Araştırma Makalesi
BibTex RIS Kaynak Göster

Yakıt Hücreli ve Elektrikli Aracın Farklı Yol Eğimlerinde Performans Karşılaştırılması

Yıl 2025, Cilt: 15 Sayı: 4, 1539 - 1557, 15.12.2025
https://doi.org/10.31466/kfbd.1672358

Öz

Yeşil enerjinin önemi her geçen gün giderek artmaktadır. Bu sebeple, sıfır emisyon ulaşım araçlarıyla ilgili çalışmalar hız kazanmaktadır. Bu çalışmada, emisyonsuz araçlardan olan elektrikli ve yakıt hücreli araçların performansları karşılaştırılmıştır. Bu araçlar, araç üreticisi Toyota’nın yakıt hücreli ve elektrikli araçların gerçek parametreleri referans alınarak tasarlanmıştır. Tasarlanan bu araçlara Dünya çapında Uyumlu Hafif Araçlar Test Prosedürü sürüş çevrimine -%1,5, %5, %10 ve %15 eğimler eklenerek uygulanmıştır. Eğimlerin bu araçlarda menzil, batarya sıcaklığı, batarya enerji tüketimi ve şarj durum değerleri incelenmiştir. Bulgular artan eğimin her iki araçta enerji tüketiminin ve batarya sıcaklığının artmasına yol açarken, batarya şarj durumunun azalmasına sebep olmaktadır. Ancak elektrikli araçta özellikle daha dik eğimlerde menzilde azalmaya yol açtığı görülmekte ve belirgin eğim artışlarına daha fazla hassasiyet gösterdiği belirlenmiştir. Buna karşılık, yakıt hücreli araç artan eğimlere karşı batarya kararlılığını korumuş, batarya sıcaklığı ve tüketimi artmasına rağmen menzil kaybı yaşamamıştır. Bu sonuçlar, yol eğimimin araç performansı ve sürdürülebilirliği üzerindeki rolünü vurgulamaktadır.

Kaynakça

  • Ahn, K., Rakha, H. A., & Park, S. (2020). Eco look-ahead control of battery electric vehicles and roadway grade effects. Transportation research record, 2674(10), 429-437.
  • Hawkins, T. R., Singh, B., Majeau‐Bettez, G., & Strømman, A. H. (2013). Comparative environmental life cycle assessment of conventional and electric vehicles. Journal of industrial ecology, 17(1), 53-64.
  • Hebala, A., Abdelkader, M. I., & Ibrahim, R. A. (2025). Comparative Analysis of Energy Consumption and Performance Metrics in Fuel Cell, Battery, and Hybrid Electric Vehicles Under Varying Wind and Road Conditions. Technologies, 13(4), 150.
  • Hüner, B. (2024). Araç Uygulamalarında Kullanılan Hibrit Sistemler için PEM Yakıt Pillerinin Elektrokimyasal Modellenmesi. Karadeniz Fen Bilimleri Dergisi, 14(4), 2190-2215. https://doi.org/10.31466/kfbd.1540148
  • IEA (International Energy Agency). (2020). Global EV Outlook 2020.
  • IEA (International Energy Agency). (2022). Global EV Outlook 2022.
  • IPCC. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Technical Summary.
  • Jiang, S., Wang, C., Zhang, C., Bai, H., & Xu, L. (2019). Adaptive estimation of road slope and vehicle mass of fuel cell vehicle. ETransportation, 2, 100023.
  • Li, P., Luo, S., Zhang, L., Liu, Q., Wang, Y., Lin, Y., ... & Xia, X. (2024). Progress, challenges, and prospects of spent lithium-ion batteries recycling: A review. Journal of Energy Chemistry, 89, 144-171.
  • Mock, P., Kühlwein, J., Tietge, U., Franco, V., Bandivadekar, A., & German, J. (2014). The WLTP: How a new test procedure for cars will affect fuel consumption values in the EU. International council on clean transportation, 9(3547), 1-20.
  • Sayah, A., Saïd-Romdhane, M. B., & Skander-Mustapha, S. (2024). Advanced energy management system with road gradient consideration for fuel cell hybrid electric vehicles. Results in Engineering, 23, 102721.
  • Schmidt, O., Gambhir, A., Staffell, I., Hawkes, A., Nelson, J., & Few, S. (2017). Future cost and performance of water electrolysis: An expert elicitation study. International journal of hydrogen energy, 42(52), 30470-30492.
  • Staffell, I., Scamman, D., Abad, A. V., Balcombe, P., Dodds, P. E., Ekins, P., ... & Ward, K. R. (2019). The role of hydrogen and fuel cells in the global energy system. Energy & Environmental Science, 12(2), 463-491.
  • Togun, H., Aljibori, H. S. S., Abed, A. M., Biswas, N., Alshamkhani, M. T., Niyas, H., ... & Paul, D. (2024). A review on recent advances on improving fuel economy and performance of a fuel cell hybrid electric vehicle. International Journal of Hydrogen Energy, 89, 22-47.
  • Tong, H. Y., & Ng, K. W. (2023). Developing electric bus driving cycles with significant road gradient changes: A case study in Hong Kong. Sustainable Cities and Society, 98, 104819.
  • Yuan, M., Luo, W., Lan, H., & Qin, Y. (2023). Research on multifractal characteristics of vehicle driving cycles. Machines, 11(4), 423.

Performance Comparison of Fuel Cell and Electric Vehicles on Different Road Gradients

Yıl 2025, Cilt: 15 Sayı: 4, 1539 - 1557, 15.12.2025
https://doi.org/10.31466/kfbd.1672358

Öz

The importance of green energy is increasing day by day. Hence, research on zero-emission transportation technologies has been advancing rapidly. In this study, the performances of electric and fuel cell vehicles, which are emission-free vehicles, are compared. These vehicles are designed with reference to the actual parameters of fuel cell and electric vehicles of the vehicle manufacturer Toyota. The Worldwide Harmonized Light Vehicles Test Procedure was applied to these vehicles incorporating road gradients of -1.5%, 5%, 10%, and 15% into the driving cycle. The range, battery temperature, battery energy consumption and state of charge values of these vehicles were analyzed. The results show that increasing gradient leads to an increase in energy consumption and battery temperature in both vehicles and a decrease in battery state of charge. However, the electric vehicle shows a decrease in range, especially on steeper gradients, and is more sensitive to significant gradient increases. On the other hand, the fuel cell vehicle-maintained battery stability against increasing gradients and did not experience any range loss despite the increase in battery temperature and consumption. These results emphasize the role of road gradient on vehicle performance and sustainability.

Kaynakça

  • Ahn, K., Rakha, H. A., & Park, S. (2020). Eco look-ahead control of battery electric vehicles and roadway grade effects. Transportation research record, 2674(10), 429-437.
  • Hawkins, T. R., Singh, B., Majeau‐Bettez, G., & Strømman, A. H. (2013). Comparative environmental life cycle assessment of conventional and electric vehicles. Journal of industrial ecology, 17(1), 53-64.
  • Hebala, A., Abdelkader, M. I., & Ibrahim, R. A. (2025). Comparative Analysis of Energy Consumption and Performance Metrics in Fuel Cell, Battery, and Hybrid Electric Vehicles Under Varying Wind and Road Conditions. Technologies, 13(4), 150.
  • Hüner, B. (2024). Araç Uygulamalarında Kullanılan Hibrit Sistemler için PEM Yakıt Pillerinin Elektrokimyasal Modellenmesi. Karadeniz Fen Bilimleri Dergisi, 14(4), 2190-2215. https://doi.org/10.31466/kfbd.1540148
  • IEA (International Energy Agency). (2020). Global EV Outlook 2020.
  • IEA (International Energy Agency). (2022). Global EV Outlook 2022.
  • IPCC. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Technical Summary.
  • Jiang, S., Wang, C., Zhang, C., Bai, H., & Xu, L. (2019). Adaptive estimation of road slope and vehicle mass of fuel cell vehicle. ETransportation, 2, 100023.
  • Li, P., Luo, S., Zhang, L., Liu, Q., Wang, Y., Lin, Y., ... & Xia, X. (2024). Progress, challenges, and prospects of spent lithium-ion batteries recycling: A review. Journal of Energy Chemistry, 89, 144-171.
  • Mock, P., Kühlwein, J., Tietge, U., Franco, V., Bandivadekar, A., & German, J. (2014). The WLTP: How a new test procedure for cars will affect fuel consumption values in the EU. International council on clean transportation, 9(3547), 1-20.
  • Sayah, A., Saïd-Romdhane, M. B., & Skander-Mustapha, S. (2024). Advanced energy management system with road gradient consideration for fuel cell hybrid electric vehicles. Results in Engineering, 23, 102721.
  • Schmidt, O., Gambhir, A., Staffell, I., Hawkes, A., Nelson, J., & Few, S. (2017). Future cost and performance of water electrolysis: An expert elicitation study. International journal of hydrogen energy, 42(52), 30470-30492.
  • Staffell, I., Scamman, D., Abad, A. V., Balcombe, P., Dodds, P. E., Ekins, P., ... & Ward, K. R. (2019). The role of hydrogen and fuel cells in the global energy system. Energy & Environmental Science, 12(2), 463-491.
  • Togun, H., Aljibori, H. S. S., Abed, A. M., Biswas, N., Alshamkhani, M. T., Niyas, H., ... & Paul, D. (2024). A review on recent advances on improving fuel economy and performance of a fuel cell hybrid electric vehicle. International Journal of Hydrogen Energy, 89, 22-47.
  • Tong, H. Y., & Ng, K. W. (2023). Developing electric bus driving cycles with significant road gradient changes: A case study in Hong Kong. Sustainable Cities and Society, 98, 104819.
  • Yuan, M., Luo, W., Lan, H., & Qin, Y. (2023). Research on multifractal characteristics of vehicle driving cycles. Machines, 11(4), 423.
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Enerji, Hibrit ve Elektrikli Araçlar ve Güç Aktarma Organları
Bölüm Araştırma Makalesi
Yazarlar

Ceyda Kök 0000-0002-5536-3488

Gönderilme Tarihi 8 Nisan 2025
Kabul Tarihi 31 Ağustos 2025
Yayımlanma Tarihi 15 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 15 Sayı: 4

Kaynak Göster

APA Kök, C. (2025). Performance Comparison of Fuel Cell and Electric Vehicles on Different Road Gradients. Karadeniz Fen Bilimleri Dergisi, 15(4), 1539-1557. https://doi.org/10.31466/kfbd.1672358