Araştırma Makalesi
BibTex RIS Kaynak Göster

Ters Atom Transfer Radikal Polimerizasyon Yöntemi ile Polietilen Glikol ve Polimetil Metakrilat İçeren Çok Dallı Ya Da Çapraz Bağlı Kopolimerlerin Sentezi ve Karakterizasyonu

Yıl 2023, , 1874 - 1893, 15.12.2023
https://doi.org/10.31466/kfbd.1367281

Öz

Bu çalışmada, ters atom transfer radikal polimerizasyonu (RATRP) metodu kullanılarak polietilen glikol (PEG) ve polimetil metakrilat (PMMA) bloklarını içeren çok dallı ya da çapraz bağlı kopolimerlerin sentezi gerçekleştirildi. Bunun için öncelikle, 4,4'-azobis(4-siyanopentanoik asit) ile fosfor pentaklorür reaksiyona sokularak 4,4'-azobis(4-siyanopentanoil klorür) (ACPC) elde edildi. Sentezlenen ACPC ile çeşitli molekül ağırlığına sahip PEG’ler (400 g.mol-1, 600 g.mol-1, 1000 g.mol-1, 1500 g.mol-1 ve 2000 g.mol-1) reaksiyona sokularak uç kısımlarında polietilen glikol içeren poliazoesterin (PAE) sentezi gerçekleştirildi. Elde edilen PAE ile metakriloil klorürün tepkimesinden metakriloil son uçlarına sahip polietilen glikol azoesterin (PAE-dimetakrioil) eldesi yapıldı. Ayrıca PAE ile 4-vinil benzil klorürün tepkimesinden 4-vinil benzil son uçlarına sahip polietilen glikol azoesterin (PAE-diVB) eldesi başarıldı. Son olarak PAE-dimetakrioil ve PAE-diVB kullanılarak metil metakrilatın RATRP ile çok dallı ya da çapraz bağlı kopolimerler sentezlendi. Sentezlenen ürünler FT-IR, 1H-NMR ve şişme değerleri (qv) teknikleri ile karakterilize edildi.

Etik Beyan

Çıkar Çatışması Beyanı: Yazarlar arasında herhangi bir çıkar çatışması bulunmamaktadır. Araştırma ve Yayın Etiği Beyanı: Yapılan çalışmada araştırma ve yayın etiğine uyulmuştur.

Destekleyen Kurum

Giresun Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Proje Numarası

FEN-BAP-C-250221-11

Teşekkür

Bu çalışma Giresun Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından desteklenmiştir (proje numarası: FEN-BAP-C-250221-11).

Kaynakça

  • Öztürk, T., and Çakmak, İ. (2008). Synthesis of poly(ethylene glycol-b-styrene) block copolymers by reverse atom transfer radical polymerization. Journal of Polymer Research, 15, 241-247.
  • Wang, J. S., and Matyjaszewski, K. (1995). Controlled/"living" radical polymerization. halogen atom transfer radical polymerization promoted by a Cu(I)/Cu(II) redox process. Macromolecules, 28, 7901-7910.
  • Savaş, B., and Öztürk, T. (2023). Synthesis and characterization of poly(epichlorohydrin‑g‑4‑vinylbenzyl‑g‑methyl methacrylate) graft copolymer by combination of ROP, RAFT, and ATRP technics. Journal of Polymer Research, 30:211.
  • Öztürk, T., Yavuz, M., Göktaş, M., and Hazer, B. (2016). One-step synthesis of triarm block copolymers by simultaneous atom transfer radical and ring opening polymerization. Polymer Bulletin, 73, 1497-1513.
  • Tunca, U., Erdogan, T., and Hizal, G. (2002). Synthesis and characterization of well-defined ABC-type triblock copolymers via atom transfer radical polymerization and stable free-radical polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 40, 2025-2032.
  • Meyvacı, E., Çatıker, E., and Öztürk, T. (2023). Synthesis and Characterization of Poly(β-Propiolactone)-b-Poly(methyl methacrylate) Tri-arm Block Copolymer Using Atom Transfer Radical Polymerization, Karadeniz Fen Bilimleri Dergisi / The Black Sea Journal of Sciences, 13(3), 882-893.
  • Ruzette, A. V., and Leibler, L. (2005). Block copolymers in tomorrow's plastics. Nature Materials, 4, 19-31.
  • Altintas, O., Tunca, U., and Barner-Kowollik, C. (2011). Star and miktoarm star block (co)polymers via self-assembly of ATRP generated polymer segments featuring Hamilton wedge and cyanuric acid binding motifs. Polymer Chemistry, 2, 1146-1155.
  • Meyvacı, E., and Öztürk T. (2022). Modification of poly(styrene-co-acrylonitrile) with tetrazine by Inverse Electron Demand Diels-Alder Reaction. ChemistrySelect, 7, e202200668.
  • Öztürk, T., and Türkoğlu, H. (2022). Synthesis and characterization of the graft copolymer including polyβ-butyrolactone and polyvinyl chloride by ring-opening polymerization and “click” chemistry. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 59, 871-878.
  • Öztürk, T., and Cavicchi, C. A. (2018). Synthesis and characterization of poly(epichlorohydrin-g-ε-caprolactone) graft copolymers by "click" chemistry. Journal of Polymer Materials, 35, 209-220.
  • Yigit, N. C., Hizal, G., and Tunca, U. (2018). A powerful tool for preparing peripherally post-functionalized multiarm star block copolymer. Polymer Bulletin, 75, 3523-3538.
  • Dag, A., Aydin, M., Durmaz, H., Hizal, G., and Tunca, U. (2012). Various polycarbonate graft copolymers via Diels-Alder click reaction. Journal of Polymer Science Part A: Polymer Chemistry, 50, 4476-4483.
  • Öztürk, T., and Hazer, B. (2010). Synthesis and characterization of a novel macromonomer initiator for reversible addition fragmentation chain transfer (RAFT). Evaluation of the polymerization kinetics and gelation behaviors, Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 47, 265-272.
  • Çolakoğlu, G. N., Çatıker, E., Öztürk, T., and Meyvacı, E. (2022). Synthesis and characterization of brush-type polyβ-alanine-grafted polymethyl methacrylate using "grafting through" method, Chemical Papers, 76, 869-878.
  • Öztürk, T., Savaş, B., Meyvacı, E., Kılıçlıoğlu, A., and Hazer, B. (2020). Synthesis and characterization of the block copolymers using the novel bifunctional initiator by RAFT and FRP technics: Evaluation of the primary polymerization parameters. Journal of Polymer Research, 27, 76.
  • Xie, M., Dang, J., Han, H., Wang, W., Liu, J., He, X., and Zhang, Y. (2008). Well-defined brush copolymers with high grafting density of amphiphilic side chains by combination of ROP, ROMP, and ATRP. Macromolecules, 41, 9004-9010.
  • Savaş, B., Çatıker, E., Öztürk, T., and Meyvacı, E. (2021). Synthesis and characterization of poly(methyl methacrylate-g-α-methyl-β-alanine) copolymer using “grafting through” method. Journal of Polymer Research, 28, 194.
  • Hazer, B., Ayas, A., Beşirli, N., Saltek, N., and Baysal, B. M. (1989). Preparation of ABCBA-type block copolymers by use of macro-initiators containing peroxy and azo groups. Die Makromolekulare Chemie, 190, 1987-1996.
  • Hazer, B., (1992.) New macromonomeric initiators (macro-inimers). II. Gelation in the bulk polymerization of styrene with macroinimers. Die Makromolekulare Chemie, 193, 1081-1086.
  • Çakmak, I., Hazer, B., and Yagci, Y. (1991). Polymerization of acrylamide by the redox system Ce (IV)-polyethylene glycol with azo groups. European Polymer Journal, 27, 101-103.
  • Hazer, B., Erdem, B., and Lenz, R. W. (1994). Styrene polymerization with some new macro or macromer initiators having PEG units. Journal of Polymer Science Part A: Polymer Chemistry, 32, 1739-1746.
  • Yıldız, U., Hazer, B., and Tauer, K. (2012). Tailoring polymer architectures with macromonomer azoinitiators. Polymer Chemistry, 3, 1107-1118.
  • Neugebauer, D., Zhang, Y., Pakula, T. (2006). Gradient graft copolymers derived from PEO-based macromonomers. Journal of Polymer Science Part A: Polymer Chemistry, 44, 1347-1356.
  • Ueda, A., and Nagai, S. (1984). Block copolymers derived from azobiscyanopentanoic acid. IV. Synthesis of a polyamide-polystyrene block copolymer, Journal of Polymer Science: Polymer Chemistry Edition, 22, 1611-1621.
  • Collins, E. A., Bares, J., and Billmeyer, F. W. Jr. (1973). Experiments in Polymer Science. John Wiley and Sons: New York.
  • Hamurcu, E., and Baysal, B. M. (1993). Interpenetrating polymer networks of poly(dimethylsiloxane): 1. Preparation and characterization. Polymer, 34, 5163-5167.
  • Hazer, B., and Baysal, B. M. (1986). Preparation of block copolymers using a new polymeric peroxycarbamate. Polymer, 27, 961-968.

Synthesis and Characterization of The Hyper-Branched or Cross-Linked Copolymers Including Polyethylene Glycol and Polymethyl Methacrylate by Reverse Atom Transfer Radical Polymerization Method

Yıl 2023, , 1874 - 1893, 15.12.2023
https://doi.org/10.31466/kfbd.1367281

Öz

In this study, the synthesis of hyper-branched or cross-linked copolymers containing polyethylene glycol (PEG) and polymethyl methacrylate (PMMA) blocks was carried out using the reverse atom transfer radical polymerization (RATRP) method. For this, firstly, 4,4'-azobis (4-cyanopentanoic acid) was reacted with phosphorus pentachloride to obtain 4,4'-azobis (4-cyanopentanoyl chloride) (ACPC). By reacting PEGs of various molecular weights (400 g.mol-1, 600 g.mol-1, 1000 g.mol-1, 1500 g.mol-1 and 2000 g.mol-1) and synthesized ACPC, the synthesis of the polyazoester containing polyethylene glycol end groups (PAE) was carried out. By reacting obtained PAE and methacryloyl chloride, polyethylene glycol azoester possessing methacryloyl end groups (PAE- methacryloyl) was obtained. Additionally, it was achieved to obtain polyethylene glycol azoester with 4-vinyl benzyl end groups (PAE-diVB) from the reaction of 4-vinyl benzyl chloride with PAE. Finally, hyper-branched or cross-linked copolymers were synthesized by RATRP of methyl methacrylate using PAE- methacryloyl and PAE-diVB. The synthesized products were characterized by FT-IR, 1H-NMR, and swelling value (qv) techniques.

Proje Numarası

FEN-BAP-C-250221-11

Kaynakça

  • Öztürk, T., and Çakmak, İ. (2008). Synthesis of poly(ethylene glycol-b-styrene) block copolymers by reverse atom transfer radical polymerization. Journal of Polymer Research, 15, 241-247.
  • Wang, J. S., and Matyjaszewski, K. (1995). Controlled/"living" radical polymerization. halogen atom transfer radical polymerization promoted by a Cu(I)/Cu(II) redox process. Macromolecules, 28, 7901-7910.
  • Savaş, B., and Öztürk, T. (2023). Synthesis and characterization of poly(epichlorohydrin‑g‑4‑vinylbenzyl‑g‑methyl methacrylate) graft copolymer by combination of ROP, RAFT, and ATRP technics. Journal of Polymer Research, 30:211.
  • Öztürk, T., Yavuz, M., Göktaş, M., and Hazer, B. (2016). One-step synthesis of triarm block copolymers by simultaneous atom transfer radical and ring opening polymerization. Polymer Bulletin, 73, 1497-1513.
  • Tunca, U., Erdogan, T., and Hizal, G. (2002). Synthesis and characterization of well-defined ABC-type triblock copolymers via atom transfer radical polymerization and stable free-radical polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 40, 2025-2032.
  • Meyvacı, E., Çatıker, E., and Öztürk, T. (2023). Synthesis and Characterization of Poly(β-Propiolactone)-b-Poly(methyl methacrylate) Tri-arm Block Copolymer Using Atom Transfer Radical Polymerization, Karadeniz Fen Bilimleri Dergisi / The Black Sea Journal of Sciences, 13(3), 882-893.
  • Ruzette, A. V., and Leibler, L. (2005). Block copolymers in tomorrow's plastics. Nature Materials, 4, 19-31.
  • Altintas, O., Tunca, U., and Barner-Kowollik, C. (2011). Star and miktoarm star block (co)polymers via self-assembly of ATRP generated polymer segments featuring Hamilton wedge and cyanuric acid binding motifs. Polymer Chemistry, 2, 1146-1155.
  • Meyvacı, E., and Öztürk T. (2022). Modification of poly(styrene-co-acrylonitrile) with tetrazine by Inverse Electron Demand Diels-Alder Reaction. ChemistrySelect, 7, e202200668.
  • Öztürk, T., and Türkoğlu, H. (2022). Synthesis and characterization of the graft copolymer including polyβ-butyrolactone and polyvinyl chloride by ring-opening polymerization and “click” chemistry. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 59, 871-878.
  • Öztürk, T., and Cavicchi, C. A. (2018). Synthesis and characterization of poly(epichlorohydrin-g-ε-caprolactone) graft copolymers by "click" chemistry. Journal of Polymer Materials, 35, 209-220.
  • Yigit, N. C., Hizal, G., and Tunca, U. (2018). A powerful tool for preparing peripherally post-functionalized multiarm star block copolymer. Polymer Bulletin, 75, 3523-3538.
  • Dag, A., Aydin, M., Durmaz, H., Hizal, G., and Tunca, U. (2012). Various polycarbonate graft copolymers via Diels-Alder click reaction. Journal of Polymer Science Part A: Polymer Chemistry, 50, 4476-4483.
  • Öztürk, T., and Hazer, B. (2010). Synthesis and characterization of a novel macromonomer initiator for reversible addition fragmentation chain transfer (RAFT). Evaluation of the polymerization kinetics and gelation behaviors, Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 47, 265-272.
  • Çolakoğlu, G. N., Çatıker, E., Öztürk, T., and Meyvacı, E. (2022). Synthesis and characterization of brush-type polyβ-alanine-grafted polymethyl methacrylate using "grafting through" method, Chemical Papers, 76, 869-878.
  • Öztürk, T., Savaş, B., Meyvacı, E., Kılıçlıoğlu, A., and Hazer, B. (2020). Synthesis and characterization of the block copolymers using the novel bifunctional initiator by RAFT and FRP technics: Evaluation of the primary polymerization parameters. Journal of Polymer Research, 27, 76.
  • Xie, M., Dang, J., Han, H., Wang, W., Liu, J., He, X., and Zhang, Y. (2008). Well-defined brush copolymers with high grafting density of amphiphilic side chains by combination of ROP, ROMP, and ATRP. Macromolecules, 41, 9004-9010.
  • Savaş, B., Çatıker, E., Öztürk, T., and Meyvacı, E. (2021). Synthesis and characterization of poly(methyl methacrylate-g-α-methyl-β-alanine) copolymer using “grafting through” method. Journal of Polymer Research, 28, 194.
  • Hazer, B., Ayas, A., Beşirli, N., Saltek, N., and Baysal, B. M. (1989). Preparation of ABCBA-type block copolymers by use of macro-initiators containing peroxy and azo groups. Die Makromolekulare Chemie, 190, 1987-1996.
  • Hazer, B., (1992.) New macromonomeric initiators (macro-inimers). II. Gelation in the bulk polymerization of styrene with macroinimers. Die Makromolekulare Chemie, 193, 1081-1086.
  • Çakmak, I., Hazer, B., and Yagci, Y. (1991). Polymerization of acrylamide by the redox system Ce (IV)-polyethylene glycol with azo groups. European Polymer Journal, 27, 101-103.
  • Hazer, B., Erdem, B., and Lenz, R. W. (1994). Styrene polymerization with some new macro or macromer initiators having PEG units. Journal of Polymer Science Part A: Polymer Chemistry, 32, 1739-1746.
  • Yıldız, U., Hazer, B., and Tauer, K. (2012). Tailoring polymer architectures with macromonomer azoinitiators. Polymer Chemistry, 3, 1107-1118.
  • Neugebauer, D., Zhang, Y., Pakula, T. (2006). Gradient graft copolymers derived from PEO-based macromonomers. Journal of Polymer Science Part A: Polymer Chemistry, 44, 1347-1356.
  • Ueda, A., and Nagai, S. (1984). Block copolymers derived from azobiscyanopentanoic acid. IV. Synthesis of a polyamide-polystyrene block copolymer, Journal of Polymer Science: Polymer Chemistry Edition, 22, 1611-1621.
  • Collins, E. A., Bares, J., and Billmeyer, F. W. Jr. (1973). Experiments in Polymer Science. John Wiley and Sons: New York.
  • Hamurcu, E., and Baysal, B. M. (1993). Interpenetrating polymer networks of poly(dimethylsiloxane): 1. Preparation and characterization. Polymer, 34, 5163-5167.
  • Hazer, B., and Baysal, B. M. (1986). Preparation of block copolymers using a new polymeric peroxycarbamate. Polymer, 27, 961-968.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Fiziksel Kimya (Diğer)
Bölüm Makaleler
Yazarlar

Nilgün Asan 0000-0001-6388-3507

Temel Öztürk 0000-0002-7856-9809

Baki Hazer 0000-0001-8770-805X

Proje Numarası FEN-BAP-C-250221-11
Erken Görünüm Tarihi 18 Aralık 2023
Yayımlanma Tarihi 15 Aralık 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Asan, N., Öztürk, T., & Hazer, B. (2023). Ters Atom Transfer Radikal Polimerizasyon Yöntemi ile Polietilen Glikol ve Polimetil Metakrilat İçeren Çok Dallı Ya Da Çapraz Bağlı Kopolimerlerin Sentezi ve Karakterizasyonu. Karadeniz Fen Bilimleri Dergisi, 13(4), 1874-1893. https://doi.org/10.31466/kfbd.1367281