Araştırma Makalesi
BibTex RIS Kaynak Göster

Ekolojik Bağlantılılığı İyileştirmek İçin Korunan Alanlar Arasındaki Bariyerlerin Belirlenmesi

Yıl 2021, Cilt: 11 Sayı: 2, 355 - 369, 15.12.2021
https://doi.org/10.31466/kfbd.835382

Öz

Korunan alanların küresel ölçekte iki görevi vardır: Birincisi, biyolojik çeşitliliği korumak ve ikincisi, ekosistem servislerinin devamlılığını sağlamak. Bir bölgedeki korunan alanların birbirleri arasındaki potansiyel bağlantıların ve bu bağlantılar arasındaki engellerin ya da restorasyon noktalarının belirlenmesi, biyolojik çeşitlilik kapsamında koruma stratejilerinin etkin bir şekilde geliştirilmesi ve uygulanması açısından oldukça önemlidir. Bu çalışmada, Rize peyzajındaki biyolojik çeşitliliği desteklemek için önce, 10 farklı korunan alan arasındaki potansiyel bağlantı koridorları belirlenmiş, sonra bu koridorlardaki ekolojik akışları engelleyebilecek bariyerler 100 m, 500 m ve 300 m’lik tarama yarıçapları kullanılarak tespit edilmiştir. Her iki analiz için Least Cost Path ve Cost Weighted Distance yöntemleri kullanılmıştır. En uygun koridorlar, Kaçkar Dağları Milli Parkı-1. Derece Doğal Sit Alanları-Yaban Hayatı Koruma ve Geliştirme Sahası ile Fırtına Deresi arasında tespit edilmiştir. Bariyerler için belirlenen tarama yarıçapları dikkate alınarak iyileştirme puanları hesaplanmıştır. Sonuçta, 100 m, 500 m ve 300 m’lik yarıçaplarda en yüksek iyileştirme puanları sırasıyla 21.1, 4.49 ve 7.0 olarak hesaplanmış ve bu puanlara göre Karadere, Handüzü Tabiat Parkı, Uzungöl Özel Çevre Koruma Alanı ve Kaçkar Dağları Milli Parkı arasında bariyerlerin olduğunu göstermiştir. Bu çalışmada kullanılan yöntem, Rize peyzajındaki korunan alanlar için koruma stratejileri üretmek açısından önemlidir. Bu çalışmanın sonuçları sadece Rize peyzajındaki korunan alanlar için değil, öncelikli planlama çalışmalarında da yönlendirici olacaktır.

Kaynakça

  • Adriaensen, F., Chardon, J. P., De Blust, G., Swinnen, E., Villalba, S., Gulinck, H., & Matthysen, E. (2003). The application of ‘least-cost’ modelling as a functional landscape model. Landscape and Urban Planning, 64(4), 233-247. doi:https://doi.org/10.1016/S0169-2046(02)00242-6
  • Baldwin, R. F., Perkl, R. M., Trombulak, S. C., & Burwell, W. B. (2010). Modeling Ecoregional Connectivity. In S. C. Trombulak & R. F. Baldwin (Eds.), Landscape-scale Conservation Planning (pp. 349-367). Dordrecht: Springer Netherlands.
  • Bingham, H. C., Juffe Bignoli, D., Lewis, E., MacSharry, B., Burgess, N. D., Visconti, P., . . . Kingston, N. (2019). Sixty years of tracking conservation progress using the World Database on Protected Areas. Nature Ecology & Evolution, 3(5), 737-743. doi:10.1038/s41559-019-0869-3
  • Carroll, C., McRae, B. H., & Brookes, A. (2012). Use of linkage mapping and centrality analysis across habitat gradients to conserve connectivity of Gray wolf populations in Western North America. Conservation Biology, 26(1), 78-87.
  • Castillo, L. S., Correa Ayram, C. A., Matallana Tobón, C. L., Corzo, G., Areiza, A., González-M..R., . . . Godínez-Gómez, O. (2020). Connectivity of protected areas: Effect of human pressure and subnational contributions in the ecoregions of tropical Andean Countries. Land, 9(8), 239. Retrieved from https://www.mdpi.com/2073-445X/9/8/239
  • Chardon, J. P., Adriaensen, F., & Matthysen, E. (2003). Incorporating landscape elements into a connectivity measure: a case study for the Speckled wood butterfly (Pararge aegeria L.). Landscape Ecology, 18(6), 561-573. doi:10.1023/A:1026062530600
  • Corrigan, C., Bingham, H., Shi, Y., Lewis, E., Chauvenet, A., & Kingston, N. (2018). Quantifying the contribution to biodiversity conservation of protected areas governed by indigenous peoples and local communities. Biological Conservation, 227, 403-412. doi:https://doi.org/10.1016/j.biocon.2018.09.007
  • Cushman, S. A., McKelvey, K. S., Hayden, J., & Schwartz, M. K. (2006). Gene flow in complex landscapes: testing multiple hypotheses with causal modeling. The American Naturalist, 168(4), 486-499. doi:10.1086/506976
  • Forman, R. T. T. (1995). Land mosaics : The Ecology of Landscapes and Regions Cambridge ; New York: Cambridge University Press.
  • Graham, C. H. (2001). Factors influencing movement patterns of Keel-Billed Toucans in a fragmented tropical landscape in Southern Mexico. Conservation Biology, 15(6), 1789-1798. Retrieved from http://www.jstor.org/stable/3061279
  • Jalkanen, J., Toivonen, T., & Moilanen, A. (2020). Identification of ecological networks for land-use planning with spatial conservation prioritization. Landscape Ecology, 35(2), 353-371. doi:10.1007/s10980-019-00950-4
  • Knaapen, J. P., Scheffer, M., & Harms, B. (1992). Estimating habitat isolation in landscape planning. Landscape and Urban Planning, 23(1), 1-16. doi:https://doi.org/10.1016/0169-2046(92)90060-D
  • Margules, C. R., & Pressey, R. L. (2000). Systematic conservation planning. Nature, 405(6783), 243-253. doi:10.1038/35012251
  • McRae, B. H., Dickson, B. G., Keitt, T. H., & Shah, V. B. (2008). Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology, 89(10), 2712-2724. doi:10.1890/07-1861.1
  • McRae, B. H., Hall, S. A., Beier, P., & Theobald, D. M. (2012). Where to restore ecological connectivity? Detecting barriers and quantifying restoration benefits. PLOS ONE, 7(12), e52604. doi:10.1371/journal.pone.0052604
  • McRae, B. H., & Kavanagh, D. M. (2011). Linkage Mapper Connectivity Analysis Software. Retrieved from http://www.circuitscape.org/linkagemapper.
  • Panzacchi, M., Van Moorter, B., Strand, O., Saerens, M., Kivimäki, I., St. Clair, C. C., . . . Boitani, L. (2016). Predicting the continuum between corridors and barriers to animal movements using Step Selection Functions and Randomized Shortest Paths. Journal of Animal Ecology, 85(1), 32-42. doi:10.1111/1365-2656.12386
  • Pinto, N., & Keitt, T. H. (2009). Beyond the least-cost path: evaluating corridor redundancy using a graph-theoretic approach. Landscape Ecology, 24(2), 253-266. doi:10.1007/s10980-008-9303-y
  • Santini, L., Saura, S., & Rondinini, C. (2016). Connectivity of the global network of protected areas. Diversity and Distributions, 22(2), 199-211. doi:10.1111/ddi.12390
  • Saura, S., Bertzky, B., Bastin, L., Battistella, L., Mandrici, A., & Dubois, G. (2018). Protected area connectivity: Shortfalls in global targets and country-level priorities. Biological Conservation, 219, 53-67. doi:https://doi.org/10.1016/j.biocon.2017.12.020
  • Schwartz, M. K., Copeland, J. P., Anderson, N. J., Squires, J. R., Inman, R. M., McKelvey, K. S., . . . Cushman, S. A. (2009). Wolverine gene flow across a narrow climatic niche. Ecology, 90(11), 3222-3232. doi:10.1890/08-1287.1
  • Singleton, P. H., Gaines, W., & Lehmkuhl, J. (2002). Landscape permeability for large carnivores in Washington: a geographic information system weighted-distance and least-cost corridor assessment.
  • Stewart, F. E. C., Darlington, S., Volpe, J. P., McAdie, M., & Fisher, J. T. (2019). Corridors best facilitate functional connectivity across a protected area network. Scientific Reports, 9(1), 10852. doi:10.1038/s41598-019-47067-x
  • Taylor, P. D., Fahrig, L., Henein, K., & Merriam, G. (1993). Connectivity is a vital element of landscape structure. Oikos, 68, 571-573.
  • Tesfaw, A. T., Pfaff, A., Golden Kroner, R. E., Qin, S., Medeiros, R., & Mascia, M. B. (2018). Land-use and land-cover change shape the sustainability and impacts of protected areas. Proceedings of the National Academy of Sciences, 115(9), 2084-2089. doi:10.1073/pnas.1716462115
  • Tischendorf, L., & Fahrig, L. (2000). On the usage and measurement of landscape connectivity. Oikos, 90(1), 7-19. doi:10.1034/j.1600-0706.2000.900102.x
  • Wilson, K. A., Underwood, E. C., Morrison, S. A., Klausmeyer, K. R., Murdoch, W. W., Reyers, B., . . . Possingham, H. P. (2007). Conserving biodiversity efficiently: What to do, where, and when. PLOS Biology, 5(9), e223. doi:10.1371/journal.pbio.0050223
  • Zeller, K. A., McGarigal, K., & Whiteley, A. R. (2012). Estimating landscape resistance to movement: a review. Landscape Ecology, 27(6), 777-797. doi:10.1007/s10980-012-9737-0

Detecting Barriers Between Protected Areas to Restore Ecological Connectivity

Yıl 2021, Cilt: 11 Sayı: 2, 355 - 369, 15.12.2021
https://doi.org/10.31466/kfbd.835382

Öz

Protected areas have two tasks on a global scale: First, to protect biodiversity and second, to ensure the continuity of ecosystem services. Identifying potential links between protected areas in a region and barriers between these links or restoration points is very important for the effective development and implementation of conservation strategies within the scope of biodiversity. In this study firstly, potential connectivity corridors between 10 different protected areas were determined to support the biological diversity in the Rize landscape, then the barriers that could block the ecological flows in these corridors were determined by using 100 m, 500 m, 300 m radii. Least Cost Path and Cost Weighted Distance methods were used for both analyses. The most suitable corridors have been identified between Kaçkar Mountains National Park-1st Degree Natural Protected Areas-Wildlife Protection and Development Area and Firtina Creek. Improvement scores were calculated by considering the radii determined for the barriers. As a result, the highest improvement scores at 100 m, 500 m 300 m radii were calculated as 21.1, 4.49, and 7.0, respectively, and according to these scores, it showed that there were barriers between Karadere, Handüzü Nature Park, Uzungöl Special Environmental Protection Area and Kaçkar Mountains National Park. The method used in this study is important in terms of generating protection strategies for protected areas in the Rize landscape. The results of this study will guide not only protected areas in Rize landscape, but also conservation priority planning studies.

Kaynakça

  • Adriaensen, F., Chardon, J. P., De Blust, G., Swinnen, E., Villalba, S., Gulinck, H., & Matthysen, E. (2003). The application of ‘least-cost’ modelling as a functional landscape model. Landscape and Urban Planning, 64(4), 233-247. doi:https://doi.org/10.1016/S0169-2046(02)00242-6
  • Baldwin, R. F., Perkl, R. M., Trombulak, S. C., & Burwell, W. B. (2010). Modeling Ecoregional Connectivity. In S. C. Trombulak & R. F. Baldwin (Eds.), Landscape-scale Conservation Planning (pp. 349-367). Dordrecht: Springer Netherlands.
  • Bingham, H. C., Juffe Bignoli, D., Lewis, E., MacSharry, B., Burgess, N. D., Visconti, P., . . . Kingston, N. (2019). Sixty years of tracking conservation progress using the World Database on Protected Areas. Nature Ecology & Evolution, 3(5), 737-743. doi:10.1038/s41559-019-0869-3
  • Carroll, C., McRae, B. H., & Brookes, A. (2012). Use of linkage mapping and centrality analysis across habitat gradients to conserve connectivity of Gray wolf populations in Western North America. Conservation Biology, 26(1), 78-87.
  • Castillo, L. S., Correa Ayram, C. A., Matallana Tobón, C. L., Corzo, G., Areiza, A., González-M..R., . . . Godínez-Gómez, O. (2020). Connectivity of protected areas: Effect of human pressure and subnational contributions in the ecoregions of tropical Andean Countries. Land, 9(8), 239. Retrieved from https://www.mdpi.com/2073-445X/9/8/239
  • Chardon, J. P., Adriaensen, F., & Matthysen, E. (2003). Incorporating landscape elements into a connectivity measure: a case study for the Speckled wood butterfly (Pararge aegeria L.). Landscape Ecology, 18(6), 561-573. doi:10.1023/A:1026062530600
  • Corrigan, C., Bingham, H., Shi, Y., Lewis, E., Chauvenet, A., & Kingston, N. (2018). Quantifying the contribution to biodiversity conservation of protected areas governed by indigenous peoples and local communities. Biological Conservation, 227, 403-412. doi:https://doi.org/10.1016/j.biocon.2018.09.007
  • Cushman, S. A., McKelvey, K. S., Hayden, J., & Schwartz, M. K. (2006). Gene flow in complex landscapes: testing multiple hypotheses with causal modeling. The American Naturalist, 168(4), 486-499. doi:10.1086/506976
  • Forman, R. T. T. (1995). Land mosaics : The Ecology of Landscapes and Regions Cambridge ; New York: Cambridge University Press.
  • Graham, C. H. (2001). Factors influencing movement patterns of Keel-Billed Toucans in a fragmented tropical landscape in Southern Mexico. Conservation Biology, 15(6), 1789-1798. Retrieved from http://www.jstor.org/stable/3061279
  • Jalkanen, J., Toivonen, T., & Moilanen, A. (2020). Identification of ecological networks for land-use planning with spatial conservation prioritization. Landscape Ecology, 35(2), 353-371. doi:10.1007/s10980-019-00950-4
  • Knaapen, J. P., Scheffer, M., & Harms, B. (1992). Estimating habitat isolation in landscape planning. Landscape and Urban Planning, 23(1), 1-16. doi:https://doi.org/10.1016/0169-2046(92)90060-D
  • Margules, C. R., & Pressey, R. L. (2000). Systematic conservation planning. Nature, 405(6783), 243-253. doi:10.1038/35012251
  • McRae, B. H., Dickson, B. G., Keitt, T. H., & Shah, V. B. (2008). Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology, 89(10), 2712-2724. doi:10.1890/07-1861.1
  • McRae, B. H., Hall, S. A., Beier, P., & Theobald, D. M. (2012). Where to restore ecological connectivity? Detecting barriers and quantifying restoration benefits. PLOS ONE, 7(12), e52604. doi:10.1371/journal.pone.0052604
  • McRae, B. H., & Kavanagh, D. M. (2011). Linkage Mapper Connectivity Analysis Software. Retrieved from http://www.circuitscape.org/linkagemapper.
  • Panzacchi, M., Van Moorter, B., Strand, O., Saerens, M., Kivimäki, I., St. Clair, C. C., . . . Boitani, L. (2016). Predicting the continuum between corridors and barriers to animal movements using Step Selection Functions and Randomized Shortest Paths. Journal of Animal Ecology, 85(1), 32-42. doi:10.1111/1365-2656.12386
  • Pinto, N., & Keitt, T. H. (2009). Beyond the least-cost path: evaluating corridor redundancy using a graph-theoretic approach. Landscape Ecology, 24(2), 253-266. doi:10.1007/s10980-008-9303-y
  • Santini, L., Saura, S., & Rondinini, C. (2016). Connectivity of the global network of protected areas. Diversity and Distributions, 22(2), 199-211. doi:10.1111/ddi.12390
  • Saura, S., Bertzky, B., Bastin, L., Battistella, L., Mandrici, A., & Dubois, G. (2018). Protected area connectivity: Shortfalls in global targets and country-level priorities. Biological Conservation, 219, 53-67. doi:https://doi.org/10.1016/j.biocon.2017.12.020
  • Schwartz, M. K., Copeland, J. P., Anderson, N. J., Squires, J. R., Inman, R. M., McKelvey, K. S., . . . Cushman, S. A. (2009). Wolverine gene flow across a narrow climatic niche. Ecology, 90(11), 3222-3232. doi:10.1890/08-1287.1
  • Singleton, P. H., Gaines, W., & Lehmkuhl, J. (2002). Landscape permeability for large carnivores in Washington: a geographic information system weighted-distance and least-cost corridor assessment.
  • Stewart, F. E. C., Darlington, S., Volpe, J. P., McAdie, M., & Fisher, J. T. (2019). Corridors best facilitate functional connectivity across a protected area network. Scientific Reports, 9(1), 10852. doi:10.1038/s41598-019-47067-x
  • Taylor, P. D., Fahrig, L., Henein, K., & Merriam, G. (1993). Connectivity is a vital element of landscape structure. Oikos, 68, 571-573.
  • Tesfaw, A. T., Pfaff, A., Golden Kroner, R. E., Qin, S., Medeiros, R., & Mascia, M. B. (2018). Land-use and land-cover change shape the sustainability and impacts of protected areas. Proceedings of the National Academy of Sciences, 115(9), 2084-2089. doi:10.1073/pnas.1716462115
  • Tischendorf, L., & Fahrig, L. (2000). On the usage and measurement of landscape connectivity. Oikos, 90(1), 7-19. doi:10.1034/j.1600-0706.2000.900102.x
  • Wilson, K. A., Underwood, E. C., Morrison, S. A., Klausmeyer, K. R., Murdoch, W. W., Reyers, B., . . . Possingham, H. P. (2007). Conserving biodiversity efficiently: What to do, where, and when. PLOS Biology, 5(9), e223. doi:10.1371/journal.pbio.0050223
  • Zeller, K. A., McGarigal, K., & Whiteley, A. R. (2012). Estimating landscape resistance to movement: a review. Landscape Ecology, 27(6), 777-797. doi:10.1007/s10980-012-9737-0
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Huriye Simten Sütünç 0000-0002-0149-9953

Yayımlanma Tarihi 15 Aralık 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 11 Sayı: 2

Kaynak Göster

APA Sütünç, H. S. (2021). Detecting Barriers Between Protected Areas to Restore Ecological Connectivity. Karadeniz Fen Bilimleri Dergisi, 11(2), 355-369. https://doi.org/10.31466/kfbd.835382