Araştırma Makalesi
BibTex RIS Kaynak Göster

DFT Analysis on Structural, Spectroscopic and Electronic Properties of n-Tolylurea (n = o, m, p)

Yıl 2020, , 479 - 492, 15.12.2020
https://doi.org/10.31466/kfbd.820541

Öz

Spectroscopic and electronic properties of the n-tolylurea (n= o, m and p) molecules have been characterized by using vibrational (FT-IR and Raman), 1H and 13C NMR and UV-Vis. spectroscopies. Theoretical geometry parameters (bond lengths and angles), vibrational wavenumbers, NMR chemical shifts, frontier orbital energies and UV-Vis. parameters (wavelengths, excitation energies, oscillator strength) have been calculated using DFT/B3LYP quantum chemical method with 6-311++G(d,p) basis set to compare with the experimental results obtained from the literature. Assignments of the vibrational wavenumbers have been performed by Potential Energy Distribution analyses by using VEDA 4 software. The highest occupied molecular orbital and the lowest unoccupied molecular orbital analyses, UV-Vis. electronic absorption parameters and Molecular Electrostatic Potential surface of molecules have been studied to explain electronic transitions, intramolecular charge transfer and interaction sites in the molecule. Electrophilic and nucleophilic regions have been appeared on the oxygen and amine hydrogens in the urea group. The difference between experimental and calculated torsion angles of the N-aryl bond showed the existence of intermolecular and intramolecular interactions.

Kaynakça

  • A.D. Becke, (1993). Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys., 98, 5648-5652.
  • AIST, (2017). National Institute of Advanced Industrial Science and Technology Spectral Database for Organic Compounds, SDBS.http://sdbs.db.aist.go.jp/sdbs/cgibin/cre_index.cgi, (Erişim Tarihi: 15 Ekim 2020).
  • Azarifar, D., & Golbaghi, M. (2016). Selective and facile oxidative desulfurization of thioureas and thiobarbituric acids with singlet molecular oxygen generated from trans-3, 5-dihydroperoxy-3, 5-dimethyl-1, 2-dioxolane. Journal of Sulfur Chemistry, 37(1), 1-13.
  • Bellamy, L.J., (1975). The Infrared Spectra of Complex Molecules, 3rd ed., John Wiley & Sons, New York.
  • Brown, J. R., North, E. J., Hurdle, J. G., Morisseau, C., Scarborough, J. S., Sun, D., ... & Crew, R. M. (2011). The structure–activity relationship of urea derivatives as anti-tuberculosis agents. Bioorganic & medicinal chemistry, 19(18), 5585-5595.
  • Ciajolo, M. R., Lelj, F., Tancredi, T., Temussi, P. A., & Tuzi, A. (1982a). Structure analysis of two conformationally flexible sapidants, o-and p-tolylurea. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 38(11), 2928-2930.
  • Ciajolo, M. R., Lelj, F., Tancredi, T., Temussi, P. A., & Tuzi, A. (1982b). Crystal Structure Analysis of meta-Tolylurea, A Flexible Bitter Compound. Gazzetta Chimica Italiana, 112, 429-431.
  • Ciajolo, M. R., Lelj, F., Tancredi, T., Temussi, P. A., & Tuzi, A. (1983). Interaction of conformationally flexible agonists with the active site of sweet taste. A study of arylureas. Journal of medicinal chemistry, 26(7), 1060-1065.
  • Colthup, N.B., Daly, L.H., Wiberley, E., (1964). .Introduction to Infrared and Raman Spectroscopy, Academic Press, New York.
  • Dennington, R., Keith, T., Millam, J., (2009). GaussView, Version 5, Semichem Inc., Shawnee Mission KS.
  • DeVries, V. G., Bloom, J. D., Dutia, M. D., Katocs Jr, A. S., & Largis, E. E. (1989). Potential antiatherosclerotic agents. 6. Hypocholesterolemic trisubstituted urea analogs. Journal of medicinal chemistry, 32(10), 2318-2325.
  • Ditchfield, R. (1974). Self-consistent perturbation theory of diamagnetism, Mol. Phys., 27, 789-807.
  • Frisch, M. J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., et al., (2009). Gaussian 09, Revision C.01, Gaussian, Inc., Wallingford CT.
  • Fukui, K., (1982). Role of frontier orbitals in chemical reactions, Science, 218, 747-754.
  • Getman, D. P., DeCrescenzo, G. A., Heintz, R. M., Reed, K. L., Talley, J. J., Bryant, M. L., ... & Marr, J. J. (1993). Discovery of a novel class of potent HIV-1 protease inhibitors containing the (R)-(hydroxyethyl) urea isostere. Journal of medicinal chemistry, 36(2), 288-291.
  • Giffney, C. J., & O'Connor, C. J. (1975). Substituent effects on the NMR spectra of substituted acetanilides and phenylureas. Journal of Magnetic Resonance, 18(2), 230-234.
  • Jamroz, M. H. (2004). Vibrational energy distribution analysis VEDA 4, Warsaw Poland.
  • Kashino, S., & Haisa, M. (1977). The crystal and molecular structure of phenylurea. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 33(3), 855-860.
  • Kim, I. H., Morisseau, C., Watanabe, T., & Hammock, B. D. (2004). Design, synthesis, and biological activity of 1, 3-disubstituted ureas as potent inhibitors of the soluble epoxide hydrolase of increased water solubility. Journal of medicinal chemistry, 47(8), 2110-2122.
  • Kim, I. H., Tsai, H. J., Nishi, K., Kasagami, T., Morisseau, C., & Hammock, B. D. (2007). 1, 3-Disubstituted ureas functionalized with ether groups are potent inhibitors of the soluble epoxide hydrolase with improved pharmacokinetic properties. Journal of medicinal chemistry, 50(21), 5217-5226.
  • Kocyigit-Kaymakcioglu, B., Celen, A. O., Tabanca, N., Ali, A., Khan, S. I., Khan, I. A., & Wedge, D. E. (2013). Synthesis and biological activity of substituted urea and thiourea derivatives containing 1, 2, 4-triazole moieties. Molecules, 18(3), 3562-3576.
  • Kojima, H., Numata, T., Tadaki, R., & Omokawa, H. (2010). PCR-based suppression subtractive hybridization analyses of enantioselective gene expression in root tips of wheat treated with optically active urea compounds. Pesticide biochemistry and physiology, 98(3), 359-369.
  • Krähmer, H., Auler, T., Rosinger, C., Hagemeister, H., & Drexler, D. (2003). U.S. Patent No. 6,569,805. Washington, DC: U.S. Patent and Trademark Office.
  • Lawrence, N., Balasubramaniyan, V., Bhagwat, A. M., & Bhoir, S. I. (2012). Syntheses And Pharmacological Screening Of Bisarylureas, Rasayan Journal Of Chemistry, 5(1), 51-56.
  • Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical review B, 37(2), 785.
  • London, F. (1937). Théorie quantique des courants interatomiques dans les combinaisons aromatiques, J. Phys. Radium, 8, 397-409.
  • O’boyle, N.M., Tenderholt, A.L., Langner, K.M. (2008), cclib: A library for package-independent computational chemistry algorithms, J. Comput. Chem., 29, 839-845.
  • Öztürk, N., Özdemir, T., Alpaslan, Y. B., Gokce, H., & Alpaslan, G. (2018). Experimental (FT-IR, Raman and NMR) and theoretical (B3LYP, B3PW91, M06-2X and CAM-B3LYP) analyses of p-tert-butylphenyl salicylate. Bilge International Journal of Science and Technology Research, 2(1), 56-73.
  • Öztürk, N., & Gökce, H. (2019). FT-IR, Raman, NMR, and DFT, TD-DFT/B3LYP Investigations of 1-(Benzyloxy) Urea. Journal of Applied Spectroscopy, 86(1), 138-146.
  • Öztürk, N. (2019). Crystal structure, spectroscopic and electronic features of 6-(Chloromethyl) uracil. Journal of Molecular Structure, 1193, 468-476.
  • Patil, M., Poyil, A. N., Joshi, S. D., Patil, S. A., Patil, S. A., & Bugarin, A. (2019). Synthesis, molecular docking studies, and antimicrobial evaluation of new structurally diverse ureas. Bioorganic chemistry, 87, 302-311.
  • Pavia, D.L., Lampman, G.M., Kriz, G.S., Vyvyan, J.R., (2009). Introduction to Spectroscopy, Brooks/Cole Cengage Learning, USA.
  • Runge, E., Gross, E.K.U., (1984). Density-Functional Theory for Time-Dependent Systems, Phys. Rev. Lett., 52, 997-1000.
  • Sergeev, A. G., Artamkina, G. A., & Beletskaya, I. P. (2003). Variation of xantphos-based ligands in the palladium-catalyzed reaction of aryl halides with ureas. Russian journal of organic chemistry, 39(12), 1741-1752.
  • Shweta, V., Riaz, H., & Neha, K. (2013). Synthesis of phenyl urea derivatives and their evaluation as antihyperglycaemic agents. Indo. Global. J. Pharm. Sci, 3, 33-39.
  • Silverstein, R.M., Webster, F.X., Kiemle, D.J., (2005). Spectroscopic Identification of Organic Compound, 7th ed., John Wiley & Sons, USA.
  • Stuart, B.H., (2004). Infrared spectroscopy: Fundamentals and Applications, JohnWilley & Sons, England.
  • Umadevi, P., Deepti, K., Srinath, I., Vijayalakshmi, G., & Tarakaramji, M. (2012). Synthesis and in-vitro antibacterial activity of some new urea, thiourea and thiosemicarbazide derivatives. Int J Pharm Pharm Sci. 2012; 4: 379-383.
  • Wolinski K., Hinton, J.F., Pulay, P., (1990). Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations, J. Am. Chem. Soc., 112, 8251-8260.
  • Yavuz, S., & Yıldırım, H. (2013). Ferrocene derivatives carrying urea, thiourea, and sulfonamide moieties: synthesis and evaluation of antibacterial and antifungal activities. Journal of Chemistry, 2013.

n-Tolilürenin (n= o, m, p) Yapısal, Spektroskopik ve Elektronik Özellikleri Üzerine DFT Analizleri

Yıl 2020, , 479 - 492, 15.12.2020
https://doi.org/10.31466/kfbd.820541

Öz

n-tolilüre (n = o, m ve p) moleküllerinin spektroskopik ve elektronik özellikleri titreşim (FT-IR ve Raman), 1H ve 13C NMR ve UV-Vis. spektroskopileri kullanılarak karakterize edilmiştir. Teorik geometri parametreleri (bağ uzunlukları ve açıları), titreşim dalgasayıları, NMR kimyasal kaymaları, sınır orbital enerjileri ve UV-Vis. parametreleri (dalgaboyları, uyarılma enerjileri, osilatör şiddeti), literatürden elde edilen deneysel sonuçlarla karşılaştırmak için DFT/B3LYP kuantum kimyasal yöntemi kullanılarak 6-311++G(d,p) baz setiyle hesaplanmıştır. VEDA 4 yazılımı kullanılarak Potansiyel Enerji Dağılımı analizi ile titreşim dalgasayılarının atamaları yapılmıştır. En yüksek işgal edilen moleküler orbital ve en düşük boş moleküler orbital analizleri, UV-Vis. elektronik absorpsiyon parametreleri ve Moleküllerin Moleküler Elektrostatik Potansiyel yüzeyi, elektronik geçişleri, molekül içi yük transferini ve moleküldeki etkileşim bölgelerini açıklamak için incelenmiştir. Elektrofilik ve nükleofilik bölgeler üre grubundaki oksijen atomu ve amin hidrojenleri üzerinde görülmüştür. N-aril bağlarının deneysel ve hesaplanmış burulma açıları arasındaki fark, moleküller arası ve molekül içi etkileşimlerin varlığını göstermiştir.

Kaynakça

  • A.D. Becke, (1993). Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys., 98, 5648-5652.
  • AIST, (2017). National Institute of Advanced Industrial Science and Technology Spectral Database for Organic Compounds, SDBS.http://sdbs.db.aist.go.jp/sdbs/cgibin/cre_index.cgi, (Erişim Tarihi: 15 Ekim 2020).
  • Azarifar, D., & Golbaghi, M. (2016). Selective and facile oxidative desulfurization of thioureas and thiobarbituric acids with singlet molecular oxygen generated from trans-3, 5-dihydroperoxy-3, 5-dimethyl-1, 2-dioxolane. Journal of Sulfur Chemistry, 37(1), 1-13.
  • Bellamy, L.J., (1975). The Infrared Spectra of Complex Molecules, 3rd ed., John Wiley & Sons, New York.
  • Brown, J. R., North, E. J., Hurdle, J. G., Morisseau, C., Scarborough, J. S., Sun, D., ... & Crew, R. M. (2011). The structure–activity relationship of urea derivatives as anti-tuberculosis agents. Bioorganic & medicinal chemistry, 19(18), 5585-5595.
  • Ciajolo, M. R., Lelj, F., Tancredi, T., Temussi, P. A., & Tuzi, A. (1982a). Structure analysis of two conformationally flexible sapidants, o-and p-tolylurea. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 38(11), 2928-2930.
  • Ciajolo, M. R., Lelj, F., Tancredi, T., Temussi, P. A., & Tuzi, A. (1982b). Crystal Structure Analysis of meta-Tolylurea, A Flexible Bitter Compound. Gazzetta Chimica Italiana, 112, 429-431.
  • Ciajolo, M. R., Lelj, F., Tancredi, T., Temussi, P. A., & Tuzi, A. (1983). Interaction of conformationally flexible agonists with the active site of sweet taste. A study of arylureas. Journal of medicinal chemistry, 26(7), 1060-1065.
  • Colthup, N.B., Daly, L.H., Wiberley, E., (1964). .Introduction to Infrared and Raman Spectroscopy, Academic Press, New York.
  • Dennington, R., Keith, T., Millam, J., (2009). GaussView, Version 5, Semichem Inc., Shawnee Mission KS.
  • DeVries, V. G., Bloom, J. D., Dutia, M. D., Katocs Jr, A. S., & Largis, E. E. (1989). Potential antiatherosclerotic agents. 6. Hypocholesterolemic trisubstituted urea analogs. Journal of medicinal chemistry, 32(10), 2318-2325.
  • Ditchfield, R. (1974). Self-consistent perturbation theory of diamagnetism, Mol. Phys., 27, 789-807.
  • Frisch, M. J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., et al., (2009). Gaussian 09, Revision C.01, Gaussian, Inc., Wallingford CT.
  • Fukui, K., (1982). Role of frontier orbitals in chemical reactions, Science, 218, 747-754.
  • Getman, D. P., DeCrescenzo, G. A., Heintz, R. M., Reed, K. L., Talley, J. J., Bryant, M. L., ... & Marr, J. J. (1993). Discovery of a novel class of potent HIV-1 protease inhibitors containing the (R)-(hydroxyethyl) urea isostere. Journal of medicinal chemistry, 36(2), 288-291.
  • Giffney, C. J., & O'Connor, C. J. (1975). Substituent effects on the NMR spectra of substituted acetanilides and phenylureas. Journal of Magnetic Resonance, 18(2), 230-234.
  • Jamroz, M. H. (2004). Vibrational energy distribution analysis VEDA 4, Warsaw Poland.
  • Kashino, S., & Haisa, M. (1977). The crystal and molecular structure of phenylurea. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 33(3), 855-860.
  • Kim, I. H., Morisseau, C., Watanabe, T., & Hammock, B. D. (2004). Design, synthesis, and biological activity of 1, 3-disubstituted ureas as potent inhibitors of the soluble epoxide hydrolase of increased water solubility. Journal of medicinal chemistry, 47(8), 2110-2122.
  • Kim, I. H., Tsai, H. J., Nishi, K., Kasagami, T., Morisseau, C., & Hammock, B. D. (2007). 1, 3-Disubstituted ureas functionalized with ether groups are potent inhibitors of the soluble epoxide hydrolase with improved pharmacokinetic properties. Journal of medicinal chemistry, 50(21), 5217-5226.
  • Kocyigit-Kaymakcioglu, B., Celen, A. O., Tabanca, N., Ali, A., Khan, S. I., Khan, I. A., & Wedge, D. E. (2013). Synthesis and biological activity of substituted urea and thiourea derivatives containing 1, 2, 4-triazole moieties. Molecules, 18(3), 3562-3576.
  • Kojima, H., Numata, T., Tadaki, R., & Omokawa, H. (2010). PCR-based suppression subtractive hybridization analyses of enantioselective gene expression in root tips of wheat treated with optically active urea compounds. Pesticide biochemistry and physiology, 98(3), 359-369.
  • Krähmer, H., Auler, T., Rosinger, C., Hagemeister, H., & Drexler, D. (2003). U.S. Patent No. 6,569,805. Washington, DC: U.S. Patent and Trademark Office.
  • Lawrence, N., Balasubramaniyan, V., Bhagwat, A. M., & Bhoir, S. I. (2012). Syntheses And Pharmacological Screening Of Bisarylureas, Rasayan Journal Of Chemistry, 5(1), 51-56.
  • Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical review B, 37(2), 785.
  • London, F. (1937). Théorie quantique des courants interatomiques dans les combinaisons aromatiques, J. Phys. Radium, 8, 397-409.
  • O’boyle, N.M., Tenderholt, A.L., Langner, K.M. (2008), cclib: A library for package-independent computational chemistry algorithms, J. Comput. Chem., 29, 839-845.
  • Öztürk, N., Özdemir, T., Alpaslan, Y. B., Gokce, H., & Alpaslan, G. (2018). Experimental (FT-IR, Raman and NMR) and theoretical (B3LYP, B3PW91, M06-2X and CAM-B3LYP) analyses of p-tert-butylphenyl salicylate. Bilge International Journal of Science and Technology Research, 2(1), 56-73.
  • Öztürk, N., & Gökce, H. (2019). FT-IR, Raman, NMR, and DFT, TD-DFT/B3LYP Investigations of 1-(Benzyloxy) Urea. Journal of Applied Spectroscopy, 86(1), 138-146.
  • Öztürk, N. (2019). Crystal structure, spectroscopic and electronic features of 6-(Chloromethyl) uracil. Journal of Molecular Structure, 1193, 468-476.
  • Patil, M., Poyil, A. N., Joshi, S. D., Patil, S. A., Patil, S. A., & Bugarin, A. (2019). Synthesis, molecular docking studies, and antimicrobial evaluation of new structurally diverse ureas. Bioorganic chemistry, 87, 302-311.
  • Pavia, D.L., Lampman, G.M., Kriz, G.S., Vyvyan, J.R., (2009). Introduction to Spectroscopy, Brooks/Cole Cengage Learning, USA.
  • Runge, E., Gross, E.K.U., (1984). Density-Functional Theory for Time-Dependent Systems, Phys. Rev. Lett., 52, 997-1000.
  • Sergeev, A. G., Artamkina, G. A., & Beletskaya, I. P. (2003). Variation of xantphos-based ligands in the palladium-catalyzed reaction of aryl halides with ureas. Russian journal of organic chemistry, 39(12), 1741-1752.
  • Shweta, V., Riaz, H., & Neha, K. (2013). Synthesis of phenyl urea derivatives and their evaluation as antihyperglycaemic agents. Indo. Global. J. Pharm. Sci, 3, 33-39.
  • Silverstein, R.M., Webster, F.X., Kiemle, D.J., (2005). Spectroscopic Identification of Organic Compound, 7th ed., John Wiley & Sons, USA.
  • Stuart, B.H., (2004). Infrared spectroscopy: Fundamentals and Applications, JohnWilley & Sons, England.
  • Umadevi, P., Deepti, K., Srinath, I., Vijayalakshmi, G., & Tarakaramji, M. (2012). Synthesis and in-vitro antibacterial activity of some new urea, thiourea and thiosemicarbazide derivatives. Int J Pharm Pharm Sci. 2012; 4: 379-383.
  • Wolinski K., Hinton, J.F., Pulay, P., (1990). Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations, J. Am. Chem. Soc., 112, 8251-8260.
  • Yavuz, S., & Yıldırım, H. (2013). Ferrocene derivatives carrying urea, thiourea, and sulfonamide moieties: synthesis and evaluation of antibacterial and antifungal activities. Journal of Chemistry, 2013.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Nuri Öztürk 0000-0001-8742-0160

Yayımlanma Tarihi 15 Aralık 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Öztürk, N. (2020). n-Tolilürenin (n= o, m, p) Yapısal, Spektroskopik ve Elektronik Özellikleri Üzerine DFT Analizleri. Karadeniz Fen Bilimleri Dergisi, 10(2), 479-492. https://doi.org/10.31466/kfbd.820541