Güçlendirilmiş Alan Savunması: Manyetik Fırlatıcı ve Sensör Entegrasyonu
Yıl 2024,
Cilt: 14 Sayı: 2, 760 - 788, 18.06.2024
Furkan Muhammed Kırıkcı
,
Hakan Kahveci
,
Ömür Akyazı
Öz
Bu makalede ses ve görüntü sinyallerini referans alarak manyetik alan kanunları ile çalışan alan savunma sistemi için en uygun tasarım yöntemi anlatılmaktadır. Yapılan çalışma sahadaki operatör (asker) faktörünü kaldırdığından dolayı önem arz etmektedir. Kondansatör gerilimi ve sığa değeri ile ivmelendirici sargı endüktans değerinin etkisi dikkate alınarak, elektromanyetik fırlatıcının güç kaynağı ve armatür yapısını belirlemek için temel kriterler önerilmiştir. Bu önerme MATLAB / Simulink yazılım tabanlı matematiksel model ile yapılmış olup, ANSYS Maxwell benzetimi ile karşılaştırılarak oluşan farklılıklar açıklanmıştır. Benzetim sonuçları, modeller arasındaki hız farkının %7 olduğunu göstermektedir. Ayrıca çalışmada sistemin kontrolünü sağlayan ses ve görüntü tabanlı konumlandırma sistemlerinin tasarım yöntemleri anlatılmaktadır. Sinyal alıcı mikrofonların üçgensel formda konumlandırıldığı bu sistemde zaman farkı yöntemini kullanan lineer algoritma kullanılmıştır. Oluşturulan teorik matematiksel model ile deneysel benzetim modeli karşılaştırılarak kullanılan yöntem ve aracı olan fonksiyonun doğruluğu ispatlanmaktadır. Çalışmada sistemin görev gerçekleştirme kapasitesini artırmak için derin öğrenme tabanlı YOLO v2 algoritması ile çalışan hedef tespit sistemi kullanılmaktadır. Konumlandırma sistemlerinden alınan sinyal ile sistem üzerinde anahtarlama yapılarak operatör faktörü aradan çıkarılmaktadır.
Kaynakça
- Abdo, M. M. M., El-Hussieny, H., Miyashita, T., & Ahmed, S. M. (2023). Design of A New Electromagnetic Launcher Based on the Magnetic Reluctance Control for the Propulsion of Aircraft-Mounted Microsatellites. Applied System Innovation, 6(5), 81.
- Akyazı, Ö., Bozdağ, M. O., & Akpınar, A. S. (2015). Elektromanyetik Fırlatıcılı Alan Savunma Sistemi Tasarımı ve Gerçeklenmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 27(2), 43-50.
- Akyazi, Ö. (2006). Elektromanyetik Fırlatıcılar (Yüksek Lisans Tezi). Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü.
- Baharvand, M., Kolagar, A. D., & Pahlavani, M. R. A. (2021). Design, Simulation, and Parameter Optimization of a MultiStage Induction Coilgun System. IEEE Transactions on Plasma Science, 49(7), 2256-2264.
- Bresie, D. A., & Andrews, J. A. (1991). "Design of a reluctance accelerator." IEEE Transactions on Magnetics, 27(1), 623–627.
- Çakır, O., Yazgan, A., Çakır, O., & Kaya, I. (2012). Farklı perspektiften zaman farkının varış ortalamasının alınması. In 2012 35. Uluslararası Telekomünikasyon ve Sinyal İşleme Konferansı (TSP) (s. 344-347). Prag, Çek Cumhuriyeti. https://doi.org/10.1109/TSP.2012.6256312.
- Dalal, N., & Triggs, B. (2005). Histograms of Oriented Gradients for Human Detection. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1, 886–893.
- Dong, L., Li, S., Xie, H., Zhang, Q. ve Liu, J. (2018). Influence of Capacitor Parameters on Launch Performance of Multipole Field Reconnection Electromagnetic Launchers. IEEE Transactions on Plasma Science, 46(7), 2642-2646.
- Ege, Y., Kabadayı, M., Kalender, O., Coramik, M., Citak, H., Yuruklu, E. ve Dalcali, A. (2016). A New Electromagnetic Helical Coilgun Launcher Design Based on LabVIEW. IEEE Transactions on Plasma Science, 44(7), 1208-1218.
- Egeland, A. (1989). Birkeland' s Electromagnetic Gun: A Historical Review. IEEE Transactions on Plasma Science, 17(2), 73-82.
- Fan, G., Wang, Y., Wang, P., Hu, Y. ve Yan, Z. (2020). Research on the Armature Structure Optimization of the Toroidal Reconnected Electromagnetic Launcher. IEEE Transactions on Plasma Science, 48(6), 2294-2300.
- Fauchon, A., & Villeplee, L. O. (1920, January). Canons Electriques. Berger-Levrault.
- İnger, E. (2013). Examination and Simulation of Electromagnetic Launch Systems. Doktora Tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Ankara.
- Jiang, P., Ergu, D., Liu, F., Cai, Y., & Ma, B. (2022). A Review of Yolo Algorithm Developments. Procedia Computer Science, 199, 1066-1073. https://doi.org/10.1016/j.procs.2022.01.135
- Kaushik, Balakrishnan, Don, N., & Krish, A. (2005). A Review Of The Role Of Acoustic Sensors In The Modern Battlefield. 11th AIAA/CEAS Aeroacoustics Conference.
- Kırıkcı, F. M. (2023). Elektromanyetik Fırlatıcı Sistemlerin İrdelenmesi. Yüksek Lisans Tezi, Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Trabzon.
- Liang, C., Xiang, H., Yuan, X., Qiao, Z. ve Lv, Q. A. (2021). Reverse Force Suppression Method of Reluctance Coil Launcher Based on Consumption Resistor. IEEE Access, 9, 62770-62778.
- Lu, M., Zhang, J., Yi, X. ve Zhuang, Z. (2022). Advanced Mathematical Calculation Model of Single-Stage RCG. IEEE Transactions on Plasma Science, 50(4), 1026–1031.
- McNab, I. R. (1999, January). Early electric gun research. IEEE Transactions on Magnetics, 35(1), 250-261. doi: 10.1109/20.738413.
- Özuğur, Ö., & Leblebicioğlu, M. K. (2016). Akustik Algılayıcı Ağının Optimizasyonu ile Ateşli Silah Konumunun Tespit Edilmesi. Journal of Defense Sciences/Savunma Bilimleri Dergisi, 15(2).
- Pages, C. G. (1845). New Electromagnetic Engine. American Journal of Science and Arts, 49, 131-135.
- Praneeth, S. R. N., & Singh, B. (2022). Finite Element-Boundary Element Method Based Simulations of Electromagnetic Railgun in Augmented Configurations. IEEE Journal on Multiscale and Multiphysics Computational Techniques, 7, 320-327. doi: 10.1109/JMMCT.2022.3222529.
- Sari, V. (2023). Effect of Change of Reluctance Launcher Parameters on Projectile Velocity. IEEE Access, 11, 90027-90037. https://doi.org/10.1109/ACCESS.2023.3307016.
- Slade, G. W. (2005). A simple unified physical model for a reluctance accelerator. IEEE Transactions on Magnetics, 41(11), 4270–4276.
- Su, X., Lin, F., Zhang, Q., Li, H., & Liu, Y. (2021). Optimal Design of a Multistage Induction Coil Launcher. IEEE Transactions on Plasma Science, 49(10), 3243-3250. https://doi.org/10.1109/TPS.2021.3113703.
- Urruela, A., Sala, J., & Riba, J. (2006). Average Performance Analysis of Circular and Hyperbolic Geo Location. IEEE Transactions on Vehicular Technology, 55(1), 52–66.
- Wan, X., Yang, S., Li, Y. ve Li, B. (2023). Inductance Gradient in Electromagnetic Launcher Under Channel Cooling Condition. IEEE Transactions on Plasma Science.
- Wang, M., Cao, Y., Wang, C., Wang, H. ve Chen, J. (2016). Trigger Control Research of Electromagnetic Coil Launcher Based on Real-Time Velocity Measurement. IEEE Transactions on Plasma Science, 44(5), 885–888.
- Zhao, J., Li, H., Zhao, B., Liu, J., Kong, L. ve Zhang, P. (2023). An Improved Pulsed Power Supply Circuit for Reluctance Electromagnetic Launcher Based on Bridge-Type Capacitor Circuit. IEEE Transactions on Plasma Science.
Enhanced Area Defense: Magnetic Launcher and Sensor Integration
Yıl 2024,
Cilt: 14 Sayı: 2, 760 - 788, 18.06.2024
Furkan Muhammed Kırıkcı
,
Hakan Kahveci
,
Ömür Akyazı
Öz
In this article, the most appropriate design method for a field defense system that operates with magnetic field laws by taking audio and video signals as reference is described. The study is important because it eliminates the operator (soldier) factor in the battlefield. Taking into account the effect of capacitor voltage, capacitance value and accelerator winding inductance value, the main criteria for determining the power supply and armature structure of the electromagnetic launcher are proposed. This proposal is made with MATLAB/Simulink software based mathematical model and the differences are explained by comparing with ANSYS Maxwell simulation. The simulated results show that the speed difference between the models is 7%. Additionally, the design methods of the audio and video-based positioning systems that control the system are explained in the study. In this system where signal receiving microphones are positioned in triangular form, a linear algorithm using the time difference method is utilized. By comparing the theoretical mathematical model with the experimental simulation model, the accuracy of the method and the method function is proved. In this study, a deep learning-based target detection system that operates with the YOLO v2 algorithm is used to increase the system's mission execution capacity. The operator is eliminated by switching the system with the signal received from the positioning systems.
Kaynakça
- Abdo, M. M. M., El-Hussieny, H., Miyashita, T., & Ahmed, S. M. (2023). Design of A New Electromagnetic Launcher Based on the Magnetic Reluctance Control for the Propulsion of Aircraft-Mounted Microsatellites. Applied System Innovation, 6(5), 81.
- Akyazı, Ö., Bozdağ, M. O., & Akpınar, A. S. (2015). Elektromanyetik Fırlatıcılı Alan Savunma Sistemi Tasarımı ve Gerçeklenmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 27(2), 43-50.
- Akyazi, Ö. (2006). Elektromanyetik Fırlatıcılar (Yüksek Lisans Tezi). Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü.
- Baharvand, M., Kolagar, A. D., & Pahlavani, M. R. A. (2021). Design, Simulation, and Parameter Optimization of a MultiStage Induction Coilgun System. IEEE Transactions on Plasma Science, 49(7), 2256-2264.
- Bresie, D. A., & Andrews, J. A. (1991). "Design of a reluctance accelerator." IEEE Transactions on Magnetics, 27(1), 623–627.
- Çakır, O., Yazgan, A., Çakır, O., & Kaya, I. (2012). Farklı perspektiften zaman farkının varış ortalamasının alınması. In 2012 35. Uluslararası Telekomünikasyon ve Sinyal İşleme Konferansı (TSP) (s. 344-347). Prag, Çek Cumhuriyeti. https://doi.org/10.1109/TSP.2012.6256312.
- Dalal, N., & Triggs, B. (2005). Histograms of Oriented Gradients for Human Detection. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1, 886–893.
- Dong, L., Li, S., Xie, H., Zhang, Q. ve Liu, J. (2018). Influence of Capacitor Parameters on Launch Performance of Multipole Field Reconnection Electromagnetic Launchers. IEEE Transactions on Plasma Science, 46(7), 2642-2646.
- Ege, Y., Kabadayı, M., Kalender, O., Coramik, M., Citak, H., Yuruklu, E. ve Dalcali, A. (2016). A New Electromagnetic Helical Coilgun Launcher Design Based on LabVIEW. IEEE Transactions on Plasma Science, 44(7), 1208-1218.
- Egeland, A. (1989). Birkeland' s Electromagnetic Gun: A Historical Review. IEEE Transactions on Plasma Science, 17(2), 73-82.
- Fan, G., Wang, Y., Wang, P., Hu, Y. ve Yan, Z. (2020). Research on the Armature Structure Optimization of the Toroidal Reconnected Electromagnetic Launcher. IEEE Transactions on Plasma Science, 48(6), 2294-2300.
- Fauchon, A., & Villeplee, L. O. (1920, January). Canons Electriques. Berger-Levrault.
- İnger, E. (2013). Examination and Simulation of Electromagnetic Launch Systems. Doktora Tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Ankara.
- Jiang, P., Ergu, D., Liu, F., Cai, Y., & Ma, B. (2022). A Review of Yolo Algorithm Developments. Procedia Computer Science, 199, 1066-1073. https://doi.org/10.1016/j.procs.2022.01.135
- Kaushik, Balakrishnan, Don, N., & Krish, A. (2005). A Review Of The Role Of Acoustic Sensors In The Modern Battlefield. 11th AIAA/CEAS Aeroacoustics Conference.
- Kırıkcı, F. M. (2023). Elektromanyetik Fırlatıcı Sistemlerin İrdelenmesi. Yüksek Lisans Tezi, Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Trabzon.
- Liang, C., Xiang, H., Yuan, X., Qiao, Z. ve Lv, Q. A. (2021). Reverse Force Suppression Method of Reluctance Coil Launcher Based on Consumption Resistor. IEEE Access, 9, 62770-62778.
- Lu, M., Zhang, J., Yi, X. ve Zhuang, Z. (2022). Advanced Mathematical Calculation Model of Single-Stage RCG. IEEE Transactions on Plasma Science, 50(4), 1026–1031.
- McNab, I. R. (1999, January). Early electric gun research. IEEE Transactions on Magnetics, 35(1), 250-261. doi: 10.1109/20.738413.
- Özuğur, Ö., & Leblebicioğlu, M. K. (2016). Akustik Algılayıcı Ağının Optimizasyonu ile Ateşli Silah Konumunun Tespit Edilmesi. Journal of Defense Sciences/Savunma Bilimleri Dergisi, 15(2).
- Pages, C. G. (1845). New Electromagnetic Engine. American Journal of Science and Arts, 49, 131-135.
- Praneeth, S. R. N., & Singh, B. (2022). Finite Element-Boundary Element Method Based Simulations of Electromagnetic Railgun in Augmented Configurations. IEEE Journal on Multiscale and Multiphysics Computational Techniques, 7, 320-327. doi: 10.1109/JMMCT.2022.3222529.
- Sari, V. (2023). Effect of Change of Reluctance Launcher Parameters on Projectile Velocity. IEEE Access, 11, 90027-90037. https://doi.org/10.1109/ACCESS.2023.3307016.
- Slade, G. W. (2005). A simple unified physical model for a reluctance accelerator. IEEE Transactions on Magnetics, 41(11), 4270–4276.
- Su, X., Lin, F., Zhang, Q., Li, H., & Liu, Y. (2021). Optimal Design of a Multistage Induction Coil Launcher. IEEE Transactions on Plasma Science, 49(10), 3243-3250. https://doi.org/10.1109/TPS.2021.3113703.
- Urruela, A., Sala, J., & Riba, J. (2006). Average Performance Analysis of Circular and Hyperbolic Geo Location. IEEE Transactions on Vehicular Technology, 55(1), 52–66.
- Wan, X., Yang, S., Li, Y. ve Li, B. (2023). Inductance Gradient in Electromagnetic Launcher Under Channel Cooling Condition. IEEE Transactions on Plasma Science.
- Wang, M., Cao, Y., Wang, C., Wang, H. ve Chen, J. (2016). Trigger Control Research of Electromagnetic Coil Launcher Based on Real-Time Velocity Measurement. IEEE Transactions on Plasma Science, 44(5), 885–888.
- Zhao, J., Li, H., Zhao, B., Liu, J., Kong, L. ve Zhang, P. (2023). An Improved Pulsed Power Supply Circuit for Reluctance Electromagnetic Launcher Based on Bridge-Type Capacitor Circuit. IEEE Transactions on Plasma Science.