Araştırma Makalesi
BibTex RIS Kaynak Göster

Determination the Environmental Performance of Biogas Production from Cattle Manure via Life Cycle Assessment

Yıl 2025, Cilt: 15 Sayı: 2, 730 - 744, 15.06.2025
https://doi.org/10.31466/kfbd.1604880

Öz

This study aims to evaluate the environmental impacts of biogas production from cattle manure in an anaerobic digestion plant (ADP) using the Life Cycle Assessment (LCA) methodology. The LCA analysis adopts a cradle-to-gate system boundary, with the functional unit defined as “1 m³ of biogas produced” in the ADP. Life cycle inventory data for this functional unit was obtained from the Ecoinvent database (v3.10). Life cycle impact assessment were carried out using two methods: CML-IA v3.10 and ReCiPe 2016 Midpoint (H) v1.09, within the licensed SimaPro 9.6.0 PhD software. A sensitivity analysis was also performed to examine the influence of varying transportation distances for cattle manure collection on the overall environmental impacts. The LCA analysis results indicate that operational activities in the ADP and the associated energy requirements significantly contribute to impact categories such as GWP, AP, and EP. Furthermore, it has been observed that the construction phase of the ADP has significant impacts on all ecotoxicity impact categories examined in the CML-IA and ReCiPe impact assessment method. The sensitivity analysis highlights that increasing the renewables energy source usage in the electricity generation mix profile has reduction effect on environmental impacts. Finally, relevant practitioners need to focus on reducing greenhouse gas emissions and ecotoxicity impacts to improve the environmental sustainability performance of biogas production systems.

Etik Beyan

The author declares that this study complies with Research and Publication Ethics.

Destekleyen Kurum

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Kaynakça

  • Alba-Reyes, Y., Hermida-García, F. O., Pedraza-Garciga, J., López-González, L. M., Espinosa-Negrín, A. M., Carbonell-Sorí, L., & Barrera, E. L. (2024). Economic and environmental assessment of a biogas-based pressurized grid in a livestock farm: A case study in a cuban context. Journal of Cleaner Production, 434, 140288.
  • Carvalho, F.S., Fornasier, F., Leitao, J.O.M., Moraes, J.A.R., Schneider, R.C.S. 2019. Life cycle assessment of biodiesel production from solaris seed tobacco, Journal of Cleaner Production, 230 1085–1095.
  • Fernandes, D. J., Ferreira, A. F., & Fernandes, E. C. (2023). Biogas and biomethane production potential via anaerobic digestion of manure: a case study of Portugal. Renewable and Sustainable Energy Reviews, 188, 113846.
  • Garfí, M., Castro, L., Montero, N., Escalante, H., & Ferrer, I. (2019). Evaluating environmental benefits of low-cost biogas digesters in small-scale farms in Colombia: A life cycle assessment. Bioresource technology, 274, 541-548.
  • Han, Z., Han, C., Shi, Z., Li, J., & Luo, E. (2023). Rebuilding the crop-livestock integration system in China-Based on the perspective of circular economy. Journal of Cleaner Production, 393, 136347.
  • Frischknecht, R., Jungbluth, N., Althaus, H. J., Bauer, C., Doka, G., Dones, R., ... and Nemecek, T. Swiss Centre for Life Cycle Inventories A joint initiative of the ETH domain and Swiss Federal Offices Life Cycle Inventories of Bioenergy Data v2.0 (2007). [Online]. Available: www.esu-services.ch
  • Shen, L., and Patel, M.K. 2010. LCA Single Score Analysis of Man-Made Cellulose Fibres. Lenzinger Berichte, 88, 60-66 ISO, 2006a. ISO 14040:2006-Environmental Management, Life Cycle Assessment, Principles and Framework. Geneva: International Organization for Standardization (ISO), https://www.iso.org/standard/37456.html
  • ISO, 2006b. ISO 114044:2006, Environmental Management, Life Cycle Assessment, Requirements and Guidelines. Geneva: International Organization for Standardization (ISO). https://www.iso.org/standard/37456.html
  • Kaynarca, H., & Onay, Ö. (2024). Sarıcakaya İlçesinin Güneş ve Biyogaz Enerji Potansiyelinin Hesaplanması. Karadeniz Fen Bilimleri Dergisi, 14(3), 1006-1028.
  • Köninger, J., Lugato, E., Panagos, P., Kochupillai, M., Orgiazzi, A., & Briones, M. J. (2021). Manure management and soil biodiversity: Towards more sustainable food systems in the EU. Agricultural Systems, 194, 103251.
  • Marconi, P., and Lorenzo R. 2023. Role of biomethane to offset natural gas. Renewable and Sustainable Energy Reviews, 187, 113697.
  • Monteiro, N.B.R., Moita Neto, J.M., da Silva, E.A. 2021. Environmental assessment in concrete industries, Journal of Cleaner Production, 327, 129516.
  • Poeschl, M., Ward, S., & Owende, P. (2012). Environmental impacts of biogas deployment–Part I: life cycle inventory for evaluation of production process emissions to air. Journal of Cleaner Production, 24, 168-183.
  • Poeschl, M., Ward, S., & Owende, P. (2012). Environmental impacts of biogas deployment–Part II: life cycle assessment of multiple production and utilization pathways. Journal of Cleaner Production, 24, 184-201.
  • Sinsuw, A. A. E., Chen, T. H., Dokmaingam, P., Suriandjo, H. S., & Chu, C. Y. (2024). Life cycle assessment of environmental impacts for two-stage anaerobic biogas plant between commercial and pilot scales. International Journal of Hydrogen Energy, 52, 58-70.
  • Tufaner F., and Avşar Y. 2019. Economic analysis of biogas production from small scale anaerobic digestion systems for cattle manure. Environmental Research & Technology, 2, 6–12.
  • URL-1: https://www.iea.org/data-and-statistics/data-product/world-energy-statistics. (Date Accessed: 16 November 2024)
  • URL-2: https://energy.ec.europa.eu/topics/renewable-energy/renewable-energy-directive-targets-and-rules/renewable-energy-targets_en ( Date Accessed: 22 November 2024)
  • URL-3:https://ecoquery.ecoinvent.org/3.10/cutoff/dataset/15352/export (Date Accessed: 07 November 2024).
  • URL-4: https://ecoquery.ecoinvent.org/3.10/cutoff/dataset/1984/export (Date Accessed: 10 October 2024).
  • Van Stappen, F., Mathot, M., Decruyenaere, V., Loriers, A., Delcour, A., Planchon, V., ... & Stilmant, D. (2016). Consequential environmental life cycle assessment of a farm-scale biogas plant. Journal of environmental management, 175, 20-32.
  • Wei, C., Xu, Y., Xu, L., Liu, J., & Chen, H. (2023). Comparative life-cycle assessment of various harvesting strategies for biogas production from microalgae: Energy conversion characteristics and greenhouse gas emissions. Energy Conversion and Management, 289, 117188.

Sığır Gübresinden Biyogaz Üretiminin Yaşam Döngüsü Değerlendirmesi ile Çevresel Performansının Belirlenmesi

Yıl 2025, Cilt: 15 Sayı: 2, 730 - 744, 15.06.2025
https://doi.org/10.31466/kfbd.1604880

Öz

Bu çalışma, sığır gübresinden anaerobik çürütme tesisinde (AÇT) biyogaz üretiminin çevresel etkilerini Yaşam Döngüsü Değerlendirmesi (LCA) yöntemi kullanarak değerlendirmeyi amaçlar. Çalışmanın sistem sınırları, hammaddenin temininden biyogaz üretimine kadar olan süreci kapsayan beşikten-kapıya yaklaşımıyla belirlenmiş olup, çalışmanın fonksiyonel birimi “1 m³ biyogaz üretimi”dir. Bu fonksiyonel birim için yaşam döngüsü envanteri verileri, Ecoinvent v.3.10 veri tabanı kullanılarak elde edilmiştir. Yaşam döngüsü etki değerlendirmesi, CML-IA v3.10 ve ReCiPe 2016 Midpoint (H) v1.09 değerlendirme yöntemleri ile lisanslı SimaPro 9.6.0 PhD yazılımında gerçekleştirilmiştir. Ayrıca, sığır gübresi teminindeki taşıma mesafelerindeki değişimlerin genel çevresel etkiler üzerindeki etkisini incelemek amacıyla bir duyarlılık analizi yapılmıştır. LCA analiz sonuçları, AÇT’deki operasyonel faaliyetlerin ve ilgili enerji gereksinimlerinin, küresel ısınma potansiyeli, asidifikasyon potansiyeli ve ötrofikasyon potansiyeli gibi etki kategorilerine önemli ölçüde katkıda bulunduğunu göstermektedir. Ayrıca, AÇT’nin inşaat aşamasının CML-IA ve ReCiPe etki değerlendirme yönteminde incelenen tüm eko toksisite etki kategorileri için önemli etkilere sahip olduğu gözlemlenmiştir. Duyarlılık analizi, yenilenebilir enerji kaynaklarının elektrik üretimindeki karışım profilinin artırılmasının belirli çevresel etkileri azaltıcı etkisi olduğunu göstermektedir. Son olarak, ilgili uygulayıcıların biyogaz üretim sistemlerinin çevresel sürdürülebilirlik performansını iyileştirmek için sera gazı emisyonlarının ve eko toksisite etkilerinin azaltılmasına odaklanması gerekmektedir.

Kaynakça

  • Alba-Reyes, Y., Hermida-García, F. O., Pedraza-Garciga, J., López-González, L. M., Espinosa-Negrín, A. M., Carbonell-Sorí, L., & Barrera, E. L. (2024). Economic and environmental assessment of a biogas-based pressurized grid in a livestock farm: A case study in a cuban context. Journal of Cleaner Production, 434, 140288.
  • Carvalho, F.S., Fornasier, F., Leitao, J.O.M., Moraes, J.A.R., Schneider, R.C.S. 2019. Life cycle assessment of biodiesel production from solaris seed tobacco, Journal of Cleaner Production, 230 1085–1095.
  • Fernandes, D. J., Ferreira, A. F., & Fernandes, E. C. (2023). Biogas and biomethane production potential via anaerobic digestion of manure: a case study of Portugal. Renewable and Sustainable Energy Reviews, 188, 113846.
  • Garfí, M., Castro, L., Montero, N., Escalante, H., & Ferrer, I. (2019). Evaluating environmental benefits of low-cost biogas digesters in small-scale farms in Colombia: A life cycle assessment. Bioresource technology, 274, 541-548.
  • Han, Z., Han, C., Shi, Z., Li, J., & Luo, E. (2023). Rebuilding the crop-livestock integration system in China-Based on the perspective of circular economy. Journal of Cleaner Production, 393, 136347.
  • Frischknecht, R., Jungbluth, N., Althaus, H. J., Bauer, C., Doka, G., Dones, R., ... and Nemecek, T. Swiss Centre for Life Cycle Inventories A joint initiative of the ETH domain and Swiss Federal Offices Life Cycle Inventories of Bioenergy Data v2.0 (2007). [Online]. Available: www.esu-services.ch
  • Shen, L., and Patel, M.K. 2010. LCA Single Score Analysis of Man-Made Cellulose Fibres. Lenzinger Berichte, 88, 60-66 ISO, 2006a. ISO 14040:2006-Environmental Management, Life Cycle Assessment, Principles and Framework. Geneva: International Organization for Standardization (ISO), https://www.iso.org/standard/37456.html
  • ISO, 2006b. ISO 114044:2006, Environmental Management, Life Cycle Assessment, Requirements and Guidelines. Geneva: International Organization for Standardization (ISO). https://www.iso.org/standard/37456.html
  • Kaynarca, H., & Onay, Ö. (2024). Sarıcakaya İlçesinin Güneş ve Biyogaz Enerji Potansiyelinin Hesaplanması. Karadeniz Fen Bilimleri Dergisi, 14(3), 1006-1028.
  • Köninger, J., Lugato, E., Panagos, P., Kochupillai, M., Orgiazzi, A., & Briones, M. J. (2021). Manure management and soil biodiversity: Towards more sustainable food systems in the EU. Agricultural Systems, 194, 103251.
  • Marconi, P., and Lorenzo R. 2023. Role of biomethane to offset natural gas. Renewable and Sustainable Energy Reviews, 187, 113697.
  • Monteiro, N.B.R., Moita Neto, J.M., da Silva, E.A. 2021. Environmental assessment in concrete industries, Journal of Cleaner Production, 327, 129516.
  • Poeschl, M., Ward, S., & Owende, P. (2012). Environmental impacts of biogas deployment–Part I: life cycle inventory for evaluation of production process emissions to air. Journal of Cleaner Production, 24, 168-183.
  • Poeschl, M., Ward, S., & Owende, P. (2012). Environmental impacts of biogas deployment–Part II: life cycle assessment of multiple production and utilization pathways. Journal of Cleaner Production, 24, 184-201.
  • Sinsuw, A. A. E., Chen, T. H., Dokmaingam, P., Suriandjo, H. S., & Chu, C. Y. (2024). Life cycle assessment of environmental impacts for two-stage anaerobic biogas plant between commercial and pilot scales. International Journal of Hydrogen Energy, 52, 58-70.
  • Tufaner F., and Avşar Y. 2019. Economic analysis of biogas production from small scale anaerobic digestion systems for cattle manure. Environmental Research & Technology, 2, 6–12.
  • URL-1: https://www.iea.org/data-and-statistics/data-product/world-energy-statistics. (Date Accessed: 16 November 2024)
  • URL-2: https://energy.ec.europa.eu/topics/renewable-energy/renewable-energy-directive-targets-and-rules/renewable-energy-targets_en ( Date Accessed: 22 November 2024)
  • URL-3:https://ecoquery.ecoinvent.org/3.10/cutoff/dataset/15352/export (Date Accessed: 07 November 2024).
  • URL-4: https://ecoquery.ecoinvent.org/3.10/cutoff/dataset/1984/export (Date Accessed: 10 October 2024).
  • Van Stappen, F., Mathot, M., Decruyenaere, V., Loriers, A., Delcour, A., Planchon, V., ... & Stilmant, D. (2016). Consequential environmental life cycle assessment of a farm-scale biogas plant. Journal of environmental management, 175, 20-32.
  • Wei, C., Xu, Y., Xu, L., Liu, J., & Chen, H. (2023). Comparative life-cycle assessment of various harvesting strategies for biogas production from microalgae: Energy conversion characteristics and greenhouse gas emissions. Energy Conversion and Management, 289, 117188.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yaşam Döngüsü Değerlendirmesi ve Endüstriyel Ekoloji
Bölüm Makaleler
Yazarlar

Alp Özdemir 0000-0003-2834-8669

Yayımlanma Tarihi 15 Haziran 2025
Gönderilme Tarihi 20 Aralık 2024
Kabul Tarihi 24 Nisan 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 15 Sayı: 2

Kaynak Göster

APA Özdemir, A. (2025). Determination the Environmental Performance of Biogas Production from Cattle Manure via Life Cycle Assessment. Karadeniz Fen Bilimleri Dergisi, 15(2), 730-744. https://doi.org/10.31466/kfbd.1604880