Araştırma Makalesi
BibTex RIS Kaynak Göster

Cam/ITO/CIS/Rubrene Heteroekleminin Yüzey ve Optiksel Özelliklerinin İncelenmesi

Yıl 2020, Cilt: 10 Sayı: 2, 243 - 252, 15.12.2020
https://doi.org/10.31466/kfbd.756657

Öz

Bu çalışmada, CuInSe (CIS) ince filmleri cam/ITO alttabakalar üzerine elektro-kimyasal kaplama yöntemi ile oluşturulmuştur. Cam/ITO/CIS filmlerinin yüzey morfolojilerinin ve optiksel özelliklerinin incelenebilmesi için AFM ve UV-VIS analizleri yapılmıştır. Analiz işlemleri bittikten sonra cam/ITO/CIS yapılarının üzerine termal buharlaştırma yöntemi ile rubrene (C42H28) ince filmleri oda sıcaklığında ve 2,5x10-6 torr basınç altında kaplanmıştır. Elde edilen cam/ITO/CIS/rubrene heteroeklemlerinin yüzey morfolojilerinin ve optiksel özelliklerinin incelenmesi için AFM ve UV-VIS analizleri tekrar yapılmıştır. AFM analizleri sonucunda cam/ITO/CIS ve cam/ITO/CIS/rubrene yapılarının yüzey pürüzlülük değerleri sırasıyla; 231,6 nm ve 182,82 nm olarak belirlenmiştir. UV-VIS analizlerinde cam/ITO/CIS, ve cam/ITO/CIS/rubrene yapılarının yasak enerji aralıkları sırasıyla; 1,42 eV ve 2,07eV olarak belirlenmiştir.

Teşekkür

Hem deneysel süreçte kullanmış olduğumuz elektrokimyasal empedans spektroskopisi sistemi ve termal buharlaştırma ince film kaplama sistemi hem de analiz sürecinde kullanmış olduğumuz AFM ve UV-VIS cihazlarını bünyesinde bulunduran ve kullanımımıza sunan GÜRÜMLAB kurumuna teşekkür ederim.

Kaynakça

  • A.E.-H.B. Kashyout, E.-Z. A., T. Meaz, M. Nabil , M. Amer. (2014). (One-step) electrochemical deposition and characterization of CuInSe2 thin films. Alexandria Engineering Journal, 53, 731-736.
  • Baris, B., Yuksel, O. F., Tugluoglu, N., & Karadeniz, S. (2013). Double barrier heights in 5,6,11,12-tetraphenylnaphthacene (rubrene) based organic Schottky diode. Synthetic Metals, 180, 38-42. doi:10.1016/j.synthmet.2013.07.029.
  • Barış, B. (2013). Frequency dependent capacitance and conductance properties of Schottky diode based on rubrene organic semiconductor. Physica B: Condensed Matter, 426, 132-136. doi:https://doi.org/10.1016/j.physb.2013.06.016.
  • Barış, B., Özdemir, H. G., Tuğluoğlu, N., Karadeniz, S., Yüksel, Ö. F., & Kişnişci, Z. (2014). Optical dispersion and dielectric properties of rubrene organic semiconductor thin film. Journal of Materials Science: Materials in Electronics, 25(8), 3586-3593. doi:10.1007/s10854-014-2060-6.
  • Bari, R.H., L. A. P., Patil, P.P., (2006). Studies on chemically deposited nonstoichiometric thin films of CuInSe2–a highly promising material for photosensors. Sensors & Transducers Journal, 69(7).
  • Bergantin, S. (2014). Organic semiconductor rubrene: crystal chemistry of derivatives and high-pressure polymorphism. (Doctorate). UNIVERSITÁ DEGLI STUDI DI MILANO-BICOCCA.
  • C. Sanjeevıraja, & Mahalıngam, T. (1992). Structural and optical properties of electrodeposited indium selenide thin films. Journal of Material Science Letters, 11, 525-526.
  • Candan, İ., & Güllü, H. H. (20019). Comparative Study on The Properties of CuInSe2 and CuGaSe2 Thin Films. European Journal of Science and Technology, 15, 77-85.
  • Chan, M. Y., S. L. L., Fung, M. K., Leea, C. S., and Lee, S. T., (2007). Doping-induced efficiency enhancement in organic photovoltaic devices. Applied Physics Letters, 90, 023504–023506.
  • Chen, L., Deng, J. X., Kong, L., Cui, M., Chen, R. G., & Zhang, Z. J. (2015). Optical properties of rubrene thin film prepared by thermal evaporation. Chinese Physics B, 24(4). doi:10.1088/1674-1056/24/4/04780
  • Frontini, M. A., & Vazquez, M. (2010). Electrodeposition of CuInSe2 in citrate-containing electrolytes. Journal of Materials Science, 45(11), 2995-3000. doi:10.1007/s10853-010-4300-3
  • Fumagalli, E. M. (2012). Growth and physical properties of crystalline rubrene. (doctorate). Università degli Studi di Milano-Bicocca.
  • Fusella, M. A., Schreiber, F., Abbasi, K., Kim, J. J., Briseno, A. L., & Rand, B. P. Homoepitaxy of Crystalline Rubrene Thin Films Retrieved from.
  • Kim, K., Kim, M. K., Kang, H. S., Cho, M. Y., Joo, J., Kim, J. H., . . . Choi, D. H. (2007). New growth method of rubrene single crystal for organic field-effect transistor. Synthetic Metals, 157(10-12), 481-484. doi:10.1016/j.synthmet.2007.05.013.
  • Liu, F. Y., Lu, Y., Zhang, Z. A., Lai, Y. Q., Li, J., & Liu, Y. X. (2008). Pulse-plating electrodeposition and annealing treatment of CuInSe2 films. Transactions of Nonferrous Metals Society of China, 18(4), 884-889. doi:10.1016/s1003-6326(08)60153-3
  • Liu, F. Y., Zhang, Z. A., Lai, Y. Q., Li, J., & Liu, Y. X. (2009). Composition and Morphology of Electrodeposited CuInSe2 Precursor Films. Journal of Materials Science & Technology, 25(2), 242-246. Retrieved from <Go to ISI>://WOS:000264990700021
  • Kaleli, M., C. A. Y., Koç, M., Akyürekli, S., Bayram, A., B., (2017). Termal Buharlaştırma Yöntemiyle Hazırlanan Ga Katkılı CuInSe2 İnce Filmlerin Yapısal Özelliklerinin İncelenmesi. Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi, 12, 19-32.
  • Nitta, J., Miwa, K., Komiya, N., Annese, E., Fujii, J., Ono, S., & Sakamoto, K. (2019). The actual electronic band structure of a rubrene single crystal. Sci Rep, 9(1), 9645. doi:10.1038/s41598-019-46080-4
  • Ohrıng, M. (1992). The Materials Science of Thin Films. Boston: Academic Press.
  • Özdemir, H. G. (2013). Spin Kaplama Yöntemiyle Rubrene İnce Filmlerinin Hazırlanması Ve Optiksel Özelliklerinin İncelenmesi. (Yüksek Lisans). Giresun Üniversitesi.
  • Rozeveld, S., Reinhardt, C., Bykov, E., & Wall, A. (2018). Measurement of Grain Boundary Properties in Cu(ln,Ga)Se2 Thin Films. Microscopy Today, 26(3), 32-39. doi:10.1017/s1551929518000457
  • Saliha ILICAN, Y. Ç., Müjdat ÇAGLAR. (2005). CdZnS ve Zn O YARIİLETKEN FiLMLERİNİN YASAK ENERJİ ARALIKLARI SAÜ Fen Bilimleri Enstitüsü Dergisi 9.
  • Sene, C., Ndiaye, B., Dieng, M., Mbow, B., & Cong, H. N. (2009). CuIn (Se, S)(2) based photovoltaic cells from one-step electrodeposition. International Journal of the Physical Sciences, 4(10), 562-570. Retrieved from <Go to ISI>://WOS:000270305900004
  • Tae Hun, K., Hyuck In, Kwon Jong Duk, Lee Byung-Gook Park. (2001). Thickness measurements of ultra-thin films using AFM. Paper presented at the Digest of Papers. Microprocesses and Nanotechnology 2001. 2001 International Microprocesses and Nanotechnology Conference (IEEE Cat. No.01EX468), japan.
  • Uchida, M., Adachi, C., Koyama, T., & Taniguchi, Y. (1999). Charge carrier trapping effect by luminescent dopant molecules in single-layer organic light emitting diodes. Journal of Applied Physics, 86(3), 1680-1687. doi:10.1063/1.370947
  • Ünal, F. (2013). InSe İnce Filmlerinin Farklı Alt Tabanlar Üzerinde Büyütülmesi Ve Optik, Yapısal, Fotoelektirik Özelliklerinin Araştırılması. (Yüksek Lisans). Kafkas Üniversitesi, Kars.
  • Yang, J., Jin, Z., Li, C., Wang, W., & Chai, Y. (2009). Electrodeposition of CuInSe2 films by an alternating double-potentiostatic method using nearly neutral electrolytes. Electrochemistry Communications, 11(3), 711-714. doi:10.1016/j.elecom.2008.12.062.

Investigation of Surface and Optical Properties of Glass/ITO/CIS/Rubrene Heterojunction

Yıl 2020, Cilt: 10 Sayı: 2, 243 - 252, 15.12.2020
https://doi.org/10.31466/kfbd.756657

Öz

In this work, CuInSe (CIS) thin films were deposited on glass/ITO by electro-deposition technique. The surface microstructure, surface roughness and the band gap were analyzed using AFM and UV-VIS techniques for all glass/ITO/CIS structures. After these analyzing processes were completed, rubrene (C42H28) thin film was coated on glass/ITO/CIS structures by using thermal evaporation method under 2,5x10-6 torr at room temperature. Then, the analyzing processes of surface microstructure, surface roughness and the band gap were repeated. As a result of AFM analysis, surface roughness values of glass/ITO/CIS and glass/ITO/CIS/rubrene were found to be 231,6 nm and 182,82 nm, respectively. As a result of UV-VIS analysis, the band gap values of glass/ITO/CIS and glass/ITO/CIS/rubrene structures were determined as 1,42 eV and 2,07eV, respectively.

Kaynakça

  • A.E.-H.B. Kashyout, E.-Z. A., T. Meaz, M. Nabil , M. Amer. (2014). (One-step) electrochemical deposition and characterization of CuInSe2 thin films. Alexandria Engineering Journal, 53, 731-736.
  • Baris, B., Yuksel, O. F., Tugluoglu, N., & Karadeniz, S. (2013). Double barrier heights in 5,6,11,12-tetraphenylnaphthacene (rubrene) based organic Schottky diode. Synthetic Metals, 180, 38-42. doi:10.1016/j.synthmet.2013.07.029.
  • Barış, B. (2013). Frequency dependent capacitance and conductance properties of Schottky diode based on rubrene organic semiconductor. Physica B: Condensed Matter, 426, 132-136. doi:https://doi.org/10.1016/j.physb.2013.06.016.
  • Barış, B., Özdemir, H. G., Tuğluoğlu, N., Karadeniz, S., Yüksel, Ö. F., & Kişnişci, Z. (2014). Optical dispersion and dielectric properties of rubrene organic semiconductor thin film. Journal of Materials Science: Materials in Electronics, 25(8), 3586-3593. doi:10.1007/s10854-014-2060-6.
  • Bari, R.H., L. A. P., Patil, P.P., (2006). Studies on chemically deposited nonstoichiometric thin films of CuInSe2–a highly promising material for photosensors. Sensors & Transducers Journal, 69(7).
  • Bergantin, S. (2014). Organic semiconductor rubrene: crystal chemistry of derivatives and high-pressure polymorphism. (Doctorate). UNIVERSITÁ DEGLI STUDI DI MILANO-BICOCCA.
  • C. Sanjeevıraja, & Mahalıngam, T. (1992). Structural and optical properties of electrodeposited indium selenide thin films. Journal of Material Science Letters, 11, 525-526.
  • Candan, İ., & Güllü, H. H. (20019). Comparative Study on The Properties of CuInSe2 and CuGaSe2 Thin Films. European Journal of Science and Technology, 15, 77-85.
  • Chan, M. Y., S. L. L., Fung, M. K., Leea, C. S., and Lee, S. T., (2007). Doping-induced efficiency enhancement in organic photovoltaic devices. Applied Physics Letters, 90, 023504–023506.
  • Chen, L., Deng, J. X., Kong, L., Cui, M., Chen, R. G., & Zhang, Z. J. (2015). Optical properties of rubrene thin film prepared by thermal evaporation. Chinese Physics B, 24(4). doi:10.1088/1674-1056/24/4/04780
  • Frontini, M. A., & Vazquez, M. (2010). Electrodeposition of CuInSe2 in citrate-containing electrolytes. Journal of Materials Science, 45(11), 2995-3000. doi:10.1007/s10853-010-4300-3
  • Fumagalli, E. M. (2012). Growth and physical properties of crystalline rubrene. (doctorate). Università degli Studi di Milano-Bicocca.
  • Fusella, M. A., Schreiber, F., Abbasi, K., Kim, J. J., Briseno, A. L., & Rand, B. P. Homoepitaxy of Crystalline Rubrene Thin Films Retrieved from.
  • Kim, K., Kim, M. K., Kang, H. S., Cho, M. Y., Joo, J., Kim, J. H., . . . Choi, D. H. (2007). New growth method of rubrene single crystal for organic field-effect transistor. Synthetic Metals, 157(10-12), 481-484. doi:10.1016/j.synthmet.2007.05.013.
  • Liu, F. Y., Lu, Y., Zhang, Z. A., Lai, Y. Q., Li, J., & Liu, Y. X. (2008). Pulse-plating electrodeposition and annealing treatment of CuInSe2 films. Transactions of Nonferrous Metals Society of China, 18(4), 884-889. doi:10.1016/s1003-6326(08)60153-3
  • Liu, F. Y., Zhang, Z. A., Lai, Y. Q., Li, J., & Liu, Y. X. (2009). Composition and Morphology of Electrodeposited CuInSe2 Precursor Films. Journal of Materials Science & Technology, 25(2), 242-246. Retrieved from <Go to ISI>://WOS:000264990700021
  • Kaleli, M., C. A. Y., Koç, M., Akyürekli, S., Bayram, A., B., (2017). Termal Buharlaştırma Yöntemiyle Hazırlanan Ga Katkılı CuInSe2 İnce Filmlerin Yapısal Özelliklerinin İncelenmesi. Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi, 12, 19-32.
  • Nitta, J., Miwa, K., Komiya, N., Annese, E., Fujii, J., Ono, S., & Sakamoto, K. (2019). The actual electronic band structure of a rubrene single crystal. Sci Rep, 9(1), 9645. doi:10.1038/s41598-019-46080-4
  • Ohrıng, M. (1992). The Materials Science of Thin Films. Boston: Academic Press.
  • Özdemir, H. G. (2013). Spin Kaplama Yöntemiyle Rubrene İnce Filmlerinin Hazırlanması Ve Optiksel Özelliklerinin İncelenmesi. (Yüksek Lisans). Giresun Üniversitesi.
  • Rozeveld, S., Reinhardt, C., Bykov, E., & Wall, A. (2018). Measurement of Grain Boundary Properties in Cu(ln,Ga)Se2 Thin Films. Microscopy Today, 26(3), 32-39. doi:10.1017/s1551929518000457
  • Saliha ILICAN, Y. Ç., Müjdat ÇAGLAR. (2005). CdZnS ve Zn O YARIİLETKEN FiLMLERİNİN YASAK ENERJİ ARALIKLARI SAÜ Fen Bilimleri Enstitüsü Dergisi 9.
  • Sene, C., Ndiaye, B., Dieng, M., Mbow, B., & Cong, H. N. (2009). CuIn (Se, S)(2) based photovoltaic cells from one-step electrodeposition. International Journal of the Physical Sciences, 4(10), 562-570. Retrieved from <Go to ISI>://WOS:000270305900004
  • Tae Hun, K., Hyuck In, Kwon Jong Duk, Lee Byung-Gook Park. (2001). Thickness measurements of ultra-thin films using AFM. Paper presented at the Digest of Papers. Microprocesses and Nanotechnology 2001. 2001 International Microprocesses and Nanotechnology Conference (IEEE Cat. No.01EX468), japan.
  • Uchida, M., Adachi, C., Koyama, T., & Taniguchi, Y. (1999). Charge carrier trapping effect by luminescent dopant molecules in single-layer organic light emitting diodes. Journal of Applied Physics, 86(3), 1680-1687. doi:10.1063/1.370947
  • Ünal, F. (2013). InSe İnce Filmlerinin Farklı Alt Tabanlar Üzerinde Büyütülmesi Ve Optik, Yapısal, Fotoelektirik Özelliklerinin Araştırılması. (Yüksek Lisans). Kafkas Üniversitesi, Kars.
  • Yang, J., Jin, Z., Li, C., Wang, W., & Chai, Y. (2009). Electrodeposition of CuInSe2 films by an alternating double-potentiostatic method using nearly neutral electrolytes. Electrochemistry Communications, 11(3), 711-714. doi:10.1016/j.elecom.2008.12.062.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Fatih Ünal 0000-0002-6155-7051

Tekin İzgi 0000-0002-4489-905X

Behzad Barış Bu kişi benim 0000-0003-3041-6413

Serdar Karadeniz 0000-0002-1792-8134

Yayımlanma Tarihi 15 Aralık 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 10 Sayı: 2

Kaynak Göster

APA Ünal, F., İzgi, T., Barış, B., Karadeniz, S. (2020). Cam/ITO/CIS/Rubrene Heteroekleminin Yüzey ve Optiksel Özelliklerinin İncelenmesi. Karadeniz Fen Bilimleri Dergisi, 10(2), 243-252. https://doi.org/10.31466/kfbd.756657