Araştırma Makalesi
BibTex RIS Kaynak Göster

Sinop İlindeki Müzelere Gelen Ziyaretçi Sayısının Yapay Sinir Ağları İle Tahmini

Yıl 2019, , 70 - 81, 30.06.2019
https://doi.org/10.31466/kfbd.525986

Öz

Yapılan çalışmada, Sinop ili merkezinde bulunan
müzelere (Arkeoloji, Etnografya ve Tarihi Ceza Evi) gelen ziyaretçi sayılarının
Yapay Sinir Ağları modelleri kurularak tahmini yapılmıştır. Yapay Sinir Ağları
modelleri oluşturulmasında bilgisayar ortamında MATLAB yazılımı kullanılmıştır.
Kullanılan Yapay Sinir Ağları modelleri; ileri beslemeli ve geri yayılımlıdır.
Kullanılan Ağ yapıları, 19 girişli, bir çıkışlı, (Arkeoloji, Etnografya ve
Tarihi Ceza Evi müzeleri için ayrı olarak oluşturulmuştur. Giriş girdisi
olarak; 10 farklı meteorolojik faktör, zaman faktörü (ay, yıl), turizm geliri
(TL), döviz ($/TL), aylık-yıllık ÜFE ve TÜFE verileri kullanılmıştır. Çıkış
olarak ise aylara göre aylık günlük ziyaretçi ortalama sayısı kullanılmıştır.
Oluşturulan Yapay Sinir Ağları modelin eğitiminde ve testinde 2012 yılından
2017 yılına kadar toplam 60 aylık, ilde bulunan müzelere gelen ziyaretçi
sayıları ve bu tarihlere ait giriş verileri kullanılmıştır.  Yapay Sinir Ağları modellerinin seçilmesinde
3 farklı geri dağılımlı Eğitim Fonksiyonu, 3 farklı Transfer Fonksiyonu ve 8
farklı gizli katman hücre sayısı ile oluşturulan ağ yapılarının 50 şer kez
tekrarlanarak olasılıkları denenmiştir. Toplamda 32400 ağ oluşturulup
eğitilerek her bir müze için en iyi sonucu veren ağ yapısı seçilmiştir. Yapay
Sinir Ağları modelleri ile elde edilen tahmin sonuçları değerlendirilmiş ve
tartışılmıştır. Yapay Sinir Ağları ile Sinop ilinde bulunan müze için gelen
ziyaretçi sayılarının tahmininin gerçekleştirilebileceği görülmüştür

Kaynakça

  • Alcan, Ö., Alcan, Y., Demir, M., and Öztürk, Z., (2017, April). Sinop İli Turizm Talebinin Yapay Sinir Ağlari Yöntemiyle Tahmini. 1st International Congress on Vocational and Technical Sciences (UMTEB), (pp.889-910). Batumi – Georgia.
  • Andrawis, R. R., Atiya, A. F., and El-Shishiny, H.(,2011). Combination of long term and short term forecasts, with application to tourism demand forecasting. International Journal of Forecasting, 27(3), 870-886.
  • Ali, R., and Shabri, A.,2017. Modelling Singapore Tourist Arrivals to Malaysia by Using SVM and ANN. SCIREA Journal of Mathematics, 1(2), 210-216.
  • Aydın, A., Darıcı, B., and Tasçı, H.M., (2015). Economic Determinants of International Tourism Demand: An Empirical Application on Turkey, Erciyes University Journal of Faculty of Economics and Administrative Sciences 45, 143-177.
  • Burger, M. D., Kathrada, M. and Law, R. (2001). A Practitioners Guide to Time Series Methods for Tourism Demand Forecasting a Case Study of Durban, South Africa, Tourism Management, 22(4), 403-409.
  • Aladağ, H.Ç., (2010, May). Farklı Öğrenme Algoritmalarıyla Türkiye'ye Gelen Yabancı Turist Sayısının Tahmini.1 th Interdisciplinary Tourism Research Conference (pp.188-197).Nevsehir/Turkey.
  • Claveria, O., Monte, E. and Torra, S. (2013). Tourism demand forecasting with different neural networks models, IREA Working Papers: University of Barcelona, Research Institute of Applied Economics. 2013/21, 1-23.
  • Çuhadar, M. and Kayacan, C. (2005). Yapay Sinir Aglari Kullanilarak Konaklama İsletmelerinde Doluluk Orani Tahmini: Turkiye'deki Konaklama İsletmeleri Üzerinde Bir Deneme. Anatolia, 16(1), 24-30.
  • Claveria, O., and Torra, S., (2014). Forecasting tourism demand to Catalonia: Neural networks vs. time series models. Economic Modelling, 36, 220-228.
  • Cho, V., 2003. A comparison of three different approaches to tourist arrival forecasting. Tourism management, 24(3), 323-330.
  • Çuhadar, M., Güngör, İ., and Göksu, A., (2009). Forecasting Tourism Demand by Artificial Neural Networks and Time Series Methods: A Comparative Analysis in Inbound Tourism Demand to Antalya. Suleyman Demirel University the Journal of Faculty of Economics and Administrative Sciences, 14(1), 99-114.
  • Çuhadar, M. ,Cogurcu, İ. and Kukrer, C. (2014). Modelling and forecasting cruise tourism demand to İzmir by different artificial neural network architectures. International Journal of Business and Social Research, 4(3), 12-28.
  • Duman S., Alcan Y., and Demir M., (2017, August). Medium term load forecasting by using hybrid regression artificial neural network based on genetic algorithm. 4 rd International Multidisciplinary Congress of Eurasian (IMCOFE). Rome / Italy.
  • Elmas, Ç., (2010). Yapay Zekâ Uygulamaları. Ankara, Seçkin Yayıncılık.
  • Güngör, İ, and Çuhadar, M., (2005). Antalya İline Yönelik Alman Turist Talebinin Yapay Sinir Ağları Yöntemiyle Tahmini, Journal of Commerce & Tourism Education Faculty, (1), 84-99.
  • Karahan, M., (2015). A Case Study On Forecasting Of Tourism Demand with Artificial Neutral Network Method, SuleymanDemirel University the Journal of Faculty of Economics and Administrative Sciences, 20(2), 195-209.
  • Karasulu, B., (2015). Esnek Hesaplama. Melez Zeki Sistemleri için bir Rehber, Ankara, Nobel Yayın Dağıtım.
  • Pai, P. F., Hung, K. C., and Lin, K. P., (2014). Tourism demand forecasting using novel hybrid system. Expert Systems with applications, 41(8), 3691-3702.
  • Obtain Information. (2017). Sinop Provincial Directorate of Culture and Tourism
  • Soysal, M., and Ömürgönülşen, M., (2010). An Application on Demand Forecasting in the Turkish Tourism Industry. Anatolia: A Journal of Tourism Research, 21(1), 128-136.
  • Song, H., Wong, K. K., and Chon, K. K., (2003). Modelling and forecasting the demand for Hong Kong tourism. International Journal of Hospitality Management, 22(4), 435-451.
  • Teixeira, J. P., and Fernandes., P. O., (2014). Tourism time series forecast with artificial neural networks. Tékhne, 12(1), 26-36.
  • URL-1: www.worldweatheronline.com, (Erişim tarihi: 02.04.2017).

Prediction of the Numbers of Visitors at the Sinop Museums by Artificial Neural Networks

Yıl 2019, , 70 - 81, 30.06.2019
https://doi.org/10.31466/kfbd.525986

Öz

In this study, the numbers of  museums ‘visitors (Archaeology, Ethnography
and Historical Prison) at the city center of Sinop province have been predicted
by Artificial Neural Network structures. Artificial Neural Network models have
been created in MATLAB environment. These Artificial Neural Network models are
feed forward and trained by Backpropagation Algorithm. For each museum, a
Artificial Neural Network with 19-inputs and 1-output have been used
separately. As inputs of networks, 10 different meteorological factors, time
factor (month, year), tourism income (TL), exchange rate ($/TL) and
monthly-yearly PPI and CPI data have been used. Output of ANNs is the daily
average of number of visitors for each month. In order to train and test the
Artificial Neural Networks, the number of visitors of museum at city center for
total 60 months of years between 2012 and 2017, and other input data have been
used. The selection of proper Artificial Neural Networks structure have been
achieved by trying backpropagation training functions 50-times on 3-different
activation functions  structure with 8
different neuron counts at one hidden layer. Totally, 32400-network have been
created by training and the best network structure for each museum have been
selected. Estimation result obtained by the Artificial Neural Network models
have been evaluated and discussed. As a result of this work, it has been proved
that estimation of number of visitors visiting museums at Sinop province can be
done by using ANN structures.

Kaynakça

  • Alcan, Ö., Alcan, Y., Demir, M., and Öztürk, Z., (2017, April). Sinop İli Turizm Talebinin Yapay Sinir Ağlari Yöntemiyle Tahmini. 1st International Congress on Vocational and Technical Sciences (UMTEB), (pp.889-910). Batumi – Georgia.
  • Andrawis, R. R., Atiya, A. F., and El-Shishiny, H.(,2011). Combination of long term and short term forecasts, with application to tourism demand forecasting. International Journal of Forecasting, 27(3), 870-886.
  • Ali, R., and Shabri, A.,2017. Modelling Singapore Tourist Arrivals to Malaysia by Using SVM and ANN. SCIREA Journal of Mathematics, 1(2), 210-216.
  • Aydın, A., Darıcı, B., and Tasçı, H.M., (2015). Economic Determinants of International Tourism Demand: An Empirical Application on Turkey, Erciyes University Journal of Faculty of Economics and Administrative Sciences 45, 143-177.
  • Burger, M. D., Kathrada, M. and Law, R. (2001). A Practitioners Guide to Time Series Methods for Tourism Demand Forecasting a Case Study of Durban, South Africa, Tourism Management, 22(4), 403-409.
  • Aladağ, H.Ç., (2010, May). Farklı Öğrenme Algoritmalarıyla Türkiye'ye Gelen Yabancı Turist Sayısının Tahmini.1 th Interdisciplinary Tourism Research Conference (pp.188-197).Nevsehir/Turkey.
  • Claveria, O., Monte, E. and Torra, S. (2013). Tourism demand forecasting with different neural networks models, IREA Working Papers: University of Barcelona, Research Institute of Applied Economics. 2013/21, 1-23.
  • Çuhadar, M. and Kayacan, C. (2005). Yapay Sinir Aglari Kullanilarak Konaklama İsletmelerinde Doluluk Orani Tahmini: Turkiye'deki Konaklama İsletmeleri Üzerinde Bir Deneme. Anatolia, 16(1), 24-30.
  • Claveria, O., and Torra, S., (2014). Forecasting tourism demand to Catalonia: Neural networks vs. time series models. Economic Modelling, 36, 220-228.
  • Cho, V., 2003. A comparison of three different approaches to tourist arrival forecasting. Tourism management, 24(3), 323-330.
  • Çuhadar, M., Güngör, İ., and Göksu, A., (2009). Forecasting Tourism Demand by Artificial Neural Networks and Time Series Methods: A Comparative Analysis in Inbound Tourism Demand to Antalya. Suleyman Demirel University the Journal of Faculty of Economics and Administrative Sciences, 14(1), 99-114.
  • Çuhadar, M. ,Cogurcu, İ. and Kukrer, C. (2014). Modelling and forecasting cruise tourism demand to İzmir by different artificial neural network architectures. International Journal of Business and Social Research, 4(3), 12-28.
  • Duman S., Alcan Y., and Demir M., (2017, August). Medium term load forecasting by using hybrid regression artificial neural network based on genetic algorithm. 4 rd International Multidisciplinary Congress of Eurasian (IMCOFE). Rome / Italy.
  • Elmas, Ç., (2010). Yapay Zekâ Uygulamaları. Ankara, Seçkin Yayıncılık.
  • Güngör, İ, and Çuhadar, M., (2005). Antalya İline Yönelik Alman Turist Talebinin Yapay Sinir Ağları Yöntemiyle Tahmini, Journal of Commerce & Tourism Education Faculty, (1), 84-99.
  • Karahan, M., (2015). A Case Study On Forecasting Of Tourism Demand with Artificial Neutral Network Method, SuleymanDemirel University the Journal of Faculty of Economics and Administrative Sciences, 20(2), 195-209.
  • Karasulu, B., (2015). Esnek Hesaplama. Melez Zeki Sistemleri için bir Rehber, Ankara, Nobel Yayın Dağıtım.
  • Pai, P. F., Hung, K. C., and Lin, K. P., (2014). Tourism demand forecasting using novel hybrid system. Expert Systems with applications, 41(8), 3691-3702.
  • Obtain Information. (2017). Sinop Provincial Directorate of Culture and Tourism
  • Soysal, M., and Ömürgönülşen, M., (2010). An Application on Demand Forecasting in the Turkish Tourism Industry. Anatolia: A Journal of Tourism Research, 21(1), 128-136.
  • Song, H., Wong, K. K., and Chon, K. K., (2003). Modelling and forecasting the demand for Hong Kong tourism. International Journal of Hospitality Management, 22(4), 435-451.
  • Teixeira, J. P., and Fernandes., P. O., (2014). Tourism time series forecast with artificial neural networks. Tékhne, 12(1), 26-36.
  • URL-1: www.worldweatheronline.com, (Erişim tarihi: 02.04.2017).
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Özlem Alcan Bu kişi benim

Memnun Demir 0000-0002-4228-9637

Yalçın Alcan 0000-0002-3370-574X

Yayımlanma Tarihi 30 Haziran 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Alcan, Ö., Demir, M., & Alcan, Y. (2019). Prediction of the Numbers of Visitors at the Sinop Museums by Artificial Neural Networks. Karadeniz Fen Bilimleri Dergisi, 9(1), 70-81. https://doi.org/10.31466/kfbd.525986