The Effect of Ionizing Radiation on Device Parameters In Organic Based Schottky Diodes Used in Solar Cell Applications
Yıl 2021,
Cilt: 11 Sayı: 1, 222 - 238, 15.06.2021
Serdar Karadeniz
,
Behzad Barış
,
Hande Karadeniz
,
Sema Bilge Ocak
,
Akil Birkan Selçuk
Öz
In this study, the effects of ionizing radiation on organic interfaced Schottky diodes were investigated. The prepared metal/coronene/n-Si Schottky structures were exposed to different dose of gamma radiation and examined the variations of performance parameters of these structures before and after radiation. The coronene material was used as an organic interface layer and coated onto the n-type silicon substrates as a thin film by using the spin coating technique after various chemical cleaning methods. The changes in the electrical characteristic of the structures were investigated using the I-V, C-V and G-V measurement techniques before and after irradiation in dark environment and at room temperature
Proje Numarası
FEN-BAP-A-170417-85
Kaynakça
- Akkal, B., Benamara, A., Gruzza, B. and Bideux, L. (2000). Characterization of interface states at Au/InSb/InP(100) Schottky barrier diodes as a function of frequency. Vacuum, 57, 219-228.
- Arshak, K., Korostynska, O. (2004). Thick film oxide diode structures for personal dosimetry application. Sensors and Actuators, A 113, 319–323.
- Auret, F. D., Goodman, S. A., Meyer, W. E., Erasmus, R. M., Myburg, G. (1993). Deep level transient spectroscopy characterization of electron irradiation induced hole traps in p-GaAs grown by molecular beam epitaxy, Japanese Journal Of Applıed Physıcs, Pt. 2, Letters 32, L974eL977.
- Auret, F. D. Wilson, A., Goodman, S. A., Myburg, G., Meyer, W. E. (1994). Electrical characteristics of neutron irradiation induced defects in n-GaAs, Nuclear Instruments & Methods In Physıcs Research Sectıon B-Beam Interactıons Wıth Materıals And Atoms, 90, 387e391.
- Barış, B., Karadeniz, S., Erdal, M. O. (2017). Preparation of koronen nanowires and its properties. Materials Letters, 205, 70–74.
- Bohlin, K. E. (1986). Generalized Norde plot including determination of the ideality factor. Journal of Applied Physics, 60, 1223-1224.
- Card, H. C., Rhoderick, E. H. (1971). Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes. Journal of Physics, D4, 1589.
- Erdal, M. O. (2020). Photoresponse properties of coronene nanowires thin-film-based photodiode. Journal of Materials Science:Materials in Electronics, 31, 18980–18987.
- Fetzer, J. C. (2000). The Chemistry and Analysis of the Large Polycyclic Aromatic Hydrocarbons. Wiley, New York.
- Gregor, D. M., Christof, W. (2004). Growth of aromatic molecules on solid substrates for applications in organic electronics. Journal Of Materıals Research, 19, 1889.
- Grussell, E., Berg, S. and Andersson, L. P. (1980). Electrical Defects in Silicon Introduced by Sputtering and Sputter‐Etching. Journal of The Electrochemical Society, 127, 1573.
- Itoh, T. (2008). Multiple fluorescence and the electronic relaxation processes of koronen vapor: The fluorescence from the S1, S2, and S3 states. Journal Of Molecular Spectroscopy, 252, 115.
- Jiang, W., Li Y., Wang, Z. (2013). Heteroarenes as high performance organic semiconductors. Chemical Society Revıews, 42, 6113.
- Jun, M., Jang, M., Kim, Y., Choi, C., Kim, T., Park, B. and Lee, S. (2007). Analysis of interface trap states at Schottky diode by using equivalent circuit modeling. Journal Of Vacuum Science & Technology B, 25, 82.
- Kar, S., Ashok, S. and Fonash, S. (1980). Evidence of tunnel‐assisted transport in nondegenerate MOS and semiconductor‐oxide‐semiconductor diodes at room temperature. Journal of Applied Physics, 51, 3417-3421.
- Kar, S. and Varma, S. (1985). Determination of silicon‐silicon dioxide interface state properties from admittance measurements under illumination. Journal of Applied Physics, 58; 4256-4266.
- Karatas, S., Turut, A. and Altindal, S. (2005). Effects of 60Co γ-ray irradiation on the electrical characteristics of Au/n-GaAs (MS) structures. Nuclear Instruments & Methods A, 555, 260.
- Karataş, Ş., Türüt, A. (2006). Electrical properties of Sn/p-Si (MS) Schottky barrier diodes to be exposed to 60Co g-ray source. Nuclear Instruments and Methods in Physics Research A, 566, 584–589.
- Kido, J., Hongawa, K., Okuyama, K., Nagai, K. (1994). White light‐emitting organic electroluminescent devices using the poly(N‐vinylcarbazole) emitter layer doped with three fluorescent dyes. Applied Physics Letters, 64, 815.
- Lin, Z. Yi-Men, Z., Yu-Ming, Z., Chao, H. (2010). Neutron radiation effect on 4H-SiC MESFETs and SBDs. Journal of Semiconductors, 31, 114006.
- Mamor, M., Sellai, A., Bouziane, K., Al. Harthi, S. H., Al. Busaidi, M. and Gard, F. S. (2007). Influence of He-ion irradiation on the characteristics of Pd/n-Si0.90Ge0.10/Si Schottky contacts. Journal Of Physics D-Applıed Physics, 40, 1351.
- Mott, N. F. (1938). Note on the contact between a metal and an insulator or semi-conductor. Proceedings of Cambridge Philosophical Society, Vol. 34, 568-572.
- Mott, N. F. (1939). Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences Vol. 171, No. 944, 27-38.
- Nicollian, E. H. and Brews, J. R. (1982). Metal Oxide Semiconductor (MOS) Physics and Technology. John Wiley, New York.
- Payanan, T., Leepipatpiboon, N., Varanusupakul, P. (2013). Low-temperature cleanup with solid-phase extraction for the determination of polycyclic aromatic hydrocarbons in edible oils by reversed phase liquid chromatography with fluorescence detection. Food Chemistry, 141, 2720.
- Rawa-Adkonis, M., Wolska, L., Namiesnik, J. (2006). Analytical Procedures for PAH and PCB Determination in Water Samples—Error Sources. Critical Reviews In Analytical Chemistry, 36, 63.
- Rhoderic, E. M. and Williams, R. H. (1988). Metal Semiconductor Contacts. 2nd Ed. Clarendon and Oxford.
- Ruifeng, Z., Haipeng, Z., Jiacong, S. (1999). Blue light-emitting diodes based on koronen-doped polymers. Synthetıc Metals, 105, 49.
- Saqri, N., Felix, Al J.F., Aziz, M., Jameel, D., Araujo, C.I.L., Albalawi, H. et al. (2015). Investigation of the effects of gamma radiation on the electrical properties of dilute GaAs1 xNx layers grown by molecular beam epitaxy, Current Applied Physics, 15, 1230e1237.
- Schottky, W. (1938). Halbleitertheorie der Sperrschicht. Naturwissenschaften, Vol. 26, 843.
- Singh, A. (1985). Characterization of interface states at Ni/nCdF2 Schottky barrier type diodes and the effect of CdF2 surface preparation. Solid-State Electron, 28, 223.
- Singh, R., Arora, S. K. and Kanjilal, D. (2001). Swift heavy ion irradiation induced modification of electrical characteristics of Au/n-Si Schottky barrier diode. Materials Scıence In Semiconductor Processing, 4, 425.
- Tataroglu, A, Altindal, S and Bulbul, M. (2006). 60Co γ irradiation effects on the current–voltage (I–V) characteristics of Al/SiO2/p-Si (MIS) Schottky diodes. Nuclear Instruments & Methods In Physics Research A, 568, 863-868.
- Xiao, J., Yang, H., Yin, Z., Guo, J., Boey, F., Zhang, H., Zhang, Q. (2011). Preparation, characterization, and photoswitching/light-emitting behaviors of koronen nanowires. Journal Of Materıals Chemistry, 21, 1423.
- Yıldırım, M. (2017). Determination of Contact Parameters of Au/n-Ge Schottky Barrier Diode with Rubrene Interlayer. Journal of Polytechnic, 20, 165.
- Yüksel, Ö. F., Tugluoglu, N, Calıskan, F., Yıldırım, M. (2016). Temperature Dependence of Current-Voltage Characteristics of Al/Rubrene/n-GaAs (100) Schottky Barrier Diodes. Materials Today, 3, 1271.
- Yüksel, Ö. F., Kus, M., Yıldırım, M. (2017). Capacitance and Conductance–Frequency Characteristics of Au/n-Si Schottky Structure with Perylene-Diimide (PDI) Organic Interlayer. Journal of Electronic Materials, 46, 882.
- Zhang, R., Zheng, H., Shen, J. (1999). Blue light-emitting diodes based on koronen-doped polymers. Synthetic Metals, 105, 49.
- Zhan, C., Jiang Y. Y., Yang, M. Y., Lu, L. H., Xiao, S. Q. (2014). Synthesis and optoelectronic properties of a novel molecular semiconductor of dithieno[5,6-b:11,12-b′]koronen-2,3,8,9-tetracarboxylic tetraester. Chınese Chemıcal Letters, 25, 65.
Güneş Pilleri Uygulamalarında Kullanılan Organik Tabanlı Schottky Diyotlarında İyonize Radyasyonun Aygıt Parametrelerine Etkisi
Yıl 2021,
Cilt: 11 Sayı: 1, 222 - 238, 15.06.2021
Serdar Karadeniz
,
Behzad Barış
,
Hande Karadeniz
,
Sema Bilge Ocak
,
Akil Birkan Selçuk
Öz
Bu çalışmada, organik araüzeyli Schottky yapısına iyonize radyasyonun etkileri araştırılmıştır. Hazırlanan metal/koronen/n-Si Schottky yapılar, değişik dozlarda gama radyasyonuna maruz bırakılmış ve bu yapıların ışınlama öncesi ve sonrası performans parametrelerindeki değişimler incelenmiştir. Organik arayüzey tabaka olarak koronen malzemesi kullanılmıştır. Arayüzey malzemesi döndürme ile kaplama tekniği kullanılarak, değişik kimyasal yöntemlerle temizlenmiş olan n-tipi silisyum tabanlar üzerine ince film olarak kaplanmıştır. Yapıların radyasyon öncesi ve sonrası elektriksel karakteristiklerindeki değişimler karanlık ortamda ve oda sıcaklığında I-V, C-V ve G-V ölçüm teknikleri kullanılarak incelenmiştir
Destekleyen Kurum
Giresun Üniversitesi Bilimsel Araştırma Projeleri Ofisi
Proje Numarası
FEN-BAP-A-170417-85
Kaynakça
- Akkal, B., Benamara, A., Gruzza, B. and Bideux, L. (2000). Characterization of interface states at Au/InSb/InP(100) Schottky barrier diodes as a function of frequency. Vacuum, 57, 219-228.
- Arshak, K., Korostynska, O. (2004). Thick film oxide diode structures for personal dosimetry application. Sensors and Actuators, A 113, 319–323.
- Auret, F. D., Goodman, S. A., Meyer, W. E., Erasmus, R. M., Myburg, G. (1993). Deep level transient spectroscopy characterization of electron irradiation induced hole traps in p-GaAs grown by molecular beam epitaxy, Japanese Journal Of Applıed Physıcs, Pt. 2, Letters 32, L974eL977.
- Auret, F. D. Wilson, A., Goodman, S. A., Myburg, G., Meyer, W. E. (1994). Electrical characteristics of neutron irradiation induced defects in n-GaAs, Nuclear Instruments & Methods In Physıcs Research Sectıon B-Beam Interactıons Wıth Materıals And Atoms, 90, 387e391.
- Barış, B., Karadeniz, S., Erdal, M. O. (2017). Preparation of koronen nanowires and its properties. Materials Letters, 205, 70–74.
- Bohlin, K. E. (1986). Generalized Norde plot including determination of the ideality factor. Journal of Applied Physics, 60, 1223-1224.
- Card, H. C., Rhoderick, E. H. (1971). Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes. Journal of Physics, D4, 1589.
- Erdal, M. O. (2020). Photoresponse properties of coronene nanowires thin-film-based photodiode. Journal of Materials Science:Materials in Electronics, 31, 18980–18987.
- Fetzer, J. C. (2000). The Chemistry and Analysis of the Large Polycyclic Aromatic Hydrocarbons. Wiley, New York.
- Gregor, D. M., Christof, W. (2004). Growth of aromatic molecules on solid substrates for applications in organic electronics. Journal Of Materıals Research, 19, 1889.
- Grussell, E., Berg, S. and Andersson, L. P. (1980). Electrical Defects in Silicon Introduced by Sputtering and Sputter‐Etching. Journal of The Electrochemical Society, 127, 1573.
- Itoh, T. (2008). Multiple fluorescence and the electronic relaxation processes of koronen vapor: The fluorescence from the S1, S2, and S3 states. Journal Of Molecular Spectroscopy, 252, 115.
- Jiang, W., Li Y., Wang, Z. (2013). Heteroarenes as high performance organic semiconductors. Chemical Society Revıews, 42, 6113.
- Jun, M., Jang, M., Kim, Y., Choi, C., Kim, T., Park, B. and Lee, S. (2007). Analysis of interface trap states at Schottky diode by using equivalent circuit modeling. Journal Of Vacuum Science & Technology B, 25, 82.
- Kar, S., Ashok, S. and Fonash, S. (1980). Evidence of tunnel‐assisted transport in nondegenerate MOS and semiconductor‐oxide‐semiconductor diodes at room temperature. Journal of Applied Physics, 51, 3417-3421.
- Kar, S. and Varma, S. (1985). Determination of silicon‐silicon dioxide interface state properties from admittance measurements under illumination. Journal of Applied Physics, 58; 4256-4266.
- Karatas, S., Turut, A. and Altindal, S. (2005). Effects of 60Co γ-ray irradiation on the electrical characteristics of Au/n-GaAs (MS) structures. Nuclear Instruments & Methods A, 555, 260.
- Karataş, Ş., Türüt, A. (2006). Electrical properties of Sn/p-Si (MS) Schottky barrier diodes to be exposed to 60Co g-ray source. Nuclear Instruments and Methods in Physics Research A, 566, 584–589.
- Kido, J., Hongawa, K., Okuyama, K., Nagai, K. (1994). White light‐emitting organic electroluminescent devices using the poly(N‐vinylcarbazole) emitter layer doped with three fluorescent dyes. Applied Physics Letters, 64, 815.
- Lin, Z. Yi-Men, Z., Yu-Ming, Z., Chao, H. (2010). Neutron radiation effect on 4H-SiC MESFETs and SBDs. Journal of Semiconductors, 31, 114006.
- Mamor, M., Sellai, A., Bouziane, K., Al. Harthi, S. H., Al. Busaidi, M. and Gard, F. S. (2007). Influence of He-ion irradiation on the characteristics of Pd/n-Si0.90Ge0.10/Si Schottky contacts. Journal Of Physics D-Applıed Physics, 40, 1351.
- Mott, N. F. (1938). Note on the contact between a metal and an insulator or semi-conductor. Proceedings of Cambridge Philosophical Society, Vol. 34, 568-572.
- Mott, N. F. (1939). Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences Vol. 171, No. 944, 27-38.
- Nicollian, E. H. and Brews, J. R. (1982). Metal Oxide Semiconductor (MOS) Physics and Technology. John Wiley, New York.
- Payanan, T., Leepipatpiboon, N., Varanusupakul, P. (2013). Low-temperature cleanup with solid-phase extraction for the determination of polycyclic aromatic hydrocarbons in edible oils by reversed phase liquid chromatography with fluorescence detection. Food Chemistry, 141, 2720.
- Rawa-Adkonis, M., Wolska, L., Namiesnik, J. (2006). Analytical Procedures for PAH and PCB Determination in Water Samples—Error Sources. Critical Reviews In Analytical Chemistry, 36, 63.
- Rhoderic, E. M. and Williams, R. H. (1988). Metal Semiconductor Contacts. 2nd Ed. Clarendon and Oxford.
- Ruifeng, Z., Haipeng, Z., Jiacong, S. (1999). Blue light-emitting diodes based on koronen-doped polymers. Synthetıc Metals, 105, 49.
- Saqri, N., Felix, Al J.F., Aziz, M., Jameel, D., Araujo, C.I.L., Albalawi, H. et al. (2015). Investigation of the effects of gamma radiation on the electrical properties of dilute GaAs1 xNx layers grown by molecular beam epitaxy, Current Applied Physics, 15, 1230e1237.
- Schottky, W. (1938). Halbleitertheorie der Sperrschicht. Naturwissenschaften, Vol. 26, 843.
- Singh, A. (1985). Characterization of interface states at Ni/nCdF2 Schottky barrier type diodes and the effect of CdF2 surface preparation. Solid-State Electron, 28, 223.
- Singh, R., Arora, S. K. and Kanjilal, D. (2001). Swift heavy ion irradiation induced modification of electrical characteristics of Au/n-Si Schottky barrier diode. Materials Scıence In Semiconductor Processing, 4, 425.
- Tataroglu, A, Altindal, S and Bulbul, M. (2006). 60Co γ irradiation effects on the current–voltage (I–V) characteristics of Al/SiO2/p-Si (MIS) Schottky diodes. Nuclear Instruments & Methods In Physics Research A, 568, 863-868.
- Xiao, J., Yang, H., Yin, Z., Guo, J., Boey, F., Zhang, H., Zhang, Q. (2011). Preparation, characterization, and photoswitching/light-emitting behaviors of koronen nanowires. Journal Of Materıals Chemistry, 21, 1423.
- Yıldırım, M. (2017). Determination of Contact Parameters of Au/n-Ge Schottky Barrier Diode with Rubrene Interlayer. Journal of Polytechnic, 20, 165.
- Yüksel, Ö. F., Tugluoglu, N, Calıskan, F., Yıldırım, M. (2016). Temperature Dependence of Current-Voltage Characteristics of Al/Rubrene/n-GaAs (100) Schottky Barrier Diodes. Materials Today, 3, 1271.
- Yüksel, Ö. F., Kus, M., Yıldırım, M. (2017). Capacitance and Conductance–Frequency Characteristics of Au/n-Si Schottky Structure with Perylene-Diimide (PDI) Organic Interlayer. Journal of Electronic Materials, 46, 882.
- Zhang, R., Zheng, H., Shen, J. (1999). Blue light-emitting diodes based on koronen-doped polymers. Synthetic Metals, 105, 49.
- Zhan, C., Jiang Y. Y., Yang, M. Y., Lu, L. H., Xiao, S. Q. (2014). Synthesis and optoelectronic properties of a novel molecular semiconductor of dithieno[5,6-b:11,12-b′]koronen-2,3,8,9-tetracarboxylic tetraester. Chınese Chemıcal Letters, 25, 65.