1926–1933.
  • Polymex, (2020). P-3002 Poliüretan Protolin Döküm Reçinesi. URL https://www.polymex.com.tr/urunler/p-3002-poliuretan-protolin-dokum-recinesi/ [accessed 10 February 2017]
  • Reuß, A., (1929). Berechnung der fließgrenze von mischkristallen auf grund der plastizitätsbedingung für einkristalle. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 9(1), 49–58.
  • Reyes, G., and Kang, H., (2007). Mechanical behavior of lightweight thermoplastic fiber–metal laminates. Journal of Materials Processing Technology, 186(1), 284–290.
  • Satheeshkumar, V., and Narayanan, R.G., (2014). Investigation on the influence of adhesive properties on the formability of adhesive-bonded steel sheets. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 228(3), 405–425.
  • Standard, A., (2013). ASTM E8/E8M-13a. Standard test methods for tension testing of metallic materials.
  • Uscinowicz, R., (2013). Experimental identification of yield surface of Al-Cu bimetallic sheet. Composites Part B: Engineering, 55, 96–108.
  • Uscinowicz, R., (2019). Characterization of Directional Elastoplastic Properties of Al/Cu Bimetallic Sheet. Journal of Materials Engineering and Performance, 28(3), 1350–1359.
  • Voigt, W., (1889). Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper. Annalen der physik, 274(12), 573–587.
  • Z. Marciniak, J.L. Duncan, (2002). Mechanics of Sheet. Butterworth Heinemann: Springer.
  • Zahedi, A.,, Mollaei Dariani, B.,, Mirnia, M.J.,, Dariani, B.M., and Mirnia, M.J., (2019). Experimental determination and numerical prediction of necking and fracture forming limit curves of laminated Al/Cu sheets using a damage plasticity model. International Journal of Mechanical Sciences, 153–154, 341–358.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Cengiz Görkem Dengiz 0000-0003-1308-3223

Kemal Yıldızlı 0000-0001-9532-2560

Proje Numarası 1649B031405081; ÖYP; PYO.MUH.1905.16.002
Yayımlanma Tarihi 15 Mart 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Dengiz, C. G., & Yıldızlı, K. (2023). Yapıştırma ile Oluşturulmuş Al-Çe Katmanlı Sacların Dizilime Bağlı Olarak Mekanik Özelliklerinin Belirlenmesi. Karadeniz Fen Bilimleri Dergisi, 13(1), 114-134. https://doi.org/10.31466/kfbd.1181238