Araştırma Makalesi
BibTex RIS Kaynak Göster

TiO2 Nanoparçacık Kaplı Pamuklu Kumaşın Fotokatalitik ve Antibakteriyel Özelliklerinin İncelenmesi

Yıl 2022, Cilt: 12 Sayı: 2, 1017 - 1031, 15.12.2022
https://doi.org/10.31466/kfbd.1183521

Öz

Bu çalışmada, fotokatalitik ve antibakteriyel özelliklere sahip, TiCl4'ün hidroliziyle sentezlenen farklı miktarlarda TiO2 nanoparçacıklar ile yüzey modifiye edilmiş pamuklu kumaşlar hazırlandı. Hazırlanan bu TiO2 nanoparçacıkları kaplı pamuklu kumaşların fotokatalitik aktiviteleri UVA ışınları altında Kristal Viyolet (KV) boyar maddesinin bozunmasında incelendi. KV’nin, TiO2 nanoparçacıkları kaplı pamuklu kumaşlar üzerindeki fotokatalitik bozunması için en uygun şartlar 0,625 mgL-1 başlangıç KV konsantrasyonu ve 57 mgL-1 TiO2 nanoparçacık yükleme miktarı olarak belirlendi. Bu en uygun şartlar altında, ilgili fotokatalizör varlığında 40 dakika içerisinde UVA ışınları altında KV’nin % 89,31’inin bozunmaya uğradığı tespit edildi ve bozunma reaksiyonunun birinci dereceden kinetiği takip ettiği belirlendi. Reaktif tür deneyleri, hidroksil radikallerinin diğer radikal türlere nispeten daha önemli bir rol oynadığını ortaya çıkardı ve elde edilen bu verilere göre olası bozunma mekanizması önerildi. Ayrıca TiO2 kaplanmış pamuklu kumaşların antibakteriyel aktivitesinin incelenmesi için disk difüzyon metodu kullanıldı. Antibakteriyel aktivite tayininde Gram pozitif bakteri olarak Staphylococcus aureus (ATCC 6538), Gram negatif bakteri olarak Escherichia coli (ATCC 25922) üzerinde denemeler gerçekleştirildi. Disk difüzyon deneyi sonuçlarına göre; 38 ve 57 mgL-1 konsantrasyonlarında TiO2 ile kaplanmış pamuklu kumaşlarda, antibiyotik referansların oluşturduğu inhibisyon zonu çapına kıyasla relatif olarak E. coli’ye karşı sırasıyla % 40,9 ve % 60,2 oranlarında antibakteriyel etki görülmüştür. 

Destekleyen Kurum

Erzincan Binali Yıldırım Üniversitesi Bilimsel Araştırmalar Birimi

Proje Numarası

FBA-2020-699

Teşekkür

Bu çalışma, Erzincan Binali Yıldırım Üniversitesi Bilimsel Araştırmalar Birimi tarafından FBA-2020-699 kodlu proje ile desteklenmiştir. Finansal desteklerinden dolayı Erzincan Binali Yıldırım Üniversitesi Bilimsel Araştırmalar Birimi’ne teşekkür ederim.

Kaynakça

  • Abid, M., Bouattour, S., Ferraria, A. M., Conceição, D. S., Carapeto, A. P., Vieira Ferreira, L. F., Botelho do Rego, A, M., Rei Vilar, M., Boufi, S., (2017). Functionalization of cotton fabrics with plasmonic photo-active nanostructured Au-TiO2 layer. Carbohydrate Polymers, 176, 336–344. https://doi:10.1016/j.carbpol.2017.08.090
  • Addamo, M., Augugliaro, V., Di Paola, A., Garcıa-Lopez, E., Loddo, V., Marcı, G., Palmisano, L., (2005). Preparation and photoactivity of nanostructured TiO2 particles obtained by hydrolysis of TiCl4. Colloids Surf. A Physicochem. Eng. Asp., 265, 23–31. https://doi:10.1016/j.colsurfa.2004.11.048
  • Afzal, S., Daoud, W. A., Langford, S. J., (2013). Visible-light self-cleaning cotton by metalloporphyrin-sensitized photocatalysis. Applied Surface Science, 275, 36–42, https://doi:10.1016/j.apsusc.2013.01.141
  • Chen, D., Mai, Z., Liu, X., Ye, D., Zhang, H., Yin, X., Zhou, Y., Liu, M., Xu, W., (2018). UV-blocking, superhydrophobic and robust cotton fabrics fabricated using polyvinylsilsesquioxane and nano-TiO2. Cellulose, 25 (6), 3635–3647. https://doi:10.1007/s10570-018-1790-7
  • Çağlar B., Keleş Güner E., Keleş K., Özdokur K.V., Çubuk O., Çoldur F., Çağlar S., Topçu C., Tabak A., (2018). Fe3O4 nanoparticles decorated smectite nanocomposite: Characterization, photocatalytic and electrocatalytic activities. Solid State Sciences, 83, 122–136, https://doi.org/10.1016/j.solidstatesciences.2018.07.013.
  • Çağlar. B., Guner, E.K., Özdokur, K.V., Özdemir, A.O., İçer, F., Çağlar, S., Doğan, B., Beşer, B.M., Çırak, Ç., Tabak, A., Ersoy, S., (2021). Application of BiFeO3 and Au/BiFeO3 decorated kaolinite nanocomposites as efficient photocatalyst for degradation of dye and electrocatalyst for oxygen reduction reaction. J. Photochem. Photobiol. A Chem., 418, 113400. https://doi.org/10.1016/j.jphotochem.2021.113400
  • El-Nahhal, I. M., Elmanama, A. A., Amara, N., Qodih, F. S., Selmane, M., Chehimi, M. M., (2018). The efficacy of surfactants in stabilizing coating of nano-structured CuO particles onto the surface of cotton fibers and their antimicrobial activity. Materials Chemistry and Physics, 215, 221–228. https://doi:10.1016/j.matchemphys.2018.05.012
  • Erjaee, H., Rajaian, H., Nazifi, S., (2017). Synthesis and characterization of novel silver nanoparticles using Chamaemelum nobile extract for antibacterial application. Advances in Natural Sciences: Nanoscience and Nanotechnology, 8, 025004. https://doi.org/10.1088/2043-6254/aa690b.
  • Ghosh, T., Chattopadhyay, A., Pramanik, S., Mukherjee, S., Das, S., Mandal, A. C., Kuiri, P. K., (2022). Bio-synthesis of ZnO nanoparticles and their in-situ coating on cotton fabric using Azadirachta Indica leaf extract for enhanced antibacterial activity. Materials Technology, 37(11), 1755-1765. https://doi:10.1080/10667857.2021.1978755
  • Güner, E. K., İçer, F., Özdemir, A. O., Çağlar, B., (2021). Farklı ışık kaynakları altında kristal viyole boyar maddesinin kaolin-BiFeO3 nanokompozit üzerinde fotobozunması. GÜFBED/GUSTIJ, 11(3), 815-827. https://doi.org/10.17714/gumusfenbil.877702
  • Horrocks A. R., Anand, S. C., (2003). Teknik Tekstiller El Kitabı (Technical Textiles Handbook). İstanbul: Türk Tekstil Vakfı (The Textile Institute).
  • Hwan Ko, Y., Kim, S., Su Yu, J., (2012). Electrochemical synthesis of hierarchical β-Ni(OH)2 nanostructures on conductive textiles. Materials Letters, 84, 132–135. https://doi:10.1016/j.matlet.2012.06.075
  • İbrahim, M. M., Mezni, A., El-Sheshtawy, H. S., Abu Zaid, A. A., Alsawat, M., El-Shafi, N., Ahmed S.I., Shaltout, A. A., Amin, M. A.., Kumaria, T., Altalhi, T., (2019). Direct Z-scheme of Cu2O/TiO2 enhanced self-cleaning, antibacterial activity, and UV protection of cotton fiber under sunlight. Applied Surface Science, 479, 953 – 962. https://doi:10.1016/j.apsusc.2019.02.169
  • Jiang, C., Liu, W., Yang, M., Liu, C., He, S., Xie, Y., Wang, Z., (2018) Facile fabrication of robust fluorine-free self-cleaning cotton textiles with superhydrophobicity, photocatalytic activity, and UV durability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 559, 235-242. https://doi:10.1016/j.colsurfa.2018.09.048
  • Jiang, H. Y., Ouyang, Z. Y., Hu, R., Wan, J., Zhu, J. J., (2022) Self-cleaning Finishing of Cotton Fabric with TiO2/Ag2S/rGO Composite”, Fibers and Polymers, 23(1), 254-262. https://doi:10.1007/s12221-021-0119-6
  • Jiang Y.R., Lin H.P., Chung W.H., Dai Y.M., Lin W.Y., Chen C.C., (2015). Controlled hydrothermal synthesis of BiOxCly/BiOmIn composites exhibiting visible- light photocatalytic degradation of crystal violet, Journal of Hazardous Materials 283: 787–805. https://doi.org/10.1016/j.jhazmat.2014.10.025
  • Kang, C. K., Kim, S. S., Kim, S., Lee, J., Lee, J.-H., Roh, C., Lee, J., (2016). Antibacterial cotton fibers treated with silver nanoparticles and quaternary ammonium salts. Carbohydrate Polymers, 151, 1012–1018. https://doi:10.1016/j.carbpol.2016.06.043
  • Khani A., Sohrabı M.R., Khosravı M., Davallo M., (2013). Enhancing puri_cation of an azo dye solution in nanosized zero-valent iron-ZnO photocatalyst system using subsequent semibatch packed-bed reactor, Turkish Journal of Engineering & Environmental Sciences, 37, 91-99. https://doi:10.3906/muh-1201-6.
  • Lee, J. H., Yang, Y. S., (2005). Effect of hydrolysis conditions on morphology and phase content in the crystalline TiO2 nanoparticles synthesized from aqueous TiCl4 solution by precipitation, Mater. Chem. Phys., 93, 237–242. https://doi:10.1016/j.matchemphys.2005.03.020
  • Li, X., Shi, J. L., Hao H., Lang, X., (2018). Visible light-induced selective oxidation of alcohols with air by dye-sensitized TiO2 photocatalysis. Applied Catalysis B: Environmental, 232, 260-267, https://doi.org/10.1016/j.apcatb.2018.03.043
  • Lin, D., Zeng, X., Li, H., Lai, X., Wu, T., (2019). One-pot fabrication of superhydrophobic and flame-retardant coatings on cotton fabrics via sol-gel reaction. Journal of Colloid and Interface Science, 533, 198–206. https://doi:10.1016/j.jcis.2018.08.060
  • Mai, Z., Xiong, Z., Shu, X., Liu, X., Zhang, H., Yin, X., Zhou, Y., Liu, M., Zhang, M., Xu, W., Chen, D., (2018). Multifunctionalization of cotton fabrics with polyvinylsilsesquioxane/ZnO composite coatings. Carbohydrate Polymers, 199, 516–525. https://doi:10.1016/j.carbpol.2018.07.052
  • Mancuso, A., Morante, N., De Carluccio, M., Sacco, O., Rizzo, L., Fontana, M., Esposito, S., Vaiano, V., Sannino, D., (2022). Solar driven photocatalysis using iron and chromium doped TiO2 coupled to moving bed biofilm process for olive mill wastewater treatment. Chemical Engineering Journal, 450(2), 138107, https://doi.org/10.1016/j.cej.2022.138107
  • Mecit D., Ilgaz S., Duran D., Başal G., Gülümser T., Tarakçıoğlu I., (2007). Teknik Tekstiller Ve Kullanım Alanları (Bölüm 1), Tekstil ve Konfeksiyon, 17(2), 79-82.
  • Mecit D., Ilgaz S., Duran D., Başal G., Gülümser T., Tarakçıoğlu I., (2007). Teknik Tekstiller Ve Kullanım Alanları (Bölüm 2), Tekstil ve Konfeksiyon, 17(3), 154-161.
  • Özdemir, A. O., Caglar, B., Çubuk, O., Coldur, F., Kuzucu, M., Keles Guner, E., Doğan, B., Caglar, S., Özdokur, K. V., (2022). Facile synthesis of TiO2-coated cotton fabric and its versatile applications in photocatalysis, pH sensor and antibacterial activities”, Materials Chemistry and Physics, 287. https://doi:10.1016/j.matchemphys.2022.126342
  • Pant, B., Park, M., Park, S.J., (2019). Recent Advances in TiO2 Films Prepared by Sol-Gel Methods for Photocatalytic Degradation of Organic Pollutants and Antibacterial Activities. Coatings, 9, 613. https://doi:10.3390/coatings9100613
  • Ran, J., He, M., Li, W., Cheng, D., & Wang, X., (2018). Growing ZnO Nanoparticles on Polydopamine-Templated Cotton Fabrics for Durable Antimicrobial Activity and UV Protection. Polymers, 10(5), 495. https://doi:10.3390/polym10050495
  • Rana, M., Hao, B., Mu, L., Chen, L., & Ma, P.-C., (2016). Development of multi-functional cotton fabrics with Ag/AgBr–TiO2 nanocomposite coating. Composites Science and Technology, 122, 104–112. https://doi:10.1016/j.compscitech.2015.11.016
  • Rehman, A., Rehman, A., Khalid, W., Safdar, F., Basit, A., Maqsood, H. S., Iqbal, K., Ashraf, M., (2018). Simultaneous dyeing and anti-bacterial finishing on 100% cotton fabric: process establishment and characterization. Cellulose, 25(9), 5405–5414. https://doi:10.1007/s10570-018-1934-9
  • Riaz, S., Ashraf, M., Hussain, T., & Hussain, M. T., (2019). Modification of silica nanoparticles to develop highly durable superhydrophobic and antibacterial cotton fabrics. Cellulose, 26, 5159–5175. https://doi:10.1007/s10570-019-02440-x
  • Rosace G., Guido E., Colleoni C., Brucale M., Piperopoulos E., Milone C., Plutino M. R., (2017). Halochromic resorufin-GPTMS hybrid sol-gel: Chemical-physicalproperties and use as pH sensor fabric coating. Sensors and Actuators B, 241, 85–95.
  • Sboui, M., Lachheb, H., Swaminathan, M., Pan, J.H., (2022). Low-temperature deposition and crystallization of RuO2/TiO2 on cotton fabric for efficient solar photocatalytic degradation of o-toluidine. Cellulose, 29, 1189–1204. https://doi:10.1007/s10570-021-04308-5
  • Tobola M. F., Ciesielska M., Maliszewska I., Rumijowska O. R., Wozniak P. S., Teterycz H., Bryjak M., (2018). Deposition of Zinc Oxide on Different Polymer Textiles and Their Antibacterial Properties. Materials, 11, 707. https://doi:10.3390/ma11050707
  • Xu, B., Ding, J., Feng, L., Ding, Y., Ge, F., & Cai, Z., (2015). Self-cleaning cotton fabrics via combination of photocatalytic TiO2 and superhydrophobic SiO2. Surface and Coatings Technology, 262, 70–76. https://doi:10.1016/j.surfcoat.2014.12.017
  • Xu, L., Shen, Y., Ding, Y., & Wang, L., (2018). Superhydrophobic and Ultraviolet-Blocking Cotton Fabrics Based on TiO2/SiO2 Composite Nanoparticles. Journal of Nanoscience and Nanotechnology, 18(10), 6879–6886. https://doi:10.1166/jnn.2018.15463
  • Xu, Q., Duan, P., Zhang, Y., Fu, F., & Liu, X., (2018). Double Protect Copper Nanoparticles Loaded on L-cysteine Modified Cotton Fabric with Durable Antibacterial Properties. Fibers and Polymers, 19(11), 2324–2334. https://doi:10.1007/s12221-018-8621-1
  • Xu, Q., Ke, X., Cai, D., Zhang, Y., Fu, F., Endo, T., Liu, X., (2018). Silver-based, single-sided antibacterial cotton fabrics with improved durability via an l-cysteine binding effect. Cellulose, 25(3), 2129–2141. https://doi:10.1007/s10570-018-1689-3
  • Xu, Q., Ke, X., Ge, N., Shen, L., Zhang, Y., Fu, F., Liu, X., (2018). Preparation of Copper Nanoparticles Coated Cotton Fabrics with Durable Antibacterial Properties. Fibers and Polymers, 19(5), 1004–1013. https://doi:10.1007/s12221-018-8067-5
  • Vinoth, R., Karthik, P., Muthamizhchelvan, C., Neppolian B., Ashokkumar M., (2016). Carrier separation and charge transport characteristics of reduced graphene oxide supported visible-light active photocatalysts, Physical Chemistry Chemical Physics 18, 5179-5191. https://doi:10.1039/C5CP08041J
  • Yang, M., Liu, W., Jiang, C., He, S., Xie, Y., Wang, Z., (2018). Fabrication of superhydrophobic cotton fabric with fluorinated TiO2 sol by a green and one-step sol-gel process. Carbohydrate Polymers, 197, 75–82. https://doi:10.1016/j.carbpol.2018.05.075
  • Yang, M., Liu, W., Jiang, C., Xie, Y., Shi, H., Zhang, F., Wang, Z., (2019). Facile construction of robust superhydrophobic cotton textiles for effective UV protection, self-cleaning and oil-water separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 570, 172 – 181. https://doi:10.1016/j.colsurfa.2019.03.024
  • Yu, J., Pang, Z., Zheng, C., Zhou, T., Zhang, J., Zhou, H., Wei, Q., (2019). Cotton fabric finished by PANI/TiO2 with multifunctions of conductivity, anti-ultraviolet and photocatalysis activity. Applied Surface Science, 470, 84–90. https://doi:10.1016/j.apsusc.2018.11.112
  • Yuranova, T., Mosteo, R., Bandara, J., Laub, D., Kiwi, J., (2006). Self-cleaning cotton textiles surfaces modified by photoactive SiO2/TiO2 coating. Journal of Molecular Catalysis A: Chemical, 244(1-2), 160-167. https://doi:10.1016/j.molcata.2005.08.059
  • Zhou, L., Wang, H., Du, J., Fu, J., Wang, W., (2018). Eco-friendly and Durable Antibacterial Cotton Fabrics Prepared with Polysulfopropylbetaine. Fibers and Polymers, 19(6), 1228–1236. https://doi:10.1007/s12221-018-8053-y

Investigation of Photocatalytic and Antibacterial Properties of TiO2 Nanoparticules Coated Cotton Fabric

Yıl 2022, Cilt: 12 Sayı: 2, 1017 - 1031, 15.12.2022
https://doi.org/10.31466/kfbd.1183521

Öz

In this study, surface modified cotton fabrics were prepared with different amounts of TiO2 nanoparticles which has photocatalytic and antibacterial properties, synthesized by hydrolysis of TiCl4. The photocatalytic activities of the prepared cotton fabrics with coated TiO2 nanoparticles were investigated in the degradation of the Crystal Violet (KV) dyestuff under UV light irradiation. The TiO2 coated cotton fabric showed good photocatalytic performance for the degradation of Crystal Violet (KV) under UV light irradiation. The optimum conditions for photocatalytic degradation of KV on TiO2 nanoparticles coated cotton fabrics were determined as 0.625 mgL-1 initial KV concentration and 57 mgL-1 TiO2 nanoparticle loading amount. Under these optimum conditions, it was determined that 89.31% of the KV was decomposed under UV light irradiation within 40 minutes in the presence of the relevant photocatalyst, and it was determined that the degradation reaction followed first-order kinetics. Reactive species experiments revealed that hydroxyl radicals play a more important role than other radical species, and according to the results, possible degradation mechanism was suggested. In addition, disc diffusion method was used to examine the antibacterial activity of TiO2 coated cotton fabrics. Trials were performed on Staphylococcus aureus (ATCC 6538) as Gram-positive bacteria and Escherichia coli (ATCC 25922) as Gram-negative bacteria in the determination of antibacterial activity. According to the results of disk diffusion experiment; In cotton fabrics coated with TiO2 at 38 and 57 mgL-1 concentrations, approximately 40.9% and 60.2% antibacterial activity was observed against E. coli, respectively, compared to the diameter of the inhibition zone formed by the antibiotic references.

Proje Numarası

FBA-2020-699

Kaynakça

  • Abid, M., Bouattour, S., Ferraria, A. M., Conceição, D. S., Carapeto, A. P., Vieira Ferreira, L. F., Botelho do Rego, A, M., Rei Vilar, M., Boufi, S., (2017). Functionalization of cotton fabrics with plasmonic photo-active nanostructured Au-TiO2 layer. Carbohydrate Polymers, 176, 336–344. https://doi:10.1016/j.carbpol.2017.08.090
  • Addamo, M., Augugliaro, V., Di Paola, A., Garcıa-Lopez, E., Loddo, V., Marcı, G., Palmisano, L., (2005). Preparation and photoactivity of nanostructured TiO2 particles obtained by hydrolysis of TiCl4. Colloids Surf. A Physicochem. Eng. Asp., 265, 23–31. https://doi:10.1016/j.colsurfa.2004.11.048
  • Afzal, S., Daoud, W. A., Langford, S. J., (2013). Visible-light self-cleaning cotton by metalloporphyrin-sensitized photocatalysis. Applied Surface Science, 275, 36–42, https://doi:10.1016/j.apsusc.2013.01.141
  • Chen, D., Mai, Z., Liu, X., Ye, D., Zhang, H., Yin, X., Zhou, Y., Liu, M., Xu, W., (2018). UV-blocking, superhydrophobic and robust cotton fabrics fabricated using polyvinylsilsesquioxane and nano-TiO2. Cellulose, 25 (6), 3635–3647. https://doi:10.1007/s10570-018-1790-7
  • Çağlar B., Keleş Güner E., Keleş K., Özdokur K.V., Çubuk O., Çoldur F., Çağlar S., Topçu C., Tabak A., (2018). Fe3O4 nanoparticles decorated smectite nanocomposite: Characterization, photocatalytic and electrocatalytic activities. Solid State Sciences, 83, 122–136, https://doi.org/10.1016/j.solidstatesciences.2018.07.013.
  • Çağlar. B., Guner, E.K., Özdokur, K.V., Özdemir, A.O., İçer, F., Çağlar, S., Doğan, B., Beşer, B.M., Çırak, Ç., Tabak, A., Ersoy, S., (2021). Application of BiFeO3 and Au/BiFeO3 decorated kaolinite nanocomposites as efficient photocatalyst for degradation of dye and electrocatalyst for oxygen reduction reaction. J. Photochem. Photobiol. A Chem., 418, 113400. https://doi.org/10.1016/j.jphotochem.2021.113400
  • El-Nahhal, I. M., Elmanama, A. A., Amara, N., Qodih, F. S., Selmane, M., Chehimi, M. M., (2018). The efficacy of surfactants in stabilizing coating of nano-structured CuO particles onto the surface of cotton fibers and their antimicrobial activity. Materials Chemistry and Physics, 215, 221–228. https://doi:10.1016/j.matchemphys.2018.05.012
  • Erjaee, H., Rajaian, H., Nazifi, S., (2017). Synthesis and characterization of novel silver nanoparticles using Chamaemelum nobile extract for antibacterial application. Advances in Natural Sciences: Nanoscience and Nanotechnology, 8, 025004. https://doi.org/10.1088/2043-6254/aa690b.
  • Ghosh, T., Chattopadhyay, A., Pramanik, S., Mukherjee, S., Das, S., Mandal, A. C., Kuiri, P. K., (2022). Bio-synthesis of ZnO nanoparticles and their in-situ coating on cotton fabric using Azadirachta Indica leaf extract for enhanced antibacterial activity. Materials Technology, 37(11), 1755-1765. https://doi:10.1080/10667857.2021.1978755
  • Güner, E. K., İçer, F., Özdemir, A. O., Çağlar, B., (2021). Farklı ışık kaynakları altında kristal viyole boyar maddesinin kaolin-BiFeO3 nanokompozit üzerinde fotobozunması. GÜFBED/GUSTIJ, 11(3), 815-827. https://doi.org/10.17714/gumusfenbil.877702
  • Horrocks A. R., Anand, S. C., (2003). Teknik Tekstiller El Kitabı (Technical Textiles Handbook). İstanbul: Türk Tekstil Vakfı (The Textile Institute).
  • Hwan Ko, Y., Kim, S., Su Yu, J., (2012). Electrochemical synthesis of hierarchical β-Ni(OH)2 nanostructures on conductive textiles. Materials Letters, 84, 132–135. https://doi:10.1016/j.matlet.2012.06.075
  • İbrahim, M. M., Mezni, A., El-Sheshtawy, H. S., Abu Zaid, A. A., Alsawat, M., El-Shafi, N., Ahmed S.I., Shaltout, A. A., Amin, M. A.., Kumaria, T., Altalhi, T., (2019). Direct Z-scheme of Cu2O/TiO2 enhanced self-cleaning, antibacterial activity, and UV protection of cotton fiber under sunlight. Applied Surface Science, 479, 953 – 962. https://doi:10.1016/j.apsusc.2019.02.169
  • Jiang, C., Liu, W., Yang, M., Liu, C., He, S., Xie, Y., Wang, Z., (2018) Facile fabrication of robust fluorine-free self-cleaning cotton textiles with superhydrophobicity, photocatalytic activity, and UV durability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 559, 235-242. https://doi:10.1016/j.colsurfa.2018.09.048
  • Jiang, H. Y., Ouyang, Z. Y., Hu, R., Wan, J., Zhu, J. J., (2022) Self-cleaning Finishing of Cotton Fabric with TiO2/Ag2S/rGO Composite”, Fibers and Polymers, 23(1), 254-262. https://doi:10.1007/s12221-021-0119-6
  • Jiang Y.R., Lin H.P., Chung W.H., Dai Y.M., Lin W.Y., Chen C.C., (2015). Controlled hydrothermal synthesis of BiOxCly/BiOmIn composites exhibiting visible- light photocatalytic degradation of crystal violet, Journal of Hazardous Materials 283: 787–805. https://doi.org/10.1016/j.jhazmat.2014.10.025
  • Kang, C. K., Kim, S. S., Kim, S., Lee, J., Lee, J.-H., Roh, C., Lee, J., (2016). Antibacterial cotton fibers treated with silver nanoparticles and quaternary ammonium salts. Carbohydrate Polymers, 151, 1012–1018. https://doi:10.1016/j.carbpol.2016.06.043
  • Khani A., Sohrabı M.R., Khosravı M., Davallo M., (2013). Enhancing puri_cation of an azo dye solution in nanosized zero-valent iron-ZnO photocatalyst system using subsequent semibatch packed-bed reactor, Turkish Journal of Engineering & Environmental Sciences, 37, 91-99. https://doi:10.3906/muh-1201-6.
  • Lee, J. H., Yang, Y. S., (2005). Effect of hydrolysis conditions on morphology and phase content in the crystalline TiO2 nanoparticles synthesized from aqueous TiCl4 solution by precipitation, Mater. Chem. Phys., 93, 237–242. https://doi:10.1016/j.matchemphys.2005.03.020
  • Li, X., Shi, J. L., Hao H., Lang, X., (2018). Visible light-induced selective oxidation of alcohols with air by dye-sensitized TiO2 photocatalysis. Applied Catalysis B: Environmental, 232, 260-267, https://doi.org/10.1016/j.apcatb.2018.03.043
  • Lin, D., Zeng, X., Li, H., Lai, X., Wu, T., (2019). One-pot fabrication of superhydrophobic and flame-retardant coatings on cotton fabrics via sol-gel reaction. Journal of Colloid and Interface Science, 533, 198–206. https://doi:10.1016/j.jcis.2018.08.060
  • Mai, Z., Xiong, Z., Shu, X., Liu, X., Zhang, H., Yin, X., Zhou, Y., Liu, M., Zhang, M., Xu, W., Chen, D., (2018). Multifunctionalization of cotton fabrics with polyvinylsilsesquioxane/ZnO composite coatings. Carbohydrate Polymers, 199, 516–525. https://doi:10.1016/j.carbpol.2018.07.052
  • Mancuso, A., Morante, N., De Carluccio, M., Sacco, O., Rizzo, L., Fontana, M., Esposito, S., Vaiano, V., Sannino, D., (2022). Solar driven photocatalysis using iron and chromium doped TiO2 coupled to moving bed biofilm process for olive mill wastewater treatment. Chemical Engineering Journal, 450(2), 138107, https://doi.org/10.1016/j.cej.2022.138107
  • Mecit D., Ilgaz S., Duran D., Başal G., Gülümser T., Tarakçıoğlu I., (2007). Teknik Tekstiller Ve Kullanım Alanları (Bölüm 1), Tekstil ve Konfeksiyon, 17(2), 79-82.
  • Mecit D., Ilgaz S., Duran D., Başal G., Gülümser T., Tarakçıoğlu I., (2007). Teknik Tekstiller Ve Kullanım Alanları (Bölüm 2), Tekstil ve Konfeksiyon, 17(3), 154-161.
  • Özdemir, A. O., Caglar, B., Çubuk, O., Coldur, F., Kuzucu, M., Keles Guner, E., Doğan, B., Caglar, S., Özdokur, K. V., (2022). Facile synthesis of TiO2-coated cotton fabric and its versatile applications in photocatalysis, pH sensor and antibacterial activities”, Materials Chemistry and Physics, 287. https://doi:10.1016/j.matchemphys.2022.126342
  • Pant, B., Park, M., Park, S.J., (2019). Recent Advances in TiO2 Films Prepared by Sol-Gel Methods for Photocatalytic Degradation of Organic Pollutants and Antibacterial Activities. Coatings, 9, 613. https://doi:10.3390/coatings9100613
  • Ran, J., He, M., Li, W., Cheng, D., & Wang, X., (2018). Growing ZnO Nanoparticles on Polydopamine-Templated Cotton Fabrics for Durable Antimicrobial Activity and UV Protection. Polymers, 10(5), 495. https://doi:10.3390/polym10050495
  • Rana, M., Hao, B., Mu, L., Chen, L., & Ma, P.-C., (2016). Development of multi-functional cotton fabrics with Ag/AgBr–TiO2 nanocomposite coating. Composites Science and Technology, 122, 104–112. https://doi:10.1016/j.compscitech.2015.11.016
  • Rehman, A., Rehman, A., Khalid, W., Safdar, F., Basit, A., Maqsood, H. S., Iqbal, K., Ashraf, M., (2018). Simultaneous dyeing and anti-bacterial finishing on 100% cotton fabric: process establishment and characterization. Cellulose, 25(9), 5405–5414. https://doi:10.1007/s10570-018-1934-9
  • Riaz, S., Ashraf, M., Hussain, T., & Hussain, M. T., (2019). Modification of silica nanoparticles to develop highly durable superhydrophobic and antibacterial cotton fabrics. Cellulose, 26, 5159–5175. https://doi:10.1007/s10570-019-02440-x
  • Rosace G., Guido E., Colleoni C., Brucale M., Piperopoulos E., Milone C., Plutino M. R., (2017). Halochromic resorufin-GPTMS hybrid sol-gel: Chemical-physicalproperties and use as pH sensor fabric coating. Sensors and Actuators B, 241, 85–95.
  • Sboui, M., Lachheb, H., Swaminathan, M., Pan, J.H., (2022). Low-temperature deposition and crystallization of RuO2/TiO2 on cotton fabric for efficient solar photocatalytic degradation of o-toluidine. Cellulose, 29, 1189–1204. https://doi:10.1007/s10570-021-04308-5
  • Tobola M. F., Ciesielska M., Maliszewska I., Rumijowska O. R., Wozniak P. S., Teterycz H., Bryjak M., (2018). Deposition of Zinc Oxide on Different Polymer Textiles and Their Antibacterial Properties. Materials, 11, 707. https://doi:10.3390/ma11050707
  • Xu, B., Ding, J., Feng, L., Ding, Y., Ge, F., & Cai, Z., (2015). Self-cleaning cotton fabrics via combination of photocatalytic TiO2 and superhydrophobic SiO2. Surface and Coatings Technology, 262, 70–76. https://doi:10.1016/j.surfcoat.2014.12.017
  • Xu, L., Shen, Y., Ding, Y., & Wang, L., (2018). Superhydrophobic and Ultraviolet-Blocking Cotton Fabrics Based on TiO2/SiO2 Composite Nanoparticles. Journal of Nanoscience and Nanotechnology, 18(10), 6879–6886. https://doi:10.1166/jnn.2018.15463
  • Xu, Q., Duan, P., Zhang, Y., Fu, F., & Liu, X., (2018). Double Protect Copper Nanoparticles Loaded on L-cysteine Modified Cotton Fabric with Durable Antibacterial Properties. Fibers and Polymers, 19(11), 2324–2334. https://doi:10.1007/s12221-018-8621-1
  • Xu, Q., Ke, X., Cai, D., Zhang, Y., Fu, F., Endo, T., Liu, X., (2018). Silver-based, single-sided antibacterial cotton fabrics with improved durability via an l-cysteine binding effect. Cellulose, 25(3), 2129–2141. https://doi:10.1007/s10570-018-1689-3
  • Xu, Q., Ke, X., Ge, N., Shen, L., Zhang, Y., Fu, F., Liu, X., (2018). Preparation of Copper Nanoparticles Coated Cotton Fabrics with Durable Antibacterial Properties. Fibers and Polymers, 19(5), 1004–1013. https://doi:10.1007/s12221-018-8067-5
  • Vinoth, R., Karthik, P., Muthamizhchelvan, C., Neppolian B., Ashokkumar M., (2016). Carrier separation and charge transport characteristics of reduced graphene oxide supported visible-light active photocatalysts, Physical Chemistry Chemical Physics 18, 5179-5191. https://doi:10.1039/C5CP08041J
  • Yang, M., Liu, W., Jiang, C., He, S., Xie, Y., Wang, Z., (2018). Fabrication of superhydrophobic cotton fabric with fluorinated TiO2 sol by a green and one-step sol-gel process. Carbohydrate Polymers, 197, 75–82. https://doi:10.1016/j.carbpol.2018.05.075
  • Yang, M., Liu, W., Jiang, C., Xie, Y., Shi, H., Zhang, F., Wang, Z., (2019). Facile construction of robust superhydrophobic cotton textiles for effective UV protection, self-cleaning and oil-water separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 570, 172 – 181. https://doi:10.1016/j.colsurfa.2019.03.024
  • Yu, J., Pang, Z., Zheng, C., Zhou, T., Zhang, J., Zhou, H., Wei, Q., (2019). Cotton fabric finished by PANI/TiO2 with multifunctions of conductivity, anti-ultraviolet and photocatalysis activity. Applied Surface Science, 470, 84–90. https://doi:10.1016/j.apsusc.2018.11.112
  • Yuranova, T., Mosteo, R., Bandara, J., Laub, D., Kiwi, J., (2006). Self-cleaning cotton textiles surfaces modified by photoactive SiO2/TiO2 coating. Journal of Molecular Catalysis A: Chemical, 244(1-2), 160-167. https://doi:10.1016/j.molcata.2005.08.059
  • Zhou, L., Wang, H., Du, J., Fu, J., Wang, W., (2018). Eco-friendly and Durable Antibacterial Cotton Fabrics Prepared with Polysulfopropylbetaine. Fibers and Polymers, 19(6), 1228–1236. https://doi:10.1007/s12221-018-8053-y
Toplam 45 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Agah Oktay Özdemir 0000-0003-4488-746X

Mehmet Kuzucu 0000-0002-7786-7687

Eda Kelesguner 0000-0002-4421-1315

Bilge Doğan 0000-0001-7552-3461

Bülent Çağlar 0000-0002-6087-3685

Proje Numarası FBA-2020-699
Yayımlanma Tarihi 15 Aralık 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 12 Sayı: 2

Kaynak Göster

APA Özdemir, A. O., Kuzucu, M., Kelesguner, E., Doğan, B., vd. (2022). TiO2 Nanoparçacık Kaplı Pamuklu Kumaşın Fotokatalitik ve Antibakteriyel Özelliklerinin İncelenmesi. Karadeniz Fen Bilimleri Dergisi, 12(2), 1017-1031. https://doi.org/10.31466/kfbd.1183521