Araştırma Makalesi
BibTex RIS Kaynak Göster

Columnar TiO2 Thin Films Decorated with Cu Nanoclusters Prepared by Photocatalytic Deposition for Enhanced Photocatalytic Performance under UV Illumination

Yıl 2023, Cilt: 13 Sayı: 2, 382 - 397, 15.06.2023
https://doi.org/10.31466/kfbd.1214065

Öz

TiO2 photocatalyst is a promising material for different kinds of applications, including air and water purification, hydrogen production, and self-clean surfaces. It is usually combined with other materials to improve its charge separation as well as its activation under solar illumination. However, using such an approach is not suitable for practical photocatalytic applications because noble metals are too expensive. Therefore, cost-effective metals (e.g., copper, nickel, etc.) should be also considered instead of noble metals. In this study, we prepared photocatalytically active TiO2 thin films decorated with copper (Cu) nanoclusters (NCs) to improve the charge separation. Here, the metallic Cu NCs were deposited on TiO2 thin surface by a photocatalytic deposition process (under ultraviolet (UV) illumination). The morphology, size, and surface coverage of Cu NCs on TiO2 were varied by controlling the UV illumination time. Results showed that the optimum surface coverage (3.04 %) leads to a remarkable increase in photocatalytic performance compared to bare TiO2. However, depositing more Cu NCs with bigger sizes and higher surface coverage (7.08 %) decreased the overall photocatalytic activity. This might be due to the blocking of UV light incoming to the TiO2 thin film by bigger Cu NCs on the surface. The presented Cu-TiO2 hybrid system would be a good alternative to conventional co-catalyst systems which are composed of expensive metals (Au, Ag, Pt, etc.) and TiO2 structures.

Kaynakça

  • Antić, Ž., Krsmanović, R. M., Nikolić, M. G., Marinović-Cincović, M., Mitrić, M., Polizzi, S., and Dramićanin, M. D. (2012). Multisite luminescence of rare earth doped TiO2 anatase nanoparticles. Materials Chemistry and Physics, 135(2–3), 1064–1069. https://doi.org/10.1016/j.matchemphys.2012.06.016
  • Bandara, J., Udawatta, C. P. K., and Rajapakse, C. S. K. (2005). Highly stable CuO incorporated TiO2 catalyst for photocatalytic hydrogen production from H2O. Photochemical and Photobiological Sciences, 4(11), 857–861. https://doi.org/10.1039/b507816d
  • Belver, C., Bedia, J., Gómez-Avilés, A., Peñas-Garzón, M., and Rodriguez, J. J. (2019). Chapter 22—Semiconductor Photocatalysis for Water Purification. In S. Thomas, D. Pasquini, S.-Y. Leu, and D. A. Gopakumar (Eds.), Nanoscale Materials in Water Purification (pp. 581–651). Elsevier. https://doi.org/10.1016/B978-0-12-813926-4.00028-8
  • Bhanushali, S., Ghosh, P., Ganesh, A., and Cheng, W. (2015). 1D Copper Nanostructures: Progress, Challenges and Opportunities. Small, 11(11), 1232–1252. https://doi.org/10.1002/smll.201402295
  • Bramhaiah, K., and Bhattacharyya, S. (2022). Challenges and future prospects of graphene-based hybrids for solar fuel generation: Moving towards next generation photocatalysts. Materials Advances, 3(1), 142–172. https://doi.org/10.1039/D1MA00748C
  • Chen, X., Liu, L., Yu, P. Y., and Mao, S. S. (2011). Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals. Science, 331(6018), 746–750. https://doi.org/10.1126/science.1200448
  • Du, Y., Zheng, Z., Chang, W., Liu, C., Bai, Z., Zhao, X., and Wang, C. (2021). Trace Amounts of Co3O4 Nano-Particles Modified TiO2 Nanorod Arrays for Boosted Photoelectrocatalytic Removal of Organic Pollutants in Water. Nanomaterials, 11(1), 214. https://doi.org/10.3390/nano11010214
  • Eskandarloo, H., Badiei, A., Behnajady, M. A., and Mohammadi Ziarani, G. (2015). Photo and Chemical Reduction of Copper onto Anatase-Type TiO2 Nanoparticles with Enhanced Surface Hydroxyl Groups as Efficient Visible Light Photocatalysts. Photochemistry and Photobiology, 91(4), 797–806. https://doi.org/10.1111/php.12455
  • Etacheri, V., Di Valentin, C., Schneider, J., Bahnemann, D., and Pillai, S. C. (2015). Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 25, 1–29. https://doi.org/10.1016/j.jphotochemrev.2015.08.003
  • Fujishima, A., and Honda, K. (1972). Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 238(5358), Article 5358. https://doi.org/10.1038/238037a0
  • Fujishima, A., Zhang, X., and Tryk, D. A. (2008). TiO2 photocatalysis and related surface phenomena. Surface Science Reports, 63(12), 515–582. https://doi.org/10.1016/j.surfrep.2008.10.001
  • Ghori, M. Z., Veziroglu, S., Henkel, B., Vahl, A., Polonskyi, O., Strunskus, T., Faupel, F., and Aktas, O. C. (2018). A comparative study of photocatalysis on highly active columnar TiO2 nanostructures in-air and in-solution. Solar Energy Materials and Solar Cells, 178, 170–178. https://doi.org/10.1016/j.solmat.2018.01.019
  • Ghori, M. Z., Veziroglu, S., Hinz, A., Shurtleff, B. B., Polonskyi, O., Strunskus, T., Adam, J., Faupel, F., and Aktas, O. C. (2018). Role of UV Plasmonics in the Photocatalytic Performance of TiO 2 Decorated with Aluminum Nanoparticles. ACS Applied Nano Materials, 1(8), 3760–3764. https://doi.org/10.1021/acsanm.8b00853
  • Gombac, V., Sordelli, L., Montini, T., Delgado, J. J., Adamski, A., Adami, G., Cargnello, M., Bernal, S., and Fornasiero, P. (2010). CuO x −TiO 2 Photocatalysts for H 2 Production from Ethanol and Glycerol Solutions. The Journal of Physical Chemistry A, 114(11), 3916–3925. https://doi.org/10.1021/jp907242q
  • Hanaor, D. A. H., and Sorrell, C. C. (2011). Review of the anatase to rutile phase transformation. Journal of Materials Science, 46(4), 855–874. https://doi.org/10.1007/s10853-010-5113-0
  • Heciak, A., Morawski, A. W., Grzmil, B., and Mozia, S. (2013). Cu-modified TiO2 photocatalysts for decomposition of acetic acid with simultaneous formation of C1–C3 hydrocarbons and hydrogen. Applied Catalysis B: Environmental, 140–141, 108–114. https://doi.org/10.1016/j.apcatb.2013.03.044
  • Henkel, B., Vahl, A., Aktas, O. C., Strunskus, T., and Faupel, F. (2018). Self-organized nanocrack networks: A pathway to enlarge catalytic surface area in sputtered ceramic thin films, showcased for photocatalytic TiO 2. Nanotechnology, 29(3), 035703. https://doi.org/10.1088/1361-6528/aa9d35
  • Hoffmann, M. R., Martin, S. T., Choi, W., and Bahnemann, D. W. (1995). Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews, 95(1), 69–96. https://doi.org/10.1021/cr00033a004
  • Hong, J. W., Wi, D. H., Lee, S.-U., and Han, S. W. (2016). Metal–Semiconductor Heteronanocrystals with Desired Configurations for Plasmonic Photocatalysis. Journal of the American Chemical Society, 138(48), 15766–15773. https://doi.org/10.1021/jacs.6b10288
  • Houas, A. (2001). Photocatalytic degradation pathway of methylene blue in water. Applied Catalysis B: Environmental, 31(2), 145–157. https://doi.org/10.1016/S0926-3373(00)00276-9
  • Janczarek, M., and Kowalska, E. (2017). On the Origin of Enhanced Photocatalytic Activity of Copper-Modified Titania in the Oxidative Reaction Systems. Catalysts, 7(11), 317. https://doi.org/10.3390/catal7110317
  • Kundu, S., Bramhaiah, K., and Bhattacharyya, S. (2020). Carbon-based nanomaterials: In the quest of alternative metal-free photocatalysts for solar water splitting. Nanoscale Advances, 2(11), 5130–5151. https://doi.org/10.1039/D0NA00569J
  • Kuru, M. (2020). The Effect of Thickness on Photocatalytic Performance in MgZnO Thin Films. Sakarya University Journal of Science, 575–584. https://doi.org/10.16984/saufenbilder.645104
  • Kuru, M., and Narsat, H. (2019). The effect of heat treatment temperature and Mg doping on structural and photocatalytic activity of ZnO thin films fabricated by RF magnetron co-sputtering technique. Journal of Materials Science: Materials in Electronics, 30(20), 18484–18495. https://doi.org/10.1007/s10854-019-02202-2
  • Li, Y., Wang, W.-N., Zhan, Z., Woo, M.-H., Wu, C.-Y., and Biswas, P. (2010). Photocatalytic reduction of CO2 with H2O on mesoporous silica supported Cu/TiO2 catalysts. Applied Catalysis B: Environmental, 100(1), 386–392. https://doi.org/10.1016/j.apcatb.2010.08.015
  • Low, J., Yu, J., Jaroniec, M., Wageh, S., and Al-Ghamdi, A. A. (2017). Heterojunction Photocatalysts. Advanced Materials, 29(20), 1601694. https://doi.org/10.1002/adma.201601694
  • Mao, S. S., Shen, S., and Guo, L. (2012). Nanomaterials for renewable hydrogen production, storage and utilization. Progress in Natural Science: Materials International, 22(6), 522–534. https://doi.org/10.1016/j.pnsc.2012.12.003
  • Mendoza-Diaz, M.-I., Cure, J., Rouhani, M. D., Tan, K., Patnaik, S.-G., Pech, D., Quevedo-Lopez, M., Hungria, T., Rossi, C., and Estève, A. (2020). On the UV–Visible Light Synergetic Mechanisms in Au/TiO 2 Hybrid Model Nanostructures Achieving Photoreduction of Water. The Journal of Physical Chemistry C, 124(46), 25421–25430. https://doi.org/10.1021/acs.jpcc.0c08381
  • Meng, A., Zhang, L., Cheng, B., and Yu, J. (2019). Dual Cocatalysts in TiO2 Photocatalysis. Advanced Materials, 31(30), 1807660. https://doi.org/10.1002/adma.201807660
  • Miller, A. C., and Simmons, G. W. (1993). Copper by XPS. Surface Science Spectra, 2(1), 55–60. https://doi.org/10.1116/1.1247725
  • Nalajala, N., Patra, K. K., Bharad, P. A., and Gopinath, C. S. (2019). Why the thin film form of a photocatalyst is better than the particulate form for direct solar-to-hydrogen conversion: A poor man’s approach. RSC Advances, 9(11), 6094–6100. https://doi.org/10.1039/c8ra09982k
  • Ng, K. H., Lai, S. Y., Cheng, C. K., Cheng, Y. W., and Chong, C. C. (2021). Photocatalytic water splitting for solving energy crisis: Myth, Fact or Busted? Chemical Engineering Journal, 417, 128847. https://doi.org/10.1016/j.cej.2021.128847
  • Pellegrino, F., Pellutiè, L., Sordello, F., Minero, C., Ortel, E., Hodoroaba, V.-D., and Maurino, V. (2017). Influence of agglomeration and aggregation on the photocatalytic activity of TiO 2 nanoparticles. Applied Catalysis B: Environmental, 216, 80–87. https://doi.org/10.1016/j.apcatb.2017.05.046
  • Qutub, N., Singh, P., Sabir, S., Sagadevan, S., and Oh, W.-C. (2022). Enhanced photocatalytic degradation of Acid Blue dye using CdS/TiO2 nanocomposite. Scientific Reports, 12(1), Article 1. https://doi.org/10.1038/s41598-022-09479-0
  • Rajendran, S., Naushad, Mu., Ponce, L. C., and Lichtfouse, E. (Eds.). (2020). Green Photocatalysts for Energy and Environmental Process (Vol. 36). Springer International Publishing. https://doi.org/10.1007/978-3-030-17638-9
  • Rubtsov, S., Musin, A., Zinigrad, M., Kalashnikov, A., and Danchuk, V. (2021). New Strategy for Creating TiO2 Thin Films with Embedded Au Nanoparticles. Coatings, 11(12), Article 12. https://doi.org/10.3390/coatings11121525
  • Sánchez-Zambrano, K. S., Hernández-Reséndiz, M., Gómez-Rodríguez, C., García-Quiñonez, L. V., Aguilar-Martínez, J. A., Rodríguez-Castellanos, E. A., Verdeja, L. F., Fernández-González, D., and Castillo-Rodríguez, G. A. (2022). XPS Study on Calcining Mixtures of Brucite with Titania. Materials, 15(9), 3117. https://doi.org/10.3390/ma15093117
  • Shondo, J., Veziroglu, S., Stefan, D., Mishra, Y. K., Strunskus, T., Faupel, F., and Aktas, O. C. (2021). Tuning wettability of TiO2 thin film by photocatalytic deposition of 3D flower- and hedgehog-like Au nano- and microstructures. Applied Surface Science, 537, 147795. https://doi.org/10.1016/j.apsusc.2020.147795
  • Shondo, J., Veziroglu, S., Tjardts, T., Fiutowski, J., Schröder, S., Mishra, Y. K., Strunskus, T., Rubahn, H., Faupel, F., and Aktas, O. C. (2022). Selective Adsorption and Photocatalytic Clean‐Up of Oil by TiO 2 Thin Film Decorated with p‐V 3 D 3 Modified Flowerlike Ag Nanoplates. Advanced Materials Interfaces, 9(14), 2102126. https://doi.org/10.1002/admi.202102126
  • Shondo, J., Veziroglu, S., Tjardts, T., Sarwar, T. B., Mishra, Y. K., Faupel, F., and Aktas, O. C. (2022). Nanoscale Synergetic Effects on Ag–TiO2 Hybrid Substrate for Photoinduced Enhanced Raman Spectroscopy (PIERS) with Ultra‐Sensitivity and Reusability. Small, 2203861. https://doi.org/10.1002/smll.202203861
  • Sriubas, M., Kavaliūnas, V., Bočkutė, K., Palevičius, P., Kaminskas, M., Rinkevičius, Ž., Ragulskis, M., and Laukaitis, G. (2021). Formation of Au nanostructures on the surfaces of annealed TiO2 thin films. Surfaces and Interfaces, 25, 101239. https://doi.org/10.1016/j.surfin.2021.101239
  • Stucchi, M., Bianchi, C. L., Pirola, C., Cerrato, G., Morandi, S., Argirusis, C., Sourkouni, G., Naldoni, A., and Capucci, V. (2016). Copper NPs decorated titania: A novel synthesis by high energy US with a study of the photocatalytic activity under visible light. Ultrasonics Sonochemistry, 31, 295–301. https://doi.org/10.1016/j.ultsonch.2016.01.015
  • Tang, Y., Zhang, G., Liu, C., Luo, S., Xu, X., Chen, L., and Wang, B. (2013). Magnetic TiO2-graphene composite as a high-performance and recyclable platform for efficient photocatalytic removal of herbicides from water. Journal of Hazardous Materials, 252–253, 115–122. https://doi.org/10.1016/j.jhazmat.2013.02.053
  • Tian, Y., Chang, B., Fu, J., Zhou, B., Liu, J., Xi, F., and Dong, X. (2014). Graphitic carbon nitride/Cu2O heterojunctions: Preparation, characterization, and enhanced photocatalytic activity under visible light. Journal of Solid State Chemistry, 212, 1–6. https://doi.org/10.1016/j.jssc.2014.01.011
  • Tsui, L., and Zangari, G. (2014). Titania Nanotubes by Electrochemical Anodization for Solar Energy Conversion. Journal of The Electrochemical Society, 161(7), D3066. https://doi.org/10.1149/2.010407jes
  • Vahl, A., Veziroglu, S., Henkel, B., Strunskus, T., Polonskyi, O., Aktas, O. C., and Faupel, F. (2019). Pathways to Tailor Photocatalytic Performance of TiO2 Thin Films Deposited by Reactive Magnetron Sputtering. Materials, 12(17), 2840. https://doi.org/10.3390/ma12172840
  • Vasquez, R. P. (1998a). Cu2O by XPS. Surface Science Spectra, 5(4), 257–261. https://doi.org/10.1116/1.1247881
  • Vasquez, R. P. (1998b). CuO by XPS. Surface Science Spectra, 5(4), 262–266. https://doi.org/10.1116/1.1247882
  • Veziroglu, S., Ghori, M. Z., Kamp, M., Kienle, L., Rubahn, H.-G., Strunskus, T., Fiutowski, J., Adam, J., Faupel, F., and Aktas, O. C. (2018). Photocatalytic Growth of Hierarchical Au Needle Clusters on Highly Active TiO 2 Thin Film. Advanced Materials Interfaces, 5(15), 1800465. https://doi.org/10.1002/admi.201800465
  • Veziroglu, S., Ghori, M. Z., Obermann, A., Röder, K., Polonskyi, O., Strunskus, T., Faupel, F., and Aktas, O. C. (2019). Ag Nanoparticles Decorated TiO 2 Thin Films with Enhanced Photocatalytic Activity. Physica Status Solidi (a), 216(14), 1800898. https://doi.org/10.1002/pssa.201800898
  • Veziroglu, S., Hwang, J., Drewes, J., Barg, I., Shondo, J., Strunskus, T., Polonskyi, O., Faupel, F., and Aktas, O. C. (2020). PdO nanoparticles decorated TiO2 film with enhanced photocatalytic and self-cleaning properties. Materials Today Chemistry, 16, 100251. https://doi.org/10.1016/j.mtchem.2020.100251
  • Veziroglu, S., Obermann, A.-L., Ullrich, M., Hussain, M., Kamp, M., Kienle, L., Leißner, T., Rubahn, H.-G., Polonskyi, O., Strunskus, T., Fiutowski, J., Es-Souni, M., Adam, J., Faupel, F., and Aktas, O. C. (2020). Photodeposition of Au Nanoclusters for Enhanced Photocatalytic Dye Degradation over TiO 2 Thin Film. ACS Applied Materials and Interfaces, 12(13), 14983–14992. https://doi.org/10.1021/acsami.9b18817
  • Veziroglu, S., Röder, K., Gronenberg, O., Vahl, A., Polonskyi, O., Strunskus, T., Rubahn, H.-G., Kienle, L., Adam, J., Fiutowski, J., Faupel, F., and Aktas, O. C. (2019). Cauliflower-like CeO 2 –TiO 2 hybrid nanostructures with extreme photocatalytic and self-cleaning properties. Nanoscale, 11(20), 9840–9844. https://doi.org/10.1039/C9NR01208G
  • Veziroglu, S., Ullrich, M., Hussain, M., Drewes, J., Shondo, J., Strunskus, T., Adam, J., Faupel, F., and Aktas, O. C. (2020). Plasmonic and non-plasmonic contributions on photocatalytic activity of Au-TiO2 thin film under mixed UV–visible light. Surface and Coatings Technology, 389, 125613. https://doi.org/10.1016/j.surfcoat.2020.125613
  • Wang, H.-K., Yi, C.-Y., Tian, L., Wang, W.-J., Fang, J., Zhao, J.-H., and Shen, W.-G. (2012). Ag-Cu bimetallic nanoparticles prepared by Microemulsion method as catalyst for epoxidation of styrene. Journal of Nanomaterials, 2012, 4:1-4:8. https://doi.org/10.1155/2012/453915
  • Wenderich, K., and Mul, G. (2016). Methods, Mechanism, and Applications of Photodeposition in Photocatalysis: A Review. Chemical Reviews, 116(23), 14587–14619. https://doi.org/10.1021/acs.chemrev.6b00327
  • Wu. (2004). Enhanced TiO2 photocatalysis by Cu in hydrogen production from aqueous methanol solution. International Journal of Hydrogen Energy, 29(15), 1601–1605. https://doi.org/10.1016/j.ijhydene.2004.02.013
  • Wu, C.-K., Yin, M., O’Brien, S., and Koberstein, J. T. (2006). Quantitative Analysis of Copper Oxide Nanoparticle Composition and Structure by X-ray Photoelectron Spectroscopy. Chemistry of Materials, 18(25), 6054–6058. https://doi.org/10.1021/cm061596d
  • Yang, J., Wang, D., Han, H., and Li, C. (2013). Roles of Cocatalysts in Photocatalysis and Photoelectrocatalysis. Accounts of Chemical Research, 46(8), 1900–1909. https://doi.org/10.1021/ar300227e
  • Yu, J., Hai, Y., and Jaroniec, M. (2011). Photocatalytic hydrogen production over CuO-modified titania. Journal of Colloid and Interface Science, 357(1), 223–228. https://doi.org/10.1016/j.jcis.2011.01.101
  • Yu, J., Yu, J. C., and Zhao, X. (2002). The Effect of SiO2 Addition on the Grain Size and Photocatalytic Activity of TiO2 Thin Films. Journal of Sol-Gel Science and Technology, 24(2), 95–103. https://doi.org/10.1023/A:1015258105966
  • Zhang, P., Song, T., Wang, T., Zeng, H. (2017). Enhancement of hydrogen production of a Cu–TiO2 nanocomposite photocatalyst combined with broad spectrum absorption sensitizer Erythrosin B. RSC Advances, 7. 17873-17881. https://doi.org/10.1039/C6RA27686E

UV Aydınlatma Altında Gelişmiş Fotokatalitik Performans için Fotokatalitik Biriktirme ile Hazırlanan Cu Nanokümelerle Süslenmiş Sütunlu TiO2 İnce Filmler

Yıl 2023, Cilt: 13 Sayı: 2, 382 - 397, 15.06.2023
https://doi.org/10.31466/kfbd.1214065

Öz

Fotokatalizör TiO2, hava ve su arıtma, hidrojen üretimi ve kendi kendini temizleyen yüzeyler dahil olmak üzere farklı uygulama türleri için umut verici bir malzemedir. Genellikle yük ayrımını ve güneş ışığı altında aktivasyonunu iyileştirmek için soy metaller ile birleştirilir. Ancak, bu yöntem kullanılan soy metallerin çok pahalı olmalarından dolayı pratik fotokatalitik uygulamalar için uygun değildir. Bu çalışmada, bakır (Cu) nanokümeleri (NK) ile süslenmiş fotokatalitik olarak aktif TiO2 ince filmler hazırlanmıştır. Burada, metalik Cu NC'ler TiO2 ince yüzeyi üzerine fotokatalitik biriktirme (ultraviyole (UV) aydınlatma altında) işlemi ile biriktirilmiştir. TiO2 üzerindeki Cu NK'lerin morfolojisi ve yüzey kaplaması UV aydınlatma süresi değiştirilerek edilerek kontrol edilmiştir. Sonuçlar, optimum yüzey kaplamasının (%3,04) çıplak TiO2'ye kıyasla fotokatalitik aktivitede önemli bir artışa yol açtığını göstermiştir. Bununla birlikte, daha büyük boyutlara ve daha yüksek yüzey kaplamasına (%7,08) sahip daha fazla Cu NK biriktirmek genel fotokatalitik aktiviteyi azaltmaktadır. Bunun nedeni, TiO2 ince filmine gelen UV ışığının yüzeydeki daha büyük Cu NK'ler tarafından engellenmesi olabilir. Cu-TiO2 hibrit sistemi, pahalı metaller (Au, Ag, Pt, vb.) ve TiO2 yapılarından oluşan geleneksel eş katalizör sistemlerine iyi bir alternatif olabilir.

Kaynakça

  • Antić, Ž., Krsmanović, R. M., Nikolić, M. G., Marinović-Cincović, M., Mitrić, M., Polizzi, S., and Dramićanin, M. D. (2012). Multisite luminescence of rare earth doped TiO2 anatase nanoparticles. Materials Chemistry and Physics, 135(2–3), 1064–1069. https://doi.org/10.1016/j.matchemphys.2012.06.016
  • Bandara, J., Udawatta, C. P. K., and Rajapakse, C. S. K. (2005). Highly stable CuO incorporated TiO2 catalyst for photocatalytic hydrogen production from H2O. Photochemical and Photobiological Sciences, 4(11), 857–861. https://doi.org/10.1039/b507816d
  • Belver, C., Bedia, J., Gómez-Avilés, A., Peñas-Garzón, M., and Rodriguez, J. J. (2019). Chapter 22—Semiconductor Photocatalysis for Water Purification. In S. Thomas, D. Pasquini, S.-Y. Leu, and D. A. Gopakumar (Eds.), Nanoscale Materials in Water Purification (pp. 581–651). Elsevier. https://doi.org/10.1016/B978-0-12-813926-4.00028-8
  • Bhanushali, S., Ghosh, P., Ganesh, A., and Cheng, W. (2015). 1D Copper Nanostructures: Progress, Challenges and Opportunities. Small, 11(11), 1232–1252. https://doi.org/10.1002/smll.201402295
  • Bramhaiah, K., and Bhattacharyya, S. (2022). Challenges and future prospects of graphene-based hybrids for solar fuel generation: Moving towards next generation photocatalysts. Materials Advances, 3(1), 142–172. https://doi.org/10.1039/D1MA00748C
  • Chen, X., Liu, L., Yu, P. Y., and Mao, S. S. (2011). Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals. Science, 331(6018), 746–750. https://doi.org/10.1126/science.1200448
  • Du, Y., Zheng, Z., Chang, W., Liu, C., Bai, Z., Zhao, X., and Wang, C. (2021). Trace Amounts of Co3O4 Nano-Particles Modified TiO2 Nanorod Arrays for Boosted Photoelectrocatalytic Removal of Organic Pollutants in Water. Nanomaterials, 11(1), 214. https://doi.org/10.3390/nano11010214
  • Eskandarloo, H., Badiei, A., Behnajady, M. A., and Mohammadi Ziarani, G. (2015). Photo and Chemical Reduction of Copper onto Anatase-Type TiO2 Nanoparticles with Enhanced Surface Hydroxyl Groups as Efficient Visible Light Photocatalysts. Photochemistry and Photobiology, 91(4), 797–806. https://doi.org/10.1111/php.12455
  • Etacheri, V., Di Valentin, C., Schneider, J., Bahnemann, D., and Pillai, S. C. (2015). Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 25, 1–29. https://doi.org/10.1016/j.jphotochemrev.2015.08.003
  • Fujishima, A., and Honda, K. (1972). Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 238(5358), Article 5358. https://doi.org/10.1038/238037a0
  • Fujishima, A., Zhang, X., and Tryk, D. A. (2008). TiO2 photocatalysis and related surface phenomena. Surface Science Reports, 63(12), 515–582. https://doi.org/10.1016/j.surfrep.2008.10.001
  • Ghori, M. Z., Veziroglu, S., Henkel, B., Vahl, A., Polonskyi, O., Strunskus, T., Faupel, F., and Aktas, O. C. (2018). A comparative study of photocatalysis on highly active columnar TiO2 nanostructures in-air and in-solution. Solar Energy Materials and Solar Cells, 178, 170–178. https://doi.org/10.1016/j.solmat.2018.01.019
  • Ghori, M. Z., Veziroglu, S., Hinz, A., Shurtleff, B. B., Polonskyi, O., Strunskus, T., Adam, J., Faupel, F., and Aktas, O. C. (2018). Role of UV Plasmonics in the Photocatalytic Performance of TiO 2 Decorated with Aluminum Nanoparticles. ACS Applied Nano Materials, 1(8), 3760–3764. https://doi.org/10.1021/acsanm.8b00853
  • Gombac, V., Sordelli, L., Montini, T., Delgado, J. J., Adamski, A., Adami, G., Cargnello, M., Bernal, S., and Fornasiero, P. (2010). CuO x −TiO 2 Photocatalysts for H 2 Production from Ethanol and Glycerol Solutions. The Journal of Physical Chemistry A, 114(11), 3916–3925. https://doi.org/10.1021/jp907242q
  • Hanaor, D. A. H., and Sorrell, C. C. (2011). Review of the anatase to rutile phase transformation. Journal of Materials Science, 46(4), 855–874. https://doi.org/10.1007/s10853-010-5113-0
  • Heciak, A., Morawski, A. W., Grzmil, B., and Mozia, S. (2013). Cu-modified TiO2 photocatalysts for decomposition of acetic acid with simultaneous formation of C1–C3 hydrocarbons and hydrogen. Applied Catalysis B: Environmental, 140–141, 108–114. https://doi.org/10.1016/j.apcatb.2013.03.044
  • Henkel, B., Vahl, A., Aktas, O. C., Strunskus, T., and Faupel, F. (2018). Self-organized nanocrack networks: A pathway to enlarge catalytic surface area in sputtered ceramic thin films, showcased for photocatalytic TiO 2. Nanotechnology, 29(3), 035703. https://doi.org/10.1088/1361-6528/aa9d35
  • Hoffmann, M. R., Martin, S. T., Choi, W., and Bahnemann, D. W. (1995). Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews, 95(1), 69–96. https://doi.org/10.1021/cr00033a004
  • Hong, J. W., Wi, D. H., Lee, S.-U., and Han, S. W. (2016). Metal–Semiconductor Heteronanocrystals with Desired Configurations for Plasmonic Photocatalysis. Journal of the American Chemical Society, 138(48), 15766–15773. https://doi.org/10.1021/jacs.6b10288
  • Houas, A. (2001). Photocatalytic degradation pathway of methylene blue in water. Applied Catalysis B: Environmental, 31(2), 145–157. https://doi.org/10.1016/S0926-3373(00)00276-9
  • Janczarek, M., and Kowalska, E. (2017). On the Origin of Enhanced Photocatalytic Activity of Copper-Modified Titania in the Oxidative Reaction Systems. Catalysts, 7(11), 317. https://doi.org/10.3390/catal7110317
  • Kundu, S., Bramhaiah, K., and Bhattacharyya, S. (2020). Carbon-based nanomaterials: In the quest of alternative metal-free photocatalysts for solar water splitting. Nanoscale Advances, 2(11), 5130–5151. https://doi.org/10.1039/D0NA00569J
  • Kuru, M. (2020). The Effect of Thickness on Photocatalytic Performance in MgZnO Thin Films. Sakarya University Journal of Science, 575–584. https://doi.org/10.16984/saufenbilder.645104
  • Kuru, M., and Narsat, H. (2019). The effect of heat treatment temperature and Mg doping on structural and photocatalytic activity of ZnO thin films fabricated by RF magnetron co-sputtering technique. Journal of Materials Science: Materials in Electronics, 30(20), 18484–18495. https://doi.org/10.1007/s10854-019-02202-2
  • Li, Y., Wang, W.-N., Zhan, Z., Woo, M.-H., Wu, C.-Y., and Biswas, P. (2010). Photocatalytic reduction of CO2 with H2O on mesoporous silica supported Cu/TiO2 catalysts. Applied Catalysis B: Environmental, 100(1), 386–392. https://doi.org/10.1016/j.apcatb.2010.08.015
  • Low, J., Yu, J., Jaroniec, M., Wageh, S., and Al-Ghamdi, A. A. (2017). Heterojunction Photocatalysts. Advanced Materials, 29(20), 1601694. https://doi.org/10.1002/adma.201601694
  • Mao, S. S., Shen, S., and Guo, L. (2012). Nanomaterials for renewable hydrogen production, storage and utilization. Progress in Natural Science: Materials International, 22(6), 522–534. https://doi.org/10.1016/j.pnsc.2012.12.003
  • Mendoza-Diaz, M.-I., Cure, J., Rouhani, M. D., Tan, K., Patnaik, S.-G., Pech, D., Quevedo-Lopez, M., Hungria, T., Rossi, C., and Estève, A. (2020). On the UV–Visible Light Synergetic Mechanisms in Au/TiO 2 Hybrid Model Nanostructures Achieving Photoreduction of Water. The Journal of Physical Chemistry C, 124(46), 25421–25430. https://doi.org/10.1021/acs.jpcc.0c08381
  • Meng, A., Zhang, L., Cheng, B., and Yu, J. (2019). Dual Cocatalysts in TiO2 Photocatalysis. Advanced Materials, 31(30), 1807660. https://doi.org/10.1002/adma.201807660
  • Miller, A. C., and Simmons, G. W. (1993). Copper by XPS. Surface Science Spectra, 2(1), 55–60. https://doi.org/10.1116/1.1247725
  • Nalajala, N., Patra, K. K., Bharad, P. A., and Gopinath, C. S. (2019). Why the thin film form of a photocatalyst is better than the particulate form for direct solar-to-hydrogen conversion: A poor man’s approach. RSC Advances, 9(11), 6094–6100. https://doi.org/10.1039/c8ra09982k
  • Ng, K. H., Lai, S. Y., Cheng, C. K., Cheng, Y. W., and Chong, C. C. (2021). Photocatalytic water splitting for solving energy crisis: Myth, Fact or Busted? Chemical Engineering Journal, 417, 128847. https://doi.org/10.1016/j.cej.2021.128847
  • Pellegrino, F., Pellutiè, L., Sordello, F., Minero, C., Ortel, E., Hodoroaba, V.-D., and Maurino, V. (2017). Influence of agglomeration and aggregation on the photocatalytic activity of TiO 2 nanoparticles. Applied Catalysis B: Environmental, 216, 80–87. https://doi.org/10.1016/j.apcatb.2017.05.046
  • Qutub, N., Singh, P., Sabir, S., Sagadevan, S., and Oh, W.-C. (2022). Enhanced photocatalytic degradation of Acid Blue dye using CdS/TiO2 nanocomposite. Scientific Reports, 12(1), Article 1. https://doi.org/10.1038/s41598-022-09479-0
  • Rajendran, S., Naushad, Mu., Ponce, L. C., and Lichtfouse, E. (Eds.). (2020). Green Photocatalysts for Energy and Environmental Process (Vol. 36). Springer International Publishing. https://doi.org/10.1007/978-3-030-17638-9
  • Rubtsov, S., Musin, A., Zinigrad, M., Kalashnikov, A., and Danchuk, V. (2021). New Strategy for Creating TiO2 Thin Films with Embedded Au Nanoparticles. Coatings, 11(12), Article 12. https://doi.org/10.3390/coatings11121525
  • Sánchez-Zambrano, K. S., Hernández-Reséndiz, M., Gómez-Rodríguez, C., García-Quiñonez, L. V., Aguilar-Martínez, J. A., Rodríguez-Castellanos, E. A., Verdeja, L. F., Fernández-González, D., and Castillo-Rodríguez, G. A. (2022). XPS Study on Calcining Mixtures of Brucite with Titania. Materials, 15(9), 3117. https://doi.org/10.3390/ma15093117
  • Shondo, J., Veziroglu, S., Stefan, D., Mishra, Y. K., Strunskus, T., Faupel, F., and Aktas, O. C. (2021). Tuning wettability of TiO2 thin film by photocatalytic deposition of 3D flower- and hedgehog-like Au nano- and microstructures. Applied Surface Science, 537, 147795. https://doi.org/10.1016/j.apsusc.2020.147795
  • Shondo, J., Veziroglu, S., Tjardts, T., Fiutowski, J., Schröder, S., Mishra, Y. K., Strunskus, T., Rubahn, H., Faupel, F., and Aktas, O. C. (2022). Selective Adsorption and Photocatalytic Clean‐Up of Oil by TiO 2 Thin Film Decorated with p‐V 3 D 3 Modified Flowerlike Ag Nanoplates. Advanced Materials Interfaces, 9(14), 2102126. https://doi.org/10.1002/admi.202102126
  • Shondo, J., Veziroglu, S., Tjardts, T., Sarwar, T. B., Mishra, Y. K., Faupel, F., and Aktas, O. C. (2022). Nanoscale Synergetic Effects on Ag–TiO2 Hybrid Substrate for Photoinduced Enhanced Raman Spectroscopy (PIERS) with Ultra‐Sensitivity and Reusability. Small, 2203861. https://doi.org/10.1002/smll.202203861
  • Sriubas, M., Kavaliūnas, V., Bočkutė, K., Palevičius, P., Kaminskas, M., Rinkevičius, Ž., Ragulskis, M., and Laukaitis, G. (2021). Formation of Au nanostructures on the surfaces of annealed TiO2 thin films. Surfaces and Interfaces, 25, 101239. https://doi.org/10.1016/j.surfin.2021.101239
  • Stucchi, M., Bianchi, C. L., Pirola, C., Cerrato, G., Morandi, S., Argirusis, C., Sourkouni, G., Naldoni, A., and Capucci, V. (2016). Copper NPs decorated titania: A novel synthesis by high energy US with a study of the photocatalytic activity under visible light. Ultrasonics Sonochemistry, 31, 295–301. https://doi.org/10.1016/j.ultsonch.2016.01.015
  • Tang, Y., Zhang, G., Liu, C., Luo, S., Xu, X., Chen, L., and Wang, B. (2013). Magnetic TiO2-graphene composite as a high-performance and recyclable platform for efficient photocatalytic removal of herbicides from water. Journal of Hazardous Materials, 252–253, 115–122. https://doi.org/10.1016/j.jhazmat.2013.02.053
  • Tian, Y., Chang, B., Fu, J., Zhou, B., Liu, J., Xi, F., and Dong, X. (2014). Graphitic carbon nitride/Cu2O heterojunctions: Preparation, characterization, and enhanced photocatalytic activity under visible light. Journal of Solid State Chemistry, 212, 1–6. https://doi.org/10.1016/j.jssc.2014.01.011
  • Tsui, L., and Zangari, G. (2014). Titania Nanotubes by Electrochemical Anodization for Solar Energy Conversion. Journal of The Electrochemical Society, 161(7), D3066. https://doi.org/10.1149/2.010407jes
  • Vahl, A., Veziroglu, S., Henkel, B., Strunskus, T., Polonskyi, O., Aktas, O. C., and Faupel, F. (2019). Pathways to Tailor Photocatalytic Performance of TiO2 Thin Films Deposited by Reactive Magnetron Sputtering. Materials, 12(17), 2840. https://doi.org/10.3390/ma12172840
  • Vasquez, R. P. (1998a). Cu2O by XPS. Surface Science Spectra, 5(4), 257–261. https://doi.org/10.1116/1.1247881
  • Vasquez, R. P. (1998b). CuO by XPS. Surface Science Spectra, 5(4), 262–266. https://doi.org/10.1116/1.1247882
  • Veziroglu, S., Ghori, M. Z., Kamp, M., Kienle, L., Rubahn, H.-G., Strunskus, T., Fiutowski, J., Adam, J., Faupel, F., and Aktas, O. C. (2018). Photocatalytic Growth of Hierarchical Au Needle Clusters on Highly Active TiO 2 Thin Film. Advanced Materials Interfaces, 5(15), 1800465. https://doi.org/10.1002/admi.201800465
  • Veziroglu, S., Ghori, M. Z., Obermann, A., Röder, K., Polonskyi, O., Strunskus, T., Faupel, F., and Aktas, O. C. (2019). Ag Nanoparticles Decorated TiO 2 Thin Films with Enhanced Photocatalytic Activity. Physica Status Solidi (a), 216(14), 1800898. https://doi.org/10.1002/pssa.201800898
  • Veziroglu, S., Hwang, J., Drewes, J., Barg, I., Shondo, J., Strunskus, T., Polonskyi, O., Faupel, F., and Aktas, O. C. (2020). PdO nanoparticles decorated TiO2 film with enhanced photocatalytic and self-cleaning properties. Materials Today Chemistry, 16, 100251. https://doi.org/10.1016/j.mtchem.2020.100251
  • Veziroglu, S., Obermann, A.-L., Ullrich, M., Hussain, M., Kamp, M., Kienle, L., Leißner, T., Rubahn, H.-G., Polonskyi, O., Strunskus, T., Fiutowski, J., Es-Souni, M., Adam, J., Faupel, F., and Aktas, O. C. (2020). Photodeposition of Au Nanoclusters for Enhanced Photocatalytic Dye Degradation over TiO 2 Thin Film. ACS Applied Materials and Interfaces, 12(13), 14983–14992. https://doi.org/10.1021/acsami.9b18817
  • Veziroglu, S., Röder, K., Gronenberg, O., Vahl, A., Polonskyi, O., Strunskus, T., Rubahn, H.-G., Kienle, L., Adam, J., Fiutowski, J., Faupel, F., and Aktas, O. C. (2019). Cauliflower-like CeO 2 –TiO 2 hybrid nanostructures with extreme photocatalytic and self-cleaning properties. Nanoscale, 11(20), 9840–9844. https://doi.org/10.1039/C9NR01208G
  • Veziroglu, S., Ullrich, M., Hussain, M., Drewes, J., Shondo, J., Strunskus, T., Adam, J., Faupel, F., and Aktas, O. C. (2020). Plasmonic and non-plasmonic contributions on photocatalytic activity of Au-TiO2 thin film under mixed UV–visible light. Surface and Coatings Technology, 389, 125613. https://doi.org/10.1016/j.surfcoat.2020.125613
  • Wang, H.-K., Yi, C.-Y., Tian, L., Wang, W.-J., Fang, J., Zhao, J.-H., and Shen, W.-G. (2012). Ag-Cu bimetallic nanoparticles prepared by Microemulsion method as catalyst for epoxidation of styrene. Journal of Nanomaterials, 2012, 4:1-4:8. https://doi.org/10.1155/2012/453915
  • Wenderich, K., and Mul, G. (2016). Methods, Mechanism, and Applications of Photodeposition in Photocatalysis: A Review. Chemical Reviews, 116(23), 14587–14619. https://doi.org/10.1021/acs.chemrev.6b00327
  • Wu. (2004). Enhanced TiO2 photocatalysis by Cu in hydrogen production from aqueous methanol solution. International Journal of Hydrogen Energy, 29(15), 1601–1605. https://doi.org/10.1016/j.ijhydene.2004.02.013
  • Wu, C.-K., Yin, M., O’Brien, S., and Koberstein, J. T. (2006). Quantitative Analysis of Copper Oxide Nanoparticle Composition and Structure by X-ray Photoelectron Spectroscopy. Chemistry of Materials, 18(25), 6054–6058. https://doi.org/10.1021/cm061596d
  • Yang, J., Wang, D., Han, H., and Li, C. (2013). Roles of Cocatalysts in Photocatalysis and Photoelectrocatalysis. Accounts of Chemical Research, 46(8), 1900–1909. https://doi.org/10.1021/ar300227e
  • Yu, J., Hai, Y., and Jaroniec, M. (2011). Photocatalytic hydrogen production over CuO-modified titania. Journal of Colloid and Interface Science, 357(1), 223–228. https://doi.org/10.1016/j.jcis.2011.01.101
  • Yu, J., Yu, J. C., and Zhao, X. (2002). The Effect of SiO2 Addition on the Grain Size and Photocatalytic Activity of TiO2 Thin Films. Journal of Sol-Gel Science and Technology, 24(2), 95–103. https://doi.org/10.1023/A:1015258105966
  • Zhang, P., Song, T., Wang, T., Zeng, H. (2017). Enhancement of hydrogen production of a Cu–TiO2 nanocomposite photocatalyst combined with broad spectrum absorption sensitizer Erythrosin B. RSC Advances, 7. 17873-17881. https://doi.org/10.1039/C6RA27686E
Toplam 62 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Nanoteknoloji
Bölüm Makaleler
Yazarlar

Salih Veziroglu 0000-0002-1310-6651

Erken Görünüm Tarihi 15 Haziran 2023
Yayımlanma Tarihi 15 Haziran 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 13 Sayı: 2

Kaynak Göster

APA Veziroglu, S. (2023). Columnar TiO2 Thin Films Decorated with Cu Nanoclusters Prepared by Photocatalytic Deposition for Enhanced Photocatalytic Performance under UV Illumination. Karadeniz Fen Bilimleri Dergisi, 13(2), 382-397. https://doi.org/10.31466/kfbd.1214065