Araştırma Makalesi
BibTex RIS Kaynak Göster

Structural and Electronic Properties of β-MnO2 Compound Under High Pressure for Energy Storage Devices

Yıl 2022, , 155 - 167, 15.06.2022
https://doi.org/10.31466/kfbd.999044

Öz

In this study, the structural and electronic properties of the MnO2 compound were determined up to 120 GPa under hydrostatic pressure using the generalized gradient method (GGA) within the framework of density functional theory (DFT). In the study, the MnO2 compound transformed from the tetragonal structure with the space group P42/mnm to the orthorhombic structure with the space group Pnnm with the effect of gradually increasing pressure. Enthalpy and total energy calculations were performed to observe the agreement of the study with the experimental results. In addition, the electronic properties of the MnO2 compound were investigated in the study. As a result of the calculations, it was concluded that a phase transition occurred at approximately 9.8 GPa in the MnO2 compound and the transition from the tetragonal structure to the orthorhombic structure was concluded.

Kaynakça

  • Al, S., Kürkçü, C., & Yamcicier, C. (2020a). High pressure phase transitions and physical properties of Li2MgH4; implications for hydrogen storage. International Journal of Hydrogen Energy, 45(7), 4720-4730.
  • Al, S., Kürkçü, C., & Yamcicier, C. (2020b). Structural evolution, mechanical, electronic and vibrational properties of high capacity hydrogen storage TiH4. International Journal of Hydrogen Energy, 45(55), 30783-30791.
  • Alam, K., Seriani, N., & Sen, P. (2019). α-MnO2 under pressure: Possible route to δ-MnO2. Materials Research Express, 6(7). https://doi.org/10.1088/2053-1591/ab145c
  • Arnott, J., Williams, R., Pandolfo, A., & Donne, S. (2007). Microporosity of heat-treated manganese dioxide. Journal of Power Sources, 165(2), 581-590.
  • Birch, F. (1947). Finite elastic strain of cubic crystals. Physical review, 71(11), 809.
  • Bolzan, A. A., Fong, C., Kennedy, B. J., & Howard, C. J. (1997). Structural studies of rutile-type metal dioxides. Acta Crystallographica Section B: Structural Science, 53(3), 373-380.
  • Bradlyn, B., Elcoro, L., Cano, J., Vergniory, M. G., Wang, Z., Felser, C., Aroyo, M. I., & Bernevig, B. A. (2017). Topological quantum chemistry. Nature, 547(7663), 298-305. https://doi.org/10.1038/nature23268
  • Chabre, Y., & Pannetier, J. (1995). Structural and electrochemical properties of the proton / γ-MnO2 system. Progress in Solid State Chemistry, 23(1), 1-130. https://doi.org/https://doi.org/10.1016/0079-6786(94)00005-2
  • Clendenen, R., & Drickamer, H. (1966). Lattice parameters of nine oxides and sulfides as a function of pressure. The Journal of Chemical Physics, 44(11), 4223-4228.
  • de, P. (1959). Interpretation of some [gamma]-MnO2 diffraction patterns. Acta Crystallographica, 12(4), 341-345. https://doi.org/doi:10.1107/S0365110X59001001
  • Gangwar, D., & Rath, C. (2021). Structural, optical and magnetic properties of α- and β-MnO2 nanorods. Applied Surface Science, 557. https://doi.org/10.1016/j.apsusc.2021.149693
  • Haines, J., Leger, J., Gorelli, F., Klug, D., Tse, J., & Li, Z. (2001). X-ray diffraction and theoretical studies of the high-pressure structures and phase transitions in magnesium fluoride. Physical Review B, 64(13), 134110.
  • Haines, J., Léger, J., & Hoyau, S. (1995). Second-order rutile-type to CaCl2-type phase transition in β-MnO2 at high pressure. Journal of Physics and Chemistry of Solids, 56(7), 965-973.
  • Hannemann, A., Hundt, R., Schön, J., & Jansen, M. (1998). A new algorithm for space-group determination. Journal of applied crystallography, 31(6), 922-928.
  • Hundt, R., SchoÈn, J. C., Hannemann, A., & Jansen, M. (1999). Determination of symmetries and idealized cell parameters for simulated structures. Journal of applied crystallography, 32(3), 413-416.
  • Kingma, K. J., Cohen, R. E., Hemley, R. J., & Mao, H.-k. (1995). Transformation of stishovite to a denser phase at lower-mantle pressures. Nature, 374(6519), 243-245.
  • Kozawa, A., & Yeager, J. (1965). The cathodic reduction mechanism of electrolytic manganese dioxide in alkaline electrolyte. Journal of The Electrochemical Society, 112(10), 959.
  • Kürkçü, C., & Merdan, Z. (2018a). Güneş pilleri için ZnO'nun yapısal ve elektronik özelliklerinin incelenmesi: Ab-initio çalışması. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 1-12. https://doi.org/10.25092/baunfbed.416460
  • Kürkçü, C., & Merdan, Z. (2018b). Hidrojen depolama malzemeleri için MgH2'nin yapısal ve elektronik özellikleri. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 451-461. https://doi.org/10.29109/http-gujsc-gazi-edu-tr.371285
  • Kürkçü, C., Merdan, Z., & Öztürk, H. (2016a). Pressure-induced phase transitions and structural properties of CoF2: An ab-initio molecular dynamics study. Solid State Communications, 231, 17-25.
  • Kürkçü, C., Merdan, Z., & Öztürk, H. (2016b). Theoretical calculations of high-pressure phases of NiF 2: An ab initio constant-pressure study. Russian Journal of Physical Chemistry A, 90(13), 2550-2555.
  • Kürkçü, C., Merdan, Z., & Yamçıçıer, Ç. (2019). Pressure-induced phase transitions, electronic, elastic and vibrational properties of zinc oxide under high pressure. Indian Journal of Physics, 93(8), 979-989. https://doi.org/10.1007/s12648-018-01365-8
  • Liu, L.-G. (1976). Synthesis of a new high-pressure phase of manganese dioxide. Earth and Planetary Science Letters, 29(1), 104-106.
  • Momma, K., & Izumi, F. (2011). VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of applied crystallography, 44(6), 1272-1276.
  • Monkhorst, H. J., & Pack, J. D. (1976). Special points for Brillouin-zone integrations. Physical Review B, 13(12), 5188.
  • Perakis, A., Lampakis, D., Boulmetis, Y. C., & Raptis, C. (2005). High-pressure Raman study of the ferroelastic rutile-to-Ca Cl 2 phase transition in Zn F 2. Physical Review B, 72(14), 144108.
  • Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical review letters, 77(18), 3865.
  • Ruetschi, P. (1984). Cation‐Vacancy Model for MnO2. Journal of The Electrochemical Society, 131(12), 2737-2744. https://doi.org/10.1149/1.2115399
  • Soler, J. M., Artacho, E., Gale, J. D., García, A., Junquera, J., Ordejón, P., & Sánchez-Portal, D. (2002). The SIESTA method for ab initio order-N materials simulation. Journal of Physics: Condensed Matter, 14(11), 2745.
  • Troullier, N., & Martins, J. L. (1991). Efficient pseudopotentials for plane-wave calculations. Physical Review B, 43(3), 1993.
  • Truesdell, C. (1952). FD Murnaghan, finite deformation of an elastic solid. Bulletin of the American Mathematical Society, 58(5), 577-579.
  • Tull, M. (1996). A Bibliography of University Theses on Australian Maritime History. International Journal of Maritime History, 8(1), 199-246.
  • Turner, S., & Buseck, P. R. (1983). Defects in nsutite (γ-MnO 2) and dry-cell battery efficiency. Nature, 304(5922), 143-146.
  • Walanda, D. K., Lawrance, G. A., & Donne, S. W. (2005). Hydrothermal MnO2: synthesis, structure, morphology and discharge performance. Journal of Power Sources, 139(1-2), 325-341. https://doi.org/10.1016/j.jpowsour.2004.06.062
  • Yamcicier, C., Merdan, Z., & Kurkcu, C. (2018). Investigation of the structural and electronic properties of CdS under high pressure: an ab initio study. Canadian Journal of Physics, 96(2), 216-224. https://doi.org/10.1139/cjp-2017-0257

Enerji Depolama Cihazları için β-MnO2 Bileşiğinin Yüksek Basınç Altında Yapısal ve Elektronik Özellikleri

Yıl 2022, , 155 - 167, 15.06.2022
https://doi.org/10.31466/kfbd.999044

Öz

Bu çalışmada, MnO2 bileşiğinin yapısal ve elektronik özellikleri hidrostatik basınç altında yoğunluk fonksiyonel teorisi (DFT) çerçevesinde genelleştirilmiş gradyant metodu (GGA) kullanılarak 120 GPa’ya kadar gerçekleştirildi. Çalışmada MnO2 bileşiği kademeli olarak artan basıncın etkisiyle uzay grubu P42/mnm olan tetragonal yapıdan uzay grubu Pnnm olan ortorombik yapıya dönüşmüştür. Çalışmanın deneysel sonuçlarla uyumunu gözlemlemek için entalpi ve toplam enerji hesaplamaları gerçekleştirildi. Ayrıca çalışmada MnO2 bileşiğinin elektronik özellikleri araştırıldı. Yapılan hesaplamalar sonucunda MnO2 bileşiğinde yaklaşık olarak 9.8 GPa’da bir faz geçişi meydana geldiği ve tetragonal yapıdan ortorombik yapıya geçildiği sonucuna varıldı.

Kaynakça

  • Al, S., Kürkçü, C., & Yamcicier, C. (2020a). High pressure phase transitions and physical properties of Li2MgH4; implications for hydrogen storage. International Journal of Hydrogen Energy, 45(7), 4720-4730.
  • Al, S., Kürkçü, C., & Yamcicier, C. (2020b). Structural evolution, mechanical, electronic and vibrational properties of high capacity hydrogen storage TiH4. International Journal of Hydrogen Energy, 45(55), 30783-30791.
  • Alam, K., Seriani, N., & Sen, P. (2019). α-MnO2 under pressure: Possible route to δ-MnO2. Materials Research Express, 6(7). https://doi.org/10.1088/2053-1591/ab145c
  • Arnott, J., Williams, R., Pandolfo, A., & Donne, S. (2007). Microporosity of heat-treated manganese dioxide. Journal of Power Sources, 165(2), 581-590.
  • Birch, F. (1947). Finite elastic strain of cubic crystals. Physical review, 71(11), 809.
  • Bolzan, A. A., Fong, C., Kennedy, B. J., & Howard, C. J. (1997). Structural studies of rutile-type metal dioxides. Acta Crystallographica Section B: Structural Science, 53(3), 373-380.
  • Bradlyn, B., Elcoro, L., Cano, J., Vergniory, M. G., Wang, Z., Felser, C., Aroyo, M. I., & Bernevig, B. A. (2017). Topological quantum chemistry. Nature, 547(7663), 298-305. https://doi.org/10.1038/nature23268
  • Chabre, Y., & Pannetier, J. (1995). Structural and electrochemical properties of the proton / γ-MnO2 system. Progress in Solid State Chemistry, 23(1), 1-130. https://doi.org/https://doi.org/10.1016/0079-6786(94)00005-2
  • Clendenen, R., & Drickamer, H. (1966). Lattice parameters of nine oxides and sulfides as a function of pressure. The Journal of Chemical Physics, 44(11), 4223-4228.
  • de, P. (1959). Interpretation of some [gamma]-MnO2 diffraction patterns. Acta Crystallographica, 12(4), 341-345. https://doi.org/doi:10.1107/S0365110X59001001
  • Gangwar, D., & Rath, C. (2021). Structural, optical and magnetic properties of α- and β-MnO2 nanorods. Applied Surface Science, 557. https://doi.org/10.1016/j.apsusc.2021.149693
  • Haines, J., Leger, J., Gorelli, F., Klug, D., Tse, J., & Li, Z. (2001). X-ray diffraction and theoretical studies of the high-pressure structures and phase transitions in magnesium fluoride. Physical Review B, 64(13), 134110.
  • Haines, J., Léger, J., & Hoyau, S. (1995). Second-order rutile-type to CaCl2-type phase transition in β-MnO2 at high pressure. Journal of Physics and Chemistry of Solids, 56(7), 965-973.
  • Hannemann, A., Hundt, R., Schön, J., & Jansen, M. (1998). A new algorithm for space-group determination. Journal of applied crystallography, 31(6), 922-928.
  • Hundt, R., SchoÈn, J. C., Hannemann, A., & Jansen, M. (1999). Determination of symmetries and idealized cell parameters for simulated structures. Journal of applied crystallography, 32(3), 413-416.
  • Kingma, K. J., Cohen, R. E., Hemley, R. J., & Mao, H.-k. (1995). Transformation of stishovite to a denser phase at lower-mantle pressures. Nature, 374(6519), 243-245.
  • Kozawa, A., & Yeager, J. (1965). The cathodic reduction mechanism of electrolytic manganese dioxide in alkaline electrolyte. Journal of The Electrochemical Society, 112(10), 959.
  • Kürkçü, C., & Merdan, Z. (2018a). Güneş pilleri için ZnO'nun yapısal ve elektronik özelliklerinin incelenmesi: Ab-initio çalışması. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 1-12. https://doi.org/10.25092/baunfbed.416460
  • Kürkçü, C., & Merdan, Z. (2018b). Hidrojen depolama malzemeleri için MgH2'nin yapısal ve elektronik özellikleri. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 451-461. https://doi.org/10.29109/http-gujsc-gazi-edu-tr.371285
  • Kürkçü, C., Merdan, Z., & Öztürk, H. (2016a). Pressure-induced phase transitions and structural properties of CoF2: An ab-initio molecular dynamics study. Solid State Communications, 231, 17-25.
  • Kürkçü, C., Merdan, Z., & Öztürk, H. (2016b). Theoretical calculations of high-pressure phases of NiF 2: An ab initio constant-pressure study. Russian Journal of Physical Chemistry A, 90(13), 2550-2555.
  • Kürkçü, C., Merdan, Z., & Yamçıçıer, Ç. (2019). Pressure-induced phase transitions, electronic, elastic and vibrational properties of zinc oxide under high pressure. Indian Journal of Physics, 93(8), 979-989. https://doi.org/10.1007/s12648-018-01365-8
  • Liu, L.-G. (1976). Synthesis of a new high-pressure phase of manganese dioxide. Earth and Planetary Science Letters, 29(1), 104-106.
  • Momma, K., & Izumi, F. (2011). VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of applied crystallography, 44(6), 1272-1276.
  • Monkhorst, H. J., & Pack, J. D. (1976). Special points for Brillouin-zone integrations. Physical Review B, 13(12), 5188.
  • Perakis, A., Lampakis, D., Boulmetis, Y. C., & Raptis, C. (2005). High-pressure Raman study of the ferroelastic rutile-to-Ca Cl 2 phase transition in Zn F 2. Physical Review B, 72(14), 144108.
  • Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical review letters, 77(18), 3865.
  • Ruetschi, P. (1984). Cation‐Vacancy Model for MnO2. Journal of The Electrochemical Society, 131(12), 2737-2744. https://doi.org/10.1149/1.2115399
  • Soler, J. M., Artacho, E., Gale, J. D., García, A., Junquera, J., Ordejón, P., & Sánchez-Portal, D. (2002). The SIESTA method for ab initio order-N materials simulation. Journal of Physics: Condensed Matter, 14(11), 2745.
  • Troullier, N., & Martins, J. L. (1991). Efficient pseudopotentials for plane-wave calculations. Physical Review B, 43(3), 1993.
  • Truesdell, C. (1952). FD Murnaghan, finite deformation of an elastic solid. Bulletin of the American Mathematical Society, 58(5), 577-579.
  • Tull, M. (1996). A Bibliography of University Theses on Australian Maritime History. International Journal of Maritime History, 8(1), 199-246.
  • Turner, S., & Buseck, P. R. (1983). Defects in nsutite (γ-MnO 2) and dry-cell battery efficiency. Nature, 304(5922), 143-146.
  • Walanda, D. K., Lawrance, G. A., & Donne, S. W. (2005). Hydrothermal MnO2: synthesis, structure, morphology and discharge performance. Journal of Power Sources, 139(1-2), 325-341. https://doi.org/10.1016/j.jpowsour.2004.06.062
  • Yamcicier, C., Merdan, Z., & Kurkcu, C. (2018). Investigation of the structural and electronic properties of CdS under high pressure: an ab initio study. Canadian Journal of Physics, 96(2), 216-224. https://doi.org/10.1139/cjp-2017-0257
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Çağatay Yamçıçıer 0000-0003-3033-168X

Yayımlanma Tarihi 15 Haziran 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Yamçıçıer, Ç. (2022). Enerji Depolama Cihazları için β-MnO2 Bileşiğinin Yüksek Basınç Altında Yapısal ve Elektronik Özellikleri. Karadeniz Fen Bilimleri Dergisi, 12(1), 155-167. https://doi.org/10.31466/kfbd.999044