Araştırma Makalesi
BibTex RIS Kaynak Göster

Yeni Bir Metoksi-Substitue Schiff Bazı: Sentezi, Antioksidan Aktivitesi ve Biyodizel-Dizel Karışımlarında Termal Performansı

Yıl 2025, Cilt: 15 Sayı: 4, 1558 - 1577, 15.12.2025
https://doi.org/10.31466/kfbd.1675935

Öz

5-amino-2-metilfenol ile 5-metoksi-2-hidroksibenzaldehit’in metanol ortamında kondenzasyon reaksiyonu sonucunda (E)-2-(((3-hidroksi-4-metilfenil)imino)metil)-4-metoksifenol (HMPIM-MP) adlı yeni bir Schiff bazı sentezlendi. Bileşiğin yapısı UV-Vis, FTIR, ¹H ve ¹³C NMR spektroskopileriyle doğrulandı ve yüzey özellikleri SEM ile incelendi. Termal özellikler Termogravimetrik Analiz (TGA) ve Diferansiyel Taramalı Kalorimetri (DSC) ile değerlendirildi; serbest radikal direnci ise 2,2-Difenil-1-Pikrilhidrazil (DPPH˙) radikal süpürme deneyiyle test edildi. Bileşik 263.39 °C’de bozunmuş ve 153.69 °C’de endotermik olarak erimiş, bu da termal kararlılığını göstermektedir. DPPH˙ süpürme için IC₅₀ değeri 10.92 ± 0.80 µg/mL olup, Trolox’un 9.71 ± 0.46 µg/mL değerine yakın bulunarak güçlü antioksidan aktivite göstermiştir. Soğuk akış özelliklerini test etmek amacıyla, Schiff bazı 3000 ppm oranında B50D50 biyodizel-dizel karışımına eklenmiştir. DSC analizine göre kristalleşme sıcaklığı kontrol grubunda –9.27 °C iken, Schiff bazı katkılı karışımda –12.48 °C’ye düşmüştür. Bu sonuçlar bileşiğin hem antioksidan özellikler hem de soğuk akış iyileştirici etkiler gösterdiğini ortaya koymaktadır. Araştırma, özel olarak tasarlanmış Schiff bazlarının biyoyakıtlara eklenerek yakıt verimliliğinin sürdürülebilir şekilde artırılabileceğini önermektedir.

Kaynakça

  • Abdel-Hameed, R. S., El-Azabawy, O. E., El-Segaey, A. A., Khamis, E. A., Abdelshafi, N. S., & Al-Shafey, H. I. (2023). Comparison between Schiff-base and its iron complex as steel corrosion inhibitors used by the petroleum industry in marine environments. Canadian Metallurgical Quarterly. https://doi.org/10.1080/00084433.2023.2268493
  • Abo-Aly, M. M., Salem, A. M., Sayed, M. A., & Abdel Aziz, A. A. (2015). Spectroscopic and structural studies of the Schiff base 3-methoxy-N-salicylidene-o-amino phenol complexes with some transition metal ions and their antibacterial, antifungal activities. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 136(PB), 993–1000. https://doi.org/10.1016/j.saa.2014.09.122
  • Al-Amiery, A., Salman, T. A., Alazawi, K. F., Shaker, L. M., Kadhum, A. A. H., & Takriff, M. S. (2020). Quantum chemical elucidation on corrosion inhibition efficiency of Schiff base: DFT investigations supported by weight loss and SEM techniques. International Journal of Low-Carbon Technologies, 15(2), 202–209. https://doi.org/10.1093/ijlct/ctz074
  • Balat, M., & Balat, H. (2010). Progress in biodiesel processing. Applied Energy, 87(6), 1815–1835. https://doi.org/10.1016/j.apenergy.2010.01.012
  • Berthomieu, C., & Hienerwadel, R. (2009). Fourier transform infrared (FTIR) spectroscopy. Photosynthesis Research, 101(2–3), 157–170. https://doi.org/10.1007/s11120-009-9439-x
  • Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5
  • Canakci et all. (2024). Investigation of thermal properties and structural characterization of novel boron-containing Schiff base polymers. BMC Chemistry, 18(1). https://doi.org/10.1186/s13065-024-01264-6
  • Chen, W., & Chen, J. (2016). Crystallization behaviors of biodiesel in relation to its rheological properties. Fuel, 171, 178–185. https://doi.org/10.1016/j.fuel.2015.12.049
  • Costa, K., Salazar, C., Moreira, R., Manhães, M., Felipe, M., Jadjeski, P., Nogueira, C. M., Felipe, M., Jadjeski, P., Nogueira, C. M., Chagas, V., Costa, K., Salazar, C., Moreira, R., Manh, M., Nogueira, C. M., & Chagas, V. (2024). Antioxidative capacity evaluation of imine compounds as metal ions chelators and free radical scavengers in biodiesel. Biofuels, 15(4), 461–470. https://doi.org/10.1080/17597269.2023.2257959
  • Dang, T. T. T., Le, S. T. T., Channei, D., Khanitchaidecha, W., & Nakaruk, A. (2016). Photodegradation mechanisms of phenol in the photocatalytic process. Research on Chemical Intermediates, 42(6), 5961–5974. https://doi.org/10.1007/s11164-015-2417-3
  • Dueke-Eze, C. U., Fasina, T. M., Oluwalana, A. E., Familoni, O. B., Mphalele, J. M., & Onubuogu, C. (2020). Synthesis and biological evaluation of copper and cobalt complexes of (5-substituted-salicylidene) isonicotinichydrazide derivatives as antitubercular agents. Scientific African, 9. https://doi.org/10.1016/j.sciaf.2020.e00522
  • Gao, C., Xing, A., He, Z., Yuan, P., Qiao, Y., & Li, X. (2024). A Novel Schiff Base Ep Synthesis, Degradability, and Application as a MultiPurpose Modifier for DGEBA/DDM. Journal of Polymer Science, 884–897. https://doi.org/10.1002/pol.20240990
  • Hajareh Haghighi, F., Binaymotlagh, R., Palocci, C., & Chronopoulou, L. (2024). Magnetic Iron Oxide Nanomaterials for Lipase Immobilization: Promising Industrial Catalysts for Biodiesel Production. Catalysts, 14(6). https://doi.org/10.3390/catal14060336
  • Hansen, P., Rozwadowski, Z., & Dziembowska, T. (2009). NMR Studies of Hydroxy Schiff Bases. Current Organic Chemistry, 13(2), 194–215. https://doi.org/10.2174/138527209787193738
  • Harald Küppers. (1978). DuMonts Farben-Atlas. Über 5500 Farbnuancen mit Kennzeichnung und Mischanleitung (DuMont Reiseverlag (ed.)).
  • Huck-Pezzei, V. A., Pallua, J. D., Pezzei, C., Bittner, L. K., Schönbichler, S. A., Abel, G., Popp, M., Bonn, G. K., & Huck, C. W. (2012). Fourier transform infrared imaging analysis in discrimination studies of St. John’s wort (Hypericum perforatum). Analytical and Bioanalytical Chemistry, 404(6–7), 1771–1778. https://doi.org/10.1007/s00216-012-6296-9
  • Issa, Y. M., Hassib, H. B., & Abdelaal, H. E. (2009). 1H NMR, 13C NMR and mass spectral studies of some Schiff bases derived from 3-amino-1,2,4-triazole. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 74(4), 902–910. https://doi.org/10.1016/j.saa.2009.08.042
  • Joseyphus, R. S., & Nair, M. S. (2008). Antibacterial and Antifungal Studies on Some Schiff Base Complexes of Zinc(II). Mycobiology, 36(2), 93. https://doi.org/10.4489/myco.2008.36.2.093
  • Karakullukçu, N. T., Muğlu, H., Yakan, H., Yılmaz, V. M., & Marah, S. (2024). Kinetic Insights into the Antioxidant Effect of Isatin-Thiosemicarbazone in Biodiesel Blends. 1–21.
  • Khan, M. I., Khan, A., Hussain, I., Khan, M. A., Gul, S., Iqbal, M., Inayat-Ur-Rahman, & Khuda, F. (2013). Spectral, XRD, SEM and biological properties of new mononuclear Schiff base transition metal complexes. Inorganic Chemistry Communications, 35, 104–109. https://doi.org/10.1016/j.inoche.2013.06.014
  • Khashei Siuki, H., Ghamari Kargar, P., & Bagherzade, G. (2022). New Acetamidine Cu(II) Schiff base complex supported on magnetic nanoparticles pectin for the synthesis of triazoles using click chemistry. Scientific Reports, 12(1), 1–17. https://doi.org/10.1038/s41598-022-07674-7
  • Kumar Pal, C., Mahato, S., Joshi, M., Paul, S., Roy Choudhury, A., & Biswas, B. (2020). Transesterification activity by a zinc(II)-Schiff base complex with theoretical interpretation. Inorganica Chimica Acta, 506(January), 119541. https://doi.org/10.1016/j.ica.2020.119541
  • Makal, A., Schilf, W., Kamieński, B., Szady-Chelmieniecka, A., Grech, E., & Woźniak, K. (2011). Hydrogen bonding in Schiff bases - NMR, structural and experimental charge density studies. Dalton Transactions, 40(2), 421–430. https://doi.org/10.1039/c0dt00298d
  • Matar, G. H., Kaymazlar, E., Andac, M., & Andac, O. (2023). Novel Binary Blended Hydrogel Films (Chitosan-Vanillin Schiff Base/Locust Bean Gum and Fe(III), Cu(II) & Zn(II) Complexes): Synthesis, Characterization, Conductivity, and Antibacterial Activity. Journal of Polymers and the Environment, 31(8), 3509–3521. https://doi.org/10.1007/s10924-023-02822-0
  • Meyer, J., Guilherme, M., Campos, F., Moreira, L., & Pinto, D. C. (2022). Copper ( II ) complexes with novel Schiff ‑ based ligands : synthesis , crystal structure , thermal ( TGA – DSC / FT ‑ IR ), spectroscopic ( FT ‑ IR , UV ‑ Vis ) and theoretical studies. Journal of Thermal Analysis and Calorimetry, 147(6), 4087–4098. https://doi.org/10.1007/s10973-021-10803-5
  • Mighani, H. (2020). Schiff Base polymers: synthesis and characterization. Journal of Polymer Research, 27(6). https://doi.org/10.1007/s10965-020-02080-x
  • Mohamed, E. A., Altalhi, A. A., Amer, A., Negm, N. A., Azmy, E. A. M., & Farag, A. A. (2023). Two novel Schiff bases derived from 3-amino-1,2,4-triazole as corrosion inhibitors for carbon steel pipelines during acidizing treatment of oil wells: Laboratory and theoretical studies. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 45(2), 3246–3265. https://doi.org/10.1080/15567036.2023.2195817
  • Nain, S. (2014). Recent Advancement in Synthesis of Isatin as Anticonvulsant Agents: A Review. Medicinal Chemistry, 4(4). https://doi.org/10.4172/2161-0444.1000173
  • Nejati, K., Rezvani, Z., & Massoumi, B. (2007). Syntheses and investigation of thermal properties of copper complexes with azo-containing Schiff-base dyes. Dyes and Pigments, 75(3), 653–657. https://doi.org/10.1016/j.dyepig.2006.07.019
  • Omar, M. M., Mohamed, G. G., & Ibrahim, A. A. (2009). Spectroscopic characterization of metal complexes of novel Schiff base. Synthesis, thermal and biological activity studies. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 73(2), 358–369. https://doi.org/10.1016/j.saa.2009.02.043
  • Oyerinde, A., & Bello, E. (2016). Use of Fourier Transformation Infrared (FTIR) Spectroscopy for Analysis of Functional Groups in Peanut Oil Biodiesel and Its Blends. British Journal of Applied Science & Technology, 13(3), 1–14. https://doi.org/10.9734/bjast/2016/22178
  • Przybylski, P., Ilkevych, N., Schroeder, G., Brzezinski, B., & Bartl, F. (2004). Schiff Base of Gossypol with Complexes with Monovalent. Contract, 73, 470–483.
  • Pullen, J., & Saeed, K. (2012). An overview of biodiesel oxidation stability. Renewable and Sustainable Energy Reviews, 16(8), 5924–5950. https://doi.org/10.1016/j.rser.2012.06.024
  • Rana, K., Pandurangan, A., Singh, N., & Tiwari, A. K. (2012). A Systemic Review of Schiff Bases as an Analgesic, Anti-Inflammatory. Academic Sciences, 4(2), 5–11. https://pdfs.semanticscholar.org/79a1/b42e3bec5131292e5ab944a845904634d638.pdf
  • Rasul, M. A. H. M. G., Mofijur, M. M. K. K. M., Hwai, S. F. A., Ong, C., & Viet, D. (2021). Techniques to improve the stability of biodiesel : a review. Environmental Chemistry Letters, 19(3), 2209–2236. https://doi.org/10.1007/s10311-020-01166-8
  • Raza, M. A., Farwa, U., Ashraf, A., Berrin POYRAZ, E., Yesilbag, S., Agar, E., & Al-Sehemi, A. G. (2023). Synthesis, crystal structure, spectroscopic and computational investigations of the newly synthesized Schiff bases scaffold as enzyme inhibitor. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 299(December 2022), 122864. https://doi.org/10.1016/j.saa.2023.122864
  • Riley, R., & Chapman, V. (1958). © 1958 Nature Publishing Group.
  • Schiff, H. (1864). Communications from the University laboratory in Pisa: a new range of organic bases. Annal Chem, 131(1), 118–119.
  • Schiff, V. H. (n.d.). - 16,66. 112–117.
  • Schilf, W., Kamieński, B., Szady-Chełmieniecka, A., & Grech, E. (2004). The 15N and 13C solid state NMR study of intramolecular hydrogen bond in some Schiff bases. Journal of Molecular Structure, 700(1–3), 105–108. https://doi.org/10.1016/j.molstruc.2003.12.052
  • Şener, N., Özkinali, S., Altunoglu, Y. C., Yerlikaya, S., Gökçe, H., Zurnaci, M., Gür, M., Baloglu, M. C., & Şener, İ. (2021). Antiproliferative properties and structural analysis of newly synthesized Schiff bases bearing pyrazole derivatives and molecular docking studies. Journal of Molecular Structure, 1241. https://doi.org/10.1016/j.molstruc.2021.130520
  • Singh, A., Prajapati, P., Vyas, S., Gaur, V. K., Sindhu, R., & Binod, P. (2023). A Comprehensive Review of Feedstocks as Sustainable Substrates for Next ‑ Generation Biofuels. BioEnergy Research, 105–122. https://doi.org/10.1007/s12155-022-10440-2
  • Singh, R. K., Kukrety, A., Sharma, O. P., Poddar, M. K., Atray, N., Thakre, G. D., & Ray, S. S. (2016). Evaluation of a Novel Hindered Phenolic Triazine Schiff Base as Multifunctional Additive in Biolube and Biodiesel. Waste and Biomass Valorization, 7(6), 1437–1445. https://doi.org/10.1007/s12649-016-9557-6
  • Tuna Yıldırım, S. (2019). Aromatik Amin İçeren Schiff Bazı Ligandının Sentezi, Karakterizasyonu ve Bazı Geçiş Metal Komplekslerinin İncelenmesi. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 12(3), 1329–1340. https://doi.org/10.18185/erzifbed.505339
  • Uguz, G. (2023). Inhibitory effect of thyme oil as an antioxidant for waste cooking oil biodiesel crystallization. https://doi.org/10.1177/0958305X211061346
  • Uğuz, G., Çakmak, A., Bento, C. da S., & Türköz Karakullukçu, N. (2023). Experimental investigation of fuel properties and engine operation with natural and synthetic antioxidants added to biodiesel. Biofuels, 14(4), 405–420. https://doi.org/10.1080/17597269.2022.2156049
  • Yakan, H. (2020). Preparation, structure elucidation, and antioxidant activity of new bis(thiosemicarbazone) derivatives. Turkish Journal of Chemistry, 44(4), 1085–1099. https://doi.org/10.3906/KIM-2002-76
  • Yakan, H., Cakmak, S., Kutuk, H., Yenigun, S., & Ozen, T. (2020). Synthesis, characterization, antioxidant, and antibacterial activities of new 2,3-dimethoxy and 3-acetoxy-2-methyl benzamides. Research on Chemical Intermediates, 46(5), 2767–2787. https://doi.org/10.1007/s11164-020-04118-7
  • Zabulica, A., Balan, M., Belei, D., Sava, M., Simionescu, B. C., & Marin, L. (2013). Novel luminescent phenothiazine-based Schiff bases with tuned morphology. Synthesis, structure, photophysical and thermotropic characterization. Dyes and Pigments, 96(3), 686–698. https://doi.org/10.1016/j.dyepig.2012.11.001
  • Zoubi, W. Al, Al-Hamdani, A. A. S., & Ko, Y. G. (2017). Schiff bases and their complexes: Recent progress in thermal analysis. Separation Science and Technology (Philadelphia), 52(6), 1052–1069. https://doi.org/10.1080/01496395.2016.1267756

A Novel Methoxy-Substituted Schiff Base: Synthesis, Antioxidant Activity, and Thermal Performance in Biodiesel-Diesel Blends

Yıl 2025, Cilt: 15 Sayı: 4, 1558 - 1577, 15.12.2025
https://doi.org/10.31466/kfbd.1675935

Öz

A condensation reaction between 5-amino-2-methylphenol and 5-methoxy-2-hydroxybenzaldehyde in methanol environment yielded a novel Schiff base, (E)-2-(((3-hydroxy-4-methylphenyl)imino)methyl)-4-methoxyphenol (HMPIM-MP). The compound's structure was validated by UV-Vis, FTIR, ¹H, and ¹³C NMR spectroscopy, and its surface properties were examined using SEM. Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) were used to analyze thermal properties, while the 2,2-Diphenyl-1-Picrylhydrazyl (DPPH˙) radical scavenging experiment investigated free radical resistance. The chemical broke down at 263.39 °C and melted endothermically at 153.69 °C, indicating thermal stability. The IC50 value for DPPH˙ scavenging was 10.92 ± 0.80 µg/mL, similar to Trolox's 9.71 ± 0.46 µg/mL, showing strong antioxidant activity. To test cold flow characteristics, the Schiff base was added to a biodiesel-diesel combination B50D50 at 3000 ppm. Crystallization temperature dropped from –9.27 °C in the control to –12.48 °C in the Schiff base mix, according to DSC. The results show the compound's antioxidant and cold flow enhancement properties. The research suggests that tailored Schiff bases may be added to biofuels to improve fuel efficiency in a sustainable way.

Kaynakça

  • Abdel-Hameed, R. S., El-Azabawy, O. E., El-Segaey, A. A., Khamis, E. A., Abdelshafi, N. S., & Al-Shafey, H. I. (2023). Comparison between Schiff-base and its iron complex as steel corrosion inhibitors used by the petroleum industry in marine environments. Canadian Metallurgical Quarterly. https://doi.org/10.1080/00084433.2023.2268493
  • Abo-Aly, M. M., Salem, A. M., Sayed, M. A., & Abdel Aziz, A. A. (2015). Spectroscopic and structural studies of the Schiff base 3-methoxy-N-salicylidene-o-amino phenol complexes with some transition metal ions and their antibacterial, antifungal activities. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 136(PB), 993–1000. https://doi.org/10.1016/j.saa.2014.09.122
  • Al-Amiery, A., Salman, T. A., Alazawi, K. F., Shaker, L. M., Kadhum, A. A. H., & Takriff, M. S. (2020). Quantum chemical elucidation on corrosion inhibition efficiency of Schiff base: DFT investigations supported by weight loss and SEM techniques. International Journal of Low-Carbon Technologies, 15(2), 202–209. https://doi.org/10.1093/ijlct/ctz074
  • Balat, M., & Balat, H. (2010). Progress in biodiesel processing. Applied Energy, 87(6), 1815–1835. https://doi.org/10.1016/j.apenergy.2010.01.012
  • Berthomieu, C., & Hienerwadel, R. (2009). Fourier transform infrared (FTIR) spectroscopy. Photosynthesis Research, 101(2–3), 157–170. https://doi.org/10.1007/s11120-009-9439-x
  • Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5
  • Canakci et all. (2024). Investigation of thermal properties and structural characterization of novel boron-containing Schiff base polymers. BMC Chemistry, 18(1). https://doi.org/10.1186/s13065-024-01264-6
  • Chen, W., & Chen, J. (2016). Crystallization behaviors of biodiesel in relation to its rheological properties. Fuel, 171, 178–185. https://doi.org/10.1016/j.fuel.2015.12.049
  • Costa, K., Salazar, C., Moreira, R., Manhães, M., Felipe, M., Jadjeski, P., Nogueira, C. M., Felipe, M., Jadjeski, P., Nogueira, C. M., Chagas, V., Costa, K., Salazar, C., Moreira, R., Manh, M., Nogueira, C. M., & Chagas, V. (2024). Antioxidative capacity evaluation of imine compounds as metal ions chelators and free radical scavengers in biodiesel. Biofuels, 15(4), 461–470. https://doi.org/10.1080/17597269.2023.2257959
  • Dang, T. T. T., Le, S. T. T., Channei, D., Khanitchaidecha, W., & Nakaruk, A. (2016). Photodegradation mechanisms of phenol in the photocatalytic process. Research on Chemical Intermediates, 42(6), 5961–5974. https://doi.org/10.1007/s11164-015-2417-3
  • Dueke-Eze, C. U., Fasina, T. M., Oluwalana, A. E., Familoni, O. B., Mphalele, J. M., & Onubuogu, C. (2020). Synthesis and biological evaluation of copper and cobalt complexes of (5-substituted-salicylidene) isonicotinichydrazide derivatives as antitubercular agents. Scientific African, 9. https://doi.org/10.1016/j.sciaf.2020.e00522
  • Gao, C., Xing, A., He, Z., Yuan, P., Qiao, Y., & Li, X. (2024). A Novel Schiff Base Ep Synthesis, Degradability, and Application as a MultiPurpose Modifier for DGEBA/DDM. Journal of Polymer Science, 884–897. https://doi.org/10.1002/pol.20240990
  • Hajareh Haghighi, F., Binaymotlagh, R., Palocci, C., & Chronopoulou, L. (2024). Magnetic Iron Oxide Nanomaterials for Lipase Immobilization: Promising Industrial Catalysts for Biodiesel Production. Catalysts, 14(6). https://doi.org/10.3390/catal14060336
  • Hansen, P., Rozwadowski, Z., & Dziembowska, T. (2009). NMR Studies of Hydroxy Schiff Bases. Current Organic Chemistry, 13(2), 194–215. https://doi.org/10.2174/138527209787193738
  • Harald Küppers. (1978). DuMonts Farben-Atlas. Über 5500 Farbnuancen mit Kennzeichnung und Mischanleitung (DuMont Reiseverlag (ed.)).
  • Huck-Pezzei, V. A., Pallua, J. D., Pezzei, C., Bittner, L. K., Schönbichler, S. A., Abel, G., Popp, M., Bonn, G. K., & Huck, C. W. (2012). Fourier transform infrared imaging analysis in discrimination studies of St. John’s wort (Hypericum perforatum). Analytical and Bioanalytical Chemistry, 404(6–7), 1771–1778. https://doi.org/10.1007/s00216-012-6296-9
  • Issa, Y. M., Hassib, H. B., & Abdelaal, H. E. (2009). 1H NMR, 13C NMR and mass spectral studies of some Schiff bases derived from 3-amino-1,2,4-triazole. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 74(4), 902–910. https://doi.org/10.1016/j.saa.2009.08.042
  • Joseyphus, R. S., & Nair, M. S. (2008). Antibacterial and Antifungal Studies on Some Schiff Base Complexes of Zinc(II). Mycobiology, 36(2), 93. https://doi.org/10.4489/myco.2008.36.2.093
  • Karakullukçu, N. T., Muğlu, H., Yakan, H., Yılmaz, V. M., & Marah, S. (2024). Kinetic Insights into the Antioxidant Effect of Isatin-Thiosemicarbazone in Biodiesel Blends. 1–21.
  • Khan, M. I., Khan, A., Hussain, I., Khan, M. A., Gul, S., Iqbal, M., Inayat-Ur-Rahman, & Khuda, F. (2013). Spectral, XRD, SEM and biological properties of new mononuclear Schiff base transition metal complexes. Inorganic Chemistry Communications, 35, 104–109. https://doi.org/10.1016/j.inoche.2013.06.014
  • Khashei Siuki, H., Ghamari Kargar, P., & Bagherzade, G. (2022). New Acetamidine Cu(II) Schiff base complex supported on magnetic nanoparticles pectin for the synthesis of triazoles using click chemistry. Scientific Reports, 12(1), 1–17. https://doi.org/10.1038/s41598-022-07674-7
  • Kumar Pal, C., Mahato, S., Joshi, M., Paul, S., Roy Choudhury, A., & Biswas, B. (2020). Transesterification activity by a zinc(II)-Schiff base complex with theoretical interpretation. Inorganica Chimica Acta, 506(January), 119541. https://doi.org/10.1016/j.ica.2020.119541
  • Makal, A., Schilf, W., Kamieński, B., Szady-Chelmieniecka, A., Grech, E., & Woźniak, K. (2011). Hydrogen bonding in Schiff bases - NMR, structural and experimental charge density studies. Dalton Transactions, 40(2), 421–430. https://doi.org/10.1039/c0dt00298d
  • Matar, G. H., Kaymazlar, E., Andac, M., & Andac, O. (2023). Novel Binary Blended Hydrogel Films (Chitosan-Vanillin Schiff Base/Locust Bean Gum and Fe(III), Cu(II) & Zn(II) Complexes): Synthesis, Characterization, Conductivity, and Antibacterial Activity. Journal of Polymers and the Environment, 31(8), 3509–3521. https://doi.org/10.1007/s10924-023-02822-0
  • Meyer, J., Guilherme, M., Campos, F., Moreira, L., & Pinto, D. C. (2022). Copper ( II ) complexes with novel Schiff ‑ based ligands : synthesis , crystal structure , thermal ( TGA – DSC / FT ‑ IR ), spectroscopic ( FT ‑ IR , UV ‑ Vis ) and theoretical studies. Journal of Thermal Analysis and Calorimetry, 147(6), 4087–4098. https://doi.org/10.1007/s10973-021-10803-5
  • Mighani, H. (2020). Schiff Base polymers: synthesis and characterization. Journal of Polymer Research, 27(6). https://doi.org/10.1007/s10965-020-02080-x
  • Mohamed, E. A., Altalhi, A. A., Amer, A., Negm, N. A., Azmy, E. A. M., & Farag, A. A. (2023). Two novel Schiff bases derived from 3-amino-1,2,4-triazole as corrosion inhibitors for carbon steel pipelines during acidizing treatment of oil wells: Laboratory and theoretical studies. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 45(2), 3246–3265. https://doi.org/10.1080/15567036.2023.2195817
  • Nain, S. (2014). Recent Advancement in Synthesis of Isatin as Anticonvulsant Agents: A Review. Medicinal Chemistry, 4(4). https://doi.org/10.4172/2161-0444.1000173
  • Nejati, K., Rezvani, Z., & Massoumi, B. (2007). Syntheses and investigation of thermal properties of copper complexes with azo-containing Schiff-base dyes. Dyes and Pigments, 75(3), 653–657. https://doi.org/10.1016/j.dyepig.2006.07.019
  • Omar, M. M., Mohamed, G. G., & Ibrahim, A. A. (2009). Spectroscopic characterization of metal complexes of novel Schiff base. Synthesis, thermal and biological activity studies. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 73(2), 358–369. https://doi.org/10.1016/j.saa.2009.02.043
  • Oyerinde, A., & Bello, E. (2016). Use of Fourier Transformation Infrared (FTIR) Spectroscopy for Analysis of Functional Groups in Peanut Oil Biodiesel and Its Blends. British Journal of Applied Science & Technology, 13(3), 1–14. https://doi.org/10.9734/bjast/2016/22178
  • Przybylski, P., Ilkevych, N., Schroeder, G., Brzezinski, B., & Bartl, F. (2004). Schiff Base of Gossypol with Complexes with Monovalent. Contract, 73, 470–483.
  • Pullen, J., & Saeed, K. (2012). An overview of biodiesel oxidation stability. Renewable and Sustainable Energy Reviews, 16(8), 5924–5950. https://doi.org/10.1016/j.rser.2012.06.024
  • Rana, K., Pandurangan, A., Singh, N., & Tiwari, A. K. (2012). A Systemic Review of Schiff Bases as an Analgesic, Anti-Inflammatory. Academic Sciences, 4(2), 5–11. https://pdfs.semanticscholar.org/79a1/b42e3bec5131292e5ab944a845904634d638.pdf
  • Rasul, M. A. H. M. G., Mofijur, M. M. K. K. M., Hwai, S. F. A., Ong, C., & Viet, D. (2021). Techniques to improve the stability of biodiesel : a review. Environmental Chemistry Letters, 19(3), 2209–2236. https://doi.org/10.1007/s10311-020-01166-8
  • Raza, M. A., Farwa, U., Ashraf, A., Berrin POYRAZ, E., Yesilbag, S., Agar, E., & Al-Sehemi, A. G. (2023). Synthesis, crystal structure, spectroscopic and computational investigations of the newly synthesized Schiff bases scaffold as enzyme inhibitor. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 299(December 2022), 122864. https://doi.org/10.1016/j.saa.2023.122864
  • Riley, R., & Chapman, V. (1958). © 1958 Nature Publishing Group.
  • Schiff, H. (1864). Communications from the University laboratory in Pisa: a new range of organic bases. Annal Chem, 131(1), 118–119.
  • Schiff, V. H. (n.d.). - 16,66. 112–117.
  • Schilf, W., Kamieński, B., Szady-Chełmieniecka, A., & Grech, E. (2004). The 15N and 13C solid state NMR study of intramolecular hydrogen bond in some Schiff bases. Journal of Molecular Structure, 700(1–3), 105–108. https://doi.org/10.1016/j.molstruc.2003.12.052
  • Şener, N., Özkinali, S., Altunoglu, Y. C., Yerlikaya, S., Gökçe, H., Zurnaci, M., Gür, M., Baloglu, M. C., & Şener, İ. (2021). Antiproliferative properties and structural analysis of newly synthesized Schiff bases bearing pyrazole derivatives and molecular docking studies. Journal of Molecular Structure, 1241. https://doi.org/10.1016/j.molstruc.2021.130520
  • Singh, A., Prajapati, P., Vyas, S., Gaur, V. K., Sindhu, R., & Binod, P. (2023). A Comprehensive Review of Feedstocks as Sustainable Substrates for Next ‑ Generation Biofuels. BioEnergy Research, 105–122. https://doi.org/10.1007/s12155-022-10440-2
  • Singh, R. K., Kukrety, A., Sharma, O. P., Poddar, M. K., Atray, N., Thakre, G. D., & Ray, S. S. (2016). Evaluation of a Novel Hindered Phenolic Triazine Schiff Base as Multifunctional Additive in Biolube and Biodiesel. Waste and Biomass Valorization, 7(6), 1437–1445. https://doi.org/10.1007/s12649-016-9557-6
  • Tuna Yıldırım, S. (2019). Aromatik Amin İçeren Schiff Bazı Ligandının Sentezi, Karakterizasyonu ve Bazı Geçiş Metal Komplekslerinin İncelenmesi. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 12(3), 1329–1340. https://doi.org/10.18185/erzifbed.505339
  • Uguz, G. (2023). Inhibitory effect of thyme oil as an antioxidant for waste cooking oil biodiesel crystallization. https://doi.org/10.1177/0958305X211061346
  • Uğuz, G., Çakmak, A., Bento, C. da S., & Türköz Karakullukçu, N. (2023). Experimental investigation of fuel properties and engine operation with natural and synthetic antioxidants added to biodiesel. Biofuels, 14(4), 405–420. https://doi.org/10.1080/17597269.2022.2156049
  • Yakan, H. (2020). Preparation, structure elucidation, and antioxidant activity of new bis(thiosemicarbazone) derivatives. Turkish Journal of Chemistry, 44(4), 1085–1099. https://doi.org/10.3906/KIM-2002-76
  • Yakan, H., Cakmak, S., Kutuk, H., Yenigun, S., & Ozen, T. (2020). Synthesis, characterization, antioxidant, and antibacterial activities of new 2,3-dimethoxy and 3-acetoxy-2-methyl benzamides. Research on Chemical Intermediates, 46(5), 2767–2787. https://doi.org/10.1007/s11164-020-04118-7
  • Zabulica, A., Balan, M., Belei, D., Sava, M., Simionescu, B. C., & Marin, L. (2013). Novel luminescent phenothiazine-based Schiff bases with tuned morphology. Synthesis, structure, photophysical and thermotropic characterization. Dyes and Pigments, 96(3), 686–698. https://doi.org/10.1016/j.dyepig.2012.11.001
  • Zoubi, W. Al, Al-Hamdani, A. A. S., & Ko, Y. G. (2017). Schiff bases and their complexes: Recent progress in thermal analysis. Separation Science and Technology (Philadelphia), 52(6), 1052–1069. https://doi.org/10.1080/01496395.2016.1267756
Toplam 50 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Fiziksel Kimya (Diğer), Yenilenebilir Enerji Sistemleri, Kimyasal Reaksiyon
Bölüm Araştırma Makalesi
Yazarlar

Nalan Türköz Karakullukçu 0000-0001-7774-4970

Gönderilme Tarihi 14 Nisan 2025
Kabul Tarihi 28 Mayıs 2025
Yayımlanma Tarihi 15 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 15 Sayı: 4

Kaynak Göster

APA Türköz Karakullukçu, N. (2025). A Novel Methoxy-Substituted Schiff Base: Synthesis, Antioxidant Activity, and Thermal Performance in Biodiesel-Diesel Blends. Karadeniz Fen Bilimleri Dergisi, 15(4), 1558-1577. https://doi.org/10.31466/kfbd.1675935