Bu çalışmada, CuInSe (CIS) ince filmleri cam/ITO alttabakalar üzerine elektro-kimyasal kaplama yöntemi ile oluşturulmuştur. Cam/ITO/CIS filmlerinin yüzey morfolojilerinin ve optiksel özelliklerinin incelenebilmesi için AFM ve UV-VIS analizleri yapılmıştır. Analiz işlemleri bittikten sonra cam/ITO/CIS yapılarının üzerine termal buharlaştırma yöntemi ile rubrene (C42H28) ince filmleri oda sıcaklığında ve 2,5x10-6 torr basınç altında kaplanmıştır. Elde edilen cam/ITO/CIS/rubrene heteroeklemlerinin yüzey morfolojilerinin ve optiksel özelliklerinin incelenmesi için AFM ve UV-VIS analizleri tekrar yapılmıştır. AFM analizleri sonucunda cam/ITO/CIS ve cam/ITO/CIS/rubrene yapılarının yüzey pürüzlülük değerleri sırasıyla; 231,6 nm ve 182,82 nm olarak belirlenmiştir. UV-VIS analizlerinde cam/ITO/CIS, ve cam/ITO/CIS/rubrene yapılarının yasak enerji aralıkları sırasıyla; 1,42 eV ve 2,07eV olarak belirlenmiştir.
Hem deneysel süreçte kullanmış olduğumuz elektrokimyasal empedans spektroskopisi sistemi ve termal buharlaştırma ince film kaplama sistemi hem de analiz sürecinde kullanmış olduğumuz AFM ve UV-VIS cihazlarını bünyesinde bulunduran ve kullanımımıza sunan GÜRÜMLAB kurumuna teşekkür ederim.
Kaynakça
A.E.-H.B. Kashyout, E.-Z. A., T. Meaz, M. Nabil , M. Amer. (2014). (One-step) electrochemical deposition and characterization of CuInSe2 thin films. Alexandria Engineering Journal, 53, 731-736.
Baris, B., Yuksel, O. F., Tugluoglu, N., & Karadeniz, S. (2013). Double barrier heights in 5,6,11,12-tetraphenylnaphthacene (rubrene) based organic Schottky diode. Synthetic Metals, 180, 38-42. doi:10.1016/j.synthmet.2013.07.029.
Barış, B. (2013). Frequency dependent capacitance and conductance properties of Schottky diode based on rubrene organic semiconductor. Physica B: Condensed Matter, 426, 132-136. doi:https://doi.org/10.1016/j.physb.2013.06.016.
Barış, B., Özdemir, H. G., Tuğluoğlu, N., Karadeniz, S., Yüksel, Ö. F., & Kişnişci, Z. (2014). Optical dispersion and dielectric properties of rubrene organic semiconductor thin film. Journal of Materials Science: Materials in Electronics, 25(8), 3586-3593. doi:10.1007/s10854-014-2060-6.
Bari, R.H., L. A. P., Patil, P.P., (2006). Studies on chemically deposited nonstoichiometric thin films of CuInSe2–a highly promising material for photosensors. Sensors & Transducers Journal, 69(7).
Bergantin, S. (2014). Organic semiconductor rubrene: crystal chemistry of derivatives and high-pressure polymorphism. (Doctorate). UNIVERSITÁ DEGLI STUDI DI MILANO-BICOCCA.
C. Sanjeevıraja, & Mahalıngam, T. (1992). Structural and optical properties of electrodeposited indium selenide thin films. Journal of Material Science Letters, 11, 525-526.
Candan, İ., & Güllü, H. H. (20019). Comparative Study on The Properties of CuInSe2 and CuGaSe2 Thin Films. European Journal of Science and Technology, 15, 77-85.
Chan, M. Y., S. L. L., Fung, M. K., Leea, C. S., and Lee, S. T., (2007). Doping-induced efficiency enhancement in organic photovoltaic devices. Applied Physics Letters, 90, 023504–023506.
Chen, L., Deng, J. X., Kong, L., Cui, M., Chen, R. G., & Zhang, Z. J. (2015). Optical properties of rubrene thin film prepared by thermal evaporation. Chinese Physics B, 24(4). doi:10.1088/1674-1056/24/4/04780
Frontini, M. A., & Vazquez, M. (2010). Electrodeposition of CuInSe2 in citrate-containing electrolytes. Journal of Materials Science, 45(11), 2995-3000. doi:10.1007/s10853-010-4300-3
Fumagalli, E. M. (2012). Growth and physical properties of crystalline rubrene. (doctorate). Università degli Studi di Milano-Bicocca.
Fusella, M. A., Schreiber, F., Abbasi, K., Kim, J. J., Briseno, A. L., & Rand, B. P. Homoepitaxy of Crystalline Rubrene Thin Films Retrieved from.
Kim, K., Kim, M. K., Kang, H. S., Cho, M. Y., Joo, J., Kim, J. H., . . . Choi, D. H. (2007). New growth method of rubrene single crystal for organic field-effect transistor. Synthetic Metals, 157(10-12), 481-484. doi:10.1016/j.synthmet.2007.05.013.
Liu, F. Y., Lu, Y., Zhang, Z. A., Lai, Y. Q., Li, J., & Liu, Y. X. (2008). Pulse-plating electrodeposition and annealing treatment of CuInSe2 films. Transactions of Nonferrous Metals Society of China, 18(4), 884-889. doi:10.1016/s1003-6326(08)60153-3
Liu, F. Y., Zhang, Z. A., Lai, Y. Q., Li, J., & Liu, Y. X. (2009). Composition and Morphology of Electrodeposited CuInSe2 Precursor Films. Journal of Materials Science & Technology, 25(2), 242-246. Retrieved from <Go to ISI>://WOS:000264990700021
Kaleli, M., C. A. Y., Koç, M., Akyürekli, S., Bayram, A., B., (2017). Termal Buharlaştırma Yöntemiyle Hazırlanan Ga Katkılı CuInSe2 İnce Filmlerin Yapısal Özelliklerinin İncelenmesi. Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi, 12, 19-32.
Nitta, J., Miwa, K., Komiya, N., Annese, E., Fujii, J., Ono, S., & Sakamoto, K. (2019). The actual electronic band structure of a rubrene single crystal. Sci Rep, 9(1), 9645. doi:10.1038/s41598-019-46080-4
Ohrıng, M. (1992). The Materials Science of Thin Films. Boston: Academic Press.
Özdemir, H. G. (2013). Spin Kaplama Yöntemiyle Rubrene İnce Filmlerinin Hazırlanması Ve Optiksel Özelliklerinin İncelenmesi. (Yüksek Lisans). Giresun Üniversitesi.
Rozeveld, S., Reinhardt, C., Bykov, E., & Wall, A. (2018). Measurement of Grain Boundary Properties in Cu(ln,Ga)Se2 Thin Films. Microscopy Today, 26(3), 32-39. doi:10.1017/s1551929518000457
Saliha ILICAN, Y. Ç., Müjdat ÇAGLAR. (2005). CdZnS ve Zn O YARIİLETKEN FiLMLERİNİN YASAK ENERJİ ARALIKLARI SAÜ Fen Bilimleri Enstitüsü Dergisi 9.
Sene, C., Ndiaye, B., Dieng, M., Mbow, B., & Cong, H. N. (2009). CuIn (Se, S)(2) based photovoltaic cells from one-step electrodeposition. International Journal of the Physical Sciences, 4(10), 562-570. Retrieved from <Go to ISI>://WOS:000270305900004
Tae Hun, K., Hyuck In, Kwon Jong Duk, Lee Byung-Gook Park. (2001). Thickness measurements of ultra-thin films using AFM. Paper presented at the Digest of Papers. Microprocesses and Nanotechnology 2001. 2001 International Microprocesses and Nanotechnology Conference (IEEE Cat. No.01EX468), japan.
Uchida, M., Adachi, C., Koyama, T., & Taniguchi, Y. (1999). Charge carrier trapping effect by luminescent dopant molecules in single-layer organic light emitting diodes. Journal of Applied Physics, 86(3), 1680-1687. doi:10.1063/1.370947
Ünal, F. (2013). InSe İnce Filmlerinin Farklı Alt Tabanlar Üzerinde Büyütülmesi Ve Optik, Yapısal, Fotoelektirik Özelliklerinin Araştırılması. (Yüksek Lisans). Kafkas Üniversitesi, Kars.
Yang, J., Jin, Z., Li, C., Wang, W., & Chai, Y. (2009). Electrodeposition of CuInSe2 films by an alternating double-potentiostatic method using nearly neutral electrolytes. Electrochemistry Communications, 11(3), 711-714. doi:10.1016/j.elecom.2008.12.062.
Investigation of Surface and Optical Properties of Glass/ITO/CIS/Rubrene Heterojunction
In this work, CuInSe (CIS) thin films were deposited on glass/ITO by electro-deposition technique. The surface microstructure, surface roughness and the band gap were analyzed using AFM and UV-VIS techniques for all glass/ITO/CIS structures. After these analyzing processes were completed, rubrene (C42H28) thin film was coated on glass/ITO/CIS structures by using thermal evaporation method under 2,5x10-6 torr at room temperature. Then, the analyzing processes of surface microstructure, surface roughness and the band gap were repeated. As a result of AFM analysis, surface roughness values of glass/ITO/CIS and glass/ITO/CIS/rubrene were found to be 231,6 nm and 182,82 nm, respectively. As a result of UV-VIS analysis, the band gap values of glass/ITO/CIS and glass/ITO/CIS/rubrene structures were determined as 1,42 eV and 2,07eV, respectively.
A.E.-H.B. Kashyout, E.-Z. A., T. Meaz, M. Nabil , M. Amer. (2014). (One-step) electrochemical deposition and characterization of CuInSe2 thin films. Alexandria Engineering Journal, 53, 731-736.
Baris, B., Yuksel, O. F., Tugluoglu, N., & Karadeniz, S. (2013). Double barrier heights in 5,6,11,12-tetraphenylnaphthacene (rubrene) based organic Schottky diode. Synthetic Metals, 180, 38-42. doi:10.1016/j.synthmet.2013.07.029.
Barış, B. (2013). Frequency dependent capacitance and conductance properties of Schottky diode based on rubrene organic semiconductor. Physica B: Condensed Matter, 426, 132-136. doi:https://doi.org/10.1016/j.physb.2013.06.016.
Barış, B., Özdemir, H. G., Tuğluoğlu, N., Karadeniz, S., Yüksel, Ö. F., & Kişnişci, Z. (2014). Optical dispersion and dielectric properties of rubrene organic semiconductor thin film. Journal of Materials Science: Materials in Electronics, 25(8), 3586-3593. doi:10.1007/s10854-014-2060-6.
Bari, R.H., L. A. P., Patil, P.P., (2006). Studies on chemically deposited nonstoichiometric thin films of CuInSe2–a highly promising material for photosensors. Sensors & Transducers Journal, 69(7).
Bergantin, S. (2014). Organic semiconductor rubrene: crystal chemistry of derivatives and high-pressure polymorphism. (Doctorate). UNIVERSITÁ DEGLI STUDI DI MILANO-BICOCCA.
C. Sanjeevıraja, & Mahalıngam, T. (1992). Structural and optical properties of electrodeposited indium selenide thin films. Journal of Material Science Letters, 11, 525-526.
Candan, İ., & Güllü, H. H. (20019). Comparative Study on The Properties of CuInSe2 and CuGaSe2 Thin Films. European Journal of Science and Technology, 15, 77-85.
Chan, M. Y., S. L. L., Fung, M. K., Leea, C. S., and Lee, S. T., (2007). Doping-induced efficiency enhancement in organic photovoltaic devices. Applied Physics Letters, 90, 023504–023506.
Chen, L., Deng, J. X., Kong, L., Cui, M., Chen, R. G., & Zhang, Z. J. (2015). Optical properties of rubrene thin film prepared by thermal evaporation. Chinese Physics B, 24(4). doi:10.1088/1674-1056/24/4/04780
Frontini, M. A., & Vazquez, M. (2010). Electrodeposition of CuInSe2 in citrate-containing electrolytes. Journal of Materials Science, 45(11), 2995-3000. doi:10.1007/s10853-010-4300-3
Fumagalli, E. M. (2012). Growth and physical properties of crystalline rubrene. (doctorate). Università degli Studi di Milano-Bicocca.
Fusella, M. A., Schreiber, F., Abbasi, K., Kim, J. J., Briseno, A. L., & Rand, B. P. Homoepitaxy of Crystalline Rubrene Thin Films Retrieved from.
Kim, K., Kim, M. K., Kang, H. S., Cho, M. Y., Joo, J., Kim, J. H., . . . Choi, D. H. (2007). New growth method of rubrene single crystal for organic field-effect transistor. Synthetic Metals, 157(10-12), 481-484. doi:10.1016/j.synthmet.2007.05.013.
Liu, F. Y., Lu, Y., Zhang, Z. A., Lai, Y. Q., Li, J., & Liu, Y. X. (2008). Pulse-plating electrodeposition and annealing treatment of CuInSe2 films. Transactions of Nonferrous Metals Society of China, 18(4), 884-889. doi:10.1016/s1003-6326(08)60153-3
Liu, F. Y., Zhang, Z. A., Lai, Y. Q., Li, J., & Liu, Y. X. (2009). Composition and Morphology of Electrodeposited CuInSe2 Precursor Films. Journal of Materials Science & Technology, 25(2), 242-246. Retrieved from <Go to ISI>://WOS:000264990700021
Kaleli, M., C. A. Y., Koç, M., Akyürekli, S., Bayram, A., B., (2017). Termal Buharlaştırma Yöntemiyle Hazırlanan Ga Katkılı CuInSe2 İnce Filmlerin Yapısal Özelliklerinin İncelenmesi. Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi, 12, 19-32.
Nitta, J., Miwa, K., Komiya, N., Annese, E., Fujii, J., Ono, S., & Sakamoto, K. (2019). The actual electronic band structure of a rubrene single crystal. Sci Rep, 9(1), 9645. doi:10.1038/s41598-019-46080-4
Ohrıng, M. (1992). The Materials Science of Thin Films. Boston: Academic Press.
Özdemir, H. G. (2013). Spin Kaplama Yöntemiyle Rubrene İnce Filmlerinin Hazırlanması Ve Optiksel Özelliklerinin İncelenmesi. (Yüksek Lisans). Giresun Üniversitesi.
Rozeveld, S., Reinhardt, C., Bykov, E., & Wall, A. (2018). Measurement of Grain Boundary Properties in Cu(ln,Ga)Se2 Thin Films. Microscopy Today, 26(3), 32-39. doi:10.1017/s1551929518000457
Saliha ILICAN, Y. Ç., Müjdat ÇAGLAR. (2005). CdZnS ve Zn O YARIİLETKEN FiLMLERİNİN YASAK ENERJİ ARALIKLARI SAÜ Fen Bilimleri Enstitüsü Dergisi 9.
Sene, C., Ndiaye, B., Dieng, M., Mbow, B., & Cong, H. N. (2009). CuIn (Se, S)(2) based photovoltaic cells from one-step electrodeposition. International Journal of the Physical Sciences, 4(10), 562-570. Retrieved from <Go to ISI>://WOS:000270305900004
Tae Hun, K., Hyuck In, Kwon Jong Duk, Lee Byung-Gook Park. (2001). Thickness measurements of ultra-thin films using AFM. Paper presented at the Digest of Papers. Microprocesses and Nanotechnology 2001. 2001 International Microprocesses and Nanotechnology Conference (IEEE Cat. No.01EX468), japan.
Uchida, M., Adachi, C., Koyama, T., & Taniguchi, Y. (1999). Charge carrier trapping effect by luminescent dopant molecules in single-layer organic light emitting diodes. Journal of Applied Physics, 86(3), 1680-1687. doi:10.1063/1.370947
Ünal, F. (2013). InSe İnce Filmlerinin Farklı Alt Tabanlar Üzerinde Büyütülmesi Ve Optik, Yapısal, Fotoelektirik Özelliklerinin Araştırılması. (Yüksek Lisans). Kafkas Üniversitesi, Kars.
Yang, J., Jin, Z., Li, C., Wang, W., & Chai, Y. (2009). Electrodeposition of CuInSe2 films by an alternating double-potentiostatic method using nearly neutral electrolytes. Electrochemistry Communications, 11(3), 711-714. doi:10.1016/j.elecom.2008.12.062.