Araştırma Makalesi
BibTex RIS Kaynak Göster

Arpada Tuz Stresinin Hafifletilmesinde Mikorizanın Etkisi

Yıl 2024, Cilt: 14 Sayı: 3, 1029 - 1040, 15.09.2024
https://doi.org/10.31466/kfbd.1387429

Öz

Bu çalışma, arpa tuz stresini iyileştirmede mikorizanın rolünü belirlemek amacıyla serada yürütülmüştür. Denemede ticari olarak satılan mikoriza kullanılmıştır. Bitkilere üç tuz düzeyi (0, 100 ve 200 mM NaCl) sulama suyu ile uygulanmış ve ekimden 8 hafta sonra bitkiler hasat edilmiştir. Farklı tuz düzeyleri ile sulanan mikoriza ile aşılı arpa bitki boyu, yeşil aksam ve kök kuru ağırlıkları, kök uzunluğu, yaprakların klorofil ve prolin içerikleri, kök bölgesi enzimlerinden dehidrogenaz ve alkalin fosfataz enzim aktiviteleri incelenmiştir. Tuz dozlarının arpa gelişimi üzerine olumsuz etkileri belirlenmiştir. Mikoriza aşılamasının tuzun neden olduğu olumsuz etkiyi azalttığı belirlenmiştir.

Etik Beyan

Yapılan bu çalışmada araştırma ve yayın etiğine uyulmuştur

Kaynakça

  • Abd-Allah, E.F., Abeer-Hashem, A.A., Alqarawi, A.H., Bahkalı, and Mona, S., (2015). Enhancing growth performance and systemic acquired resistance of medicinal plant Sesbania sesban (L.) Merr using arbuscular mycorrhizal fungi under salt stress. Saudi Journal of Biological Sciences, 22, 274-283.
  • Abeer, H., Alterami, A.S., Alqarawı, V.E., Abd-Allah, A.A., and Egamberdieva, D., (2016). Arbuscular mycorrhizal fungi enhance basil tolerance to salt stress through improved physiological and nutritional status. Pakistan Journal of Botany, 46, 37-45.
  • Ahanger, M. A., Aharwal, R.M., Tomar, N.S., and Shrivastana, M., (2015). Potassium induces positive changes in nitrogen metabolism and antioxidant system of oat (Avena sativa L. cultivar Kent). International Journal of Plant Sciences, 10, 211-223.
  • Ai, C., Liang, G., Sun, J., He, P., Tang, S., Yang, S., Zhou, W., and Wang, X., (2015). The alleviation of acid soil stress in rice by inorganic or organic ameliorants is associated with changes in soil enzyme activity and microbial community composition. Biology and Fertility of Soils, 51,465–477
  • Ait-El-Mokhtar, M., Laouane, R. B., Anli, M., Boutasknit, A., Wahbi, S., and Meddich, A., (2019). Use of mycorrhizal fungi in improving tolerance of the date palm (Phoenix dactylifera L.) seedlings to salt stress. Scientia Horticulturae, 253, 429– 438.
  • Ait-El-Mokhtar, M., Baslam, M., Ben Laouane, R., Anli, M., Boutasknit, A., Mitsui, T., Wahbi, S., and Meddich, A., (2020), Alleviation of detrimental effects of salt stress on date palm (Phoenix dactylifera L.) by the application of arbuscular mycorrhizal fungi and/or compost. Frontiers in Sustainable Food Systems, 4,131.
  • Alqarawi, A. A., Hashem, A., Abd_Allah, E. F., Alshahrani, T. S., and Huqail, A.A., (2014). Effect of salinity on moisture content, pigment system, and lipid composition in Ephedra alata Decne. Acta Biologica Hungarica, 65(1), 61–71
  • Anlı, M., Baslam, M., Tahiri, A., Raklami, A., Symanczik, S., Boutasknit, A., Ait-El-Mokhtar, M., Ben-Laouane, R., Toubali, S., Ait Rahou, Y., Ait Chitt, Y., Oufdou, K., Mitsui, T., Hafidi, M., and Meddich, A., (2020). Biofertilizers as strategies to improve photosynthetic apparatus, growth, and drought stress tolerance in the date palm. Frontiers in Plant Science, 11,1-21.
  • Aseri, G. K., Jain, N., Panwar, J., Rao, A.V., and Meghwal, P.R., (2008). Biofertilizers improve plant growth, fruit yield, nutrition, metabolism and rhizosphere enzyme activities of Pomegrate (Punica granatum L.) in Indian Thar Desert. Scientia Horticulturae, 117, 130-135.
  • Arnon, D.T., (1949). Copper enzymes in isolated chloroplast polyphenol oxidase in Beta vulgaris. Plant Physiology, 24, 1- 15.
  • Bates, L. S., Waldern, R. P., and Teare, I. D., (1973). Rapid determination of free proline for water-stress studies, Plant and Soil, 39, 205-207.
  • Baslam, M., Pascual, I., Sanchez-Diaz, M., Erro, J., Garcia-Mina, J.M., and Goicoechea, N., (2011). Improvement of nutritional quality of greenhouse-grown lettuce by arbuscular mycorrhizal fungi ıs conditioned by the source of phosphorus nutrition. Journal of Agricultural and Food Chemistry, 59, 11129.
  • Beltrano, J., Ruscitti, M., Arango, M.C., and Ronco, M., (2013). Effects of arbuscular mycorrhiza inoculation on plant growth, biological and physiological parameters and mineral nutrition in pepper grown under different salinity and p levels. Journal of Plant Nutrition and Soil Science, 13, 123-141.
  • Benhassaini, H., Fetati, A., Kaddour Hocine, A., and Belkhodja, M., (2012). Effect of salt stress on growth and accumulation of proline and soluble sugars on plantlets of Pistacia atlantica Desf. subsp. atlantica used as rootstocks. Biotechnology, Agronomy, Society and Environment, 16, 159-165.
  • Ben-Laouane, R., Ait-El-Mokhtar, M., Anli, M., Boutasknit, A., Ait, Y., Rahou, A., Raklami, K., Oufdou, K., Wahbi, S., and Meddich, A., (2021). Green compost combined with mycorrhizae and rhizobia: a strategy for ımproving alfalfa growth and yield under field conditions. Gesunde Pflanzen. 73,193–207
  • Benlioğlu, B., and Özkan, U., (2015). Bazı arpa çeşitlerinin (Hordeum vulgare L.) çimlenme dönemlerinde farklı dozlardaki tuz stresine tepkilerinin belirlenmesi. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi, 24 (2), 109-114
  • Birhane, E., Sterck, F., Fetene, M., Bongers, F., and Kuyper, T., (2012). Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency, and growth of frankincense seedlings under pulsed water availability conditions. Oecologia,, 169, 895–904.
  • Borde, M., Dudhane, M., and Jite, P. K., (2010). AM fungi influences the photosynthetic activity, growth and antioxidant enzymes in Allium sativum L. under salinity condition. Notulae Scientia Biologicae, 2, 64–71.
  • Boutasknit, A., Baslam, M., Ait-El-Mokhtar, M., Anli, M., Ben-Laouane, R., Ait-Rahou, Y., Mitsui, T., Douira, A., El Modafar, C., Wahbi, S., and Meddich, A., (2021). Assemblage of indigenous arbuscular mycorrhizal fungi and green waste compost enhance drought stress tolerance in carob (Ceratonia siliqua L.) trees. Scientific Reports, 11, 1-23.
  • Bowles, T. M., Barrios-Masias, F. H., Carlisle, E. A., Cavagnaro, T. R., and Jackson, L. E., (2016). Effects of arbuscular mycorrhizae on tomato yield, nutrient uptake, water relations, and soil carbon dynamics under deficit irrigation in field conditions. Science of the Total Environment, 566, 1223–1234
  • Butcher, K., Wick, A.F., Desutter, T., Chatterjee, A., and Harmon, J., (2016). Soil salinity: a threat to global food security. Agronomy Journal, 108, 2189-2200.
  • Chandrasekaran, M. (2022). Arbuscular mycorrhizal fungi mediated enhanced biomass, root morphological traits and nutrient uptake under drought stress: A meta-analysis. Journal of Fungi (Basel), 8, 660.
  • Du, Z., Zhu, Y., Zhu, L., Zhang, J., Li, B., Wang, J., Wang, J., Zhang, C., and Cheng, C., (2018). Effects of the herbicide mesotrione on soil enzyme activity and microbial communities. Ecotoxicology and Environmental Safety, 164, 571–578.
  • Hasanuzzaman, M., Bhuyan, M.H.M.B., Parvin, Bhuiyan, K. T.F., Anee, T.I., Nahar, K., Hossen, M.S,Zulfiqar, F., Alam, M.M., and Fujita, M., (2020). Regulation of ROS metabolism in plants under environmental stress: a review of recent experimental evidence. International Journal of Molecular Sciences, 21, 1-44,
  • Hashem, A., Abd-Allah, E.F., Alqarawı, G., Al-didamony, G., Al-Whibi, M., Egamberdieva, D., and Ahmad, P. (2014). Alleviation of adverse impact of salinity on faba bean (Vicia faba L.) by arbuscular mycorrhizal fungi. Pakistan Journal of Botany, 46(6), 2003-2013
  • Hashem, A., Alqarawi, A. A., Radhakrishnan, R., Al-Arjani, A. F., Aldehaish, H. A., and Egamberdieva, D., (2018). Arbuscular mycorrhizal fungi regulate the oxidative system, hormones and ionic equilibrium to trigger salt stress tolerance in Cucumis sativus L. Saudi Journal of Biological Sciences, 25 (6), 1102–1114
  • He, F., Sheng, M., and Tang, M., (2017). Effects of Rhizophagus irregularis on photosynthesis and antioxidative enzymatic system in Robinia pseudoacacia L. under drought Stress. Frontiers in Plant Science, 8, 183.
  • Khan, M.I.R., Nazır, F., Asger, M., Per, T.S., and Khan, N.A., (2015). Selenium and sulfur influence ethylene formation and alleviate cadmium-induced oxidative stress by improving proline and glutathione production in wheat. Journal of Plant Physiology, 173, 9-18
  • Kumar, A., Yadav, A., Dhanda, P., Delta, A.K., Sharma, M., and Kaushik, P., (2022). salinity stress and the ınfluence of bioinoculants on the morphological and biochemical characteristics of faba bean (Vicia faba L.). Sustainability, 14, 1-15.
  • Lynch, J., Cain, M., Frame, D., and Pierrehumbert, R., (2021). Agriculture's contribution to climate change and role in mitigation is distinct from predominantly fossil CO2-emitting sectors. Frontiers in Sustainable Food Systems, 4, 1-9.
  • Malhi, G.S., Kaur, M., and Kaushik, P., (2021). Impact of climate change on agriculture and its mitigation strategies: a review. Sustainability, 13, 1-21.
  • Mukhopadhyay, R., Sarkar, B., Jat, H.S., Sharma, R.C., and Bolan, N.S., (2021). Challenges for sustainable agriculture and food security. Journal of Environmental Management.280, 1-15.
  • Pepper, I.L., Gerba, C.P., and Brendecke, J.W., (1995). Brendecke: Environmental Microbiology, A Laboratory Manual. Academic Press, New York.
  • Raza, A., Tabassum, J., Fakhar, A.Z., Sharif, R., Chen, H., Zhang, C., Ju, L., Fotopoulos, V., Siddque, K.H.M., Singh, R.K., Zhuang, W., and Varshney, R.K., (2022). Smart reprograming of plants against salinity stress using modern biotechnological tools, Critical Reviews in Biotechnology, 1, 1-29.
  • Singh, P., Chaudhary, O.P., and Mavi, M.S. (2018). Irrigation-induced salinization effects on soil chemical and biological properties under Cotton-Wheat rotation on loamy sand soil in Northwest India. Journal of the Indian Society of Soil Science, 66, 386–391.
  • Sousa, B., Rodrigues, F., Soares, C., Martins, M., Azenha, M., Lino-Neto, T., Santos, C., Cunha, A., and Fidalgo, F. (2022). Impact of combined heat and salt stresses on tomato plants—insights into nutrient uptake and redox homeostasis. Antioxidants, 11, 478
  • Tabatabai, M.A., and Bremner, J.M., (1969). Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biology and Biochemistry. 1, 301–307.
  • Tarafdar, J.C., and Gharu, A., (2006). Mobilization of organic and poorly soluble phosphates by Chaetomium globosum. Applied Soil Ecology, 32, 273-283.
  • TUİK, (2020). Türkiye İstatistik Kurumu Erişim: http://www.tuik.gov.tr/PreTablo.do?alt_id=1001 [Erişim tarihi 07.05.2020].
  • Ünal, B.T., Aktaş, L.Y., and Güven, A., (2014). Effects of salinity on antioxidant enzymes and proline in leaves of barley seedlings in different growth stages. Bulgarian Journal of Agricultural Sciences. 20, 883-887.
  • Wani, S.H., Kumar, V., Khare, T., Guddimalli, R., Parveda, M., Solymosi, K., Suprasanna, P., and Kishor, P.B.K., (2020). Engineering salinity tolerance in plants: progress and prospects. Planta, 251, 76.
  • Wang, Y., Wang, M., Wu, A., and Huang, J. (2018). Effects of arbuscular mycorrhizal fungi on growth and nitrogen uptake of Chrysanthemum morifolium under salt stress. PlosOne, 13, 1-14.
  • Yan, N., Marshner, P., Cao, W., Zuo, C.,and Qin, W. (2015). Influence of salinity and water content on soil microorganisms. International Soil and Water Conservation Research, 3, 316–323.
  • Zong, J., Zhang, Z., Huang, P., and Yang, Y., (2023). Arbuscular mycorrhizal fungi alleviates salt stress in Xanthoceras sorbifolium through improved osmotic tolerance, antioxidant activity, and photosynthesis. Frontiers in Microbiology, 3, 1-14.

The Effect of Mycorrhiza in Alleviating Salt Stress in Barley

Yıl 2024, Cilt: 14 Sayı: 3, 1029 - 1040, 15.09.2024
https://doi.org/10.31466/kfbd.1387429

Öz

In this study was conducted in greenhouse to determine the role of mycorrhiza in improving salt stress in barley. Commercially available mycorrhiza was used in the experiment. Three salt levels (0, 100 and 200 mM NaCl) were applied to the plants with irrigation water and the plants were harvested 8 weeks after planting. Plant height, plant and root dry weights, root length, chlorophyll and proline contents of leaves, dehydrogenase and alkaline phosphatase enzyme activities from root zone enzymes were investigated. The negative effects of salt doses on barley growth were determined. It has been determined that mycorrhiza inoculation reduces the negative effect caused by salt.

Kaynakça

  • Abd-Allah, E.F., Abeer-Hashem, A.A., Alqarawi, A.H., Bahkalı, and Mona, S., (2015). Enhancing growth performance and systemic acquired resistance of medicinal plant Sesbania sesban (L.) Merr using arbuscular mycorrhizal fungi under salt stress. Saudi Journal of Biological Sciences, 22, 274-283.
  • Abeer, H., Alterami, A.S., Alqarawı, V.E., Abd-Allah, A.A., and Egamberdieva, D., (2016). Arbuscular mycorrhizal fungi enhance basil tolerance to salt stress through improved physiological and nutritional status. Pakistan Journal of Botany, 46, 37-45.
  • Ahanger, M. A., Aharwal, R.M., Tomar, N.S., and Shrivastana, M., (2015). Potassium induces positive changes in nitrogen metabolism and antioxidant system of oat (Avena sativa L. cultivar Kent). International Journal of Plant Sciences, 10, 211-223.
  • Ai, C., Liang, G., Sun, J., He, P., Tang, S., Yang, S., Zhou, W., and Wang, X., (2015). The alleviation of acid soil stress in rice by inorganic or organic ameliorants is associated with changes in soil enzyme activity and microbial community composition. Biology and Fertility of Soils, 51,465–477
  • Ait-El-Mokhtar, M., Laouane, R. B., Anli, M., Boutasknit, A., Wahbi, S., and Meddich, A., (2019). Use of mycorrhizal fungi in improving tolerance of the date palm (Phoenix dactylifera L.) seedlings to salt stress. Scientia Horticulturae, 253, 429– 438.
  • Ait-El-Mokhtar, M., Baslam, M., Ben Laouane, R., Anli, M., Boutasknit, A., Mitsui, T., Wahbi, S., and Meddich, A., (2020), Alleviation of detrimental effects of salt stress on date palm (Phoenix dactylifera L.) by the application of arbuscular mycorrhizal fungi and/or compost. Frontiers in Sustainable Food Systems, 4,131.
  • Alqarawi, A. A., Hashem, A., Abd_Allah, E. F., Alshahrani, T. S., and Huqail, A.A., (2014). Effect of salinity on moisture content, pigment system, and lipid composition in Ephedra alata Decne. Acta Biologica Hungarica, 65(1), 61–71
  • Anlı, M., Baslam, M., Tahiri, A., Raklami, A., Symanczik, S., Boutasknit, A., Ait-El-Mokhtar, M., Ben-Laouane, R., Toubali, S., Ait Rahou, Y., Ait Chitt, Y., Oufdou, K., Mitsui, T., Hafidi, M., and Meddich, A., (2020). Biofertilizers as strategies to improve photosynthetic apparatus, growth, and drought stress tolerance in the date palm. Frontiers in Plant Science, 11,1-21.
  • Aseri, G. K., Jain, N., Panwar, J., Rao, A.V., and Meghwal, P.R., (2008). Biofertilizers improve plant growth, fruit yield, nutrition, metabolism and rhizosphere enzyme activities of Pomegrate (Punica granatum L.) in Indian Thar Desert. Scientia Horticulturae, 117, 130-135.
  • Arnon, D.T., (1949). Copper enzymes in isolated chloroplast polyphenol oxidase in Beta vulgaris. Plant Physiology, 24, 1- 15.
  • Bates, L. S., Waldern, R. P., and Teare, I. D., (1973). Rapid determination of free proline for water-stress studies, Plant and Soil, 39, 205-207.
  • Baslam, M., Pascual, I., Sanchez-Diaz, M., Erro, J., Garcia-Mina, J.M., and Goicoechea, N., (2011). Improvement of nutritional quality of greenhouse-grown lettuce by arbuscular mycorrhizal fungi ıs conditioned by the source of phosphorus nutrition. Journal of Agricultural and Food Chemistry, 59, 11129.
  • Beltrano, J., Ruscitti, M., Arango, M.C., and Ronco, M., (2013). Effects of arbuscular mycorrhiza inoculation on plant growth, biological and physiological parameters and mineral nutrition in pepper grown under different salinity and p levels. Journal of Plant Nutrition and Soil Science, 13, 123-141.
  • Benhassaini, H., Fetati, A., Kaddour Hocine, A., and Belkhodja, M., (2012). Effect of salt stress on growth and accumulation of proline and soluble sugars on plantlets of Pistacia atlantica Desf. subsp. atlantica used as rootstocks. Biotechnology, Agronomy, Society and Environment, 16, 159-165.
  • Ben-Laouane, R., Ait-El-Mokhtar, M., Anli, M., Boutasknit, A., Ait, Y., Rahou, A., Raklami, K., Oufdou, K., Wahbi, S., and Meddich, A., (2021). Green compost combined with mycorrhizae and rhizobia: a strategy for ımproving alfalfa growth and yield under field conditions. Gesunde Pflanzen. 73,193–207
  • Benlioğlu, B., and Özkan, U., (2015). Bazı arpa çeşitlerinin (Hordeum vulgare L.) çimlenme dönemlerinde farklı dozlardaki tuz stresine tepkilerinin belirlenmesi. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi, 24 (2), 109-114
  • Birhane, E., Sterck, F., Fetene, M., Bongers, F., and Kuyper, T., (2012). Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency, and growth of frankincense seedlings under pulsed water availability conditions. Oecologia,, 169, 895–904.
  • Borde, M., Dudhane, M., and Jite, P. K., (2010). AM fungi influences the photosynthetic activity, growth and antioxidant enzymes in Allium sativum L. under salinity condition. Notulae Scientia Biologicae, 2, 64–71.
  • Boutasknit, A., Baslam, M., Ait-El-Mokhtar, M., Anli, M., Ben-Laouane, R., Ait-Rahou, Y., Mitsui, T., Douira, A., El Modafar, C., Wahbi, S., and Meddich, A., (2021). Assemblage of indigenous arbuscular mycorrhizal fungi and green waste compost enhance drought stress tolerance in carob (Ceratonia siliqua L.) trees. Scientific Reports, 11, 1-23.
  • Bowles, T. M., Barrios-Masias, F. H., Carlisle, E. A., Cavagnaro, T. R., and Jackson, L. E., (2016). Effects of arbuscular mycorrhizae on tomato yield, nutrient uptake, water relations, and soil carbon dynamics under deficit irrigation in field conditions. Science of the Total Environment, 566, 1223–1234
  • Butcher, K., Wick, A.F., Desutter, T., Chatterjee, A., and Harmon, J., (2016). Soil salinity: a threat to global food security. Agronomy Journal, 108, 2189-2200.
  • Chandrasekaran, M. (2022). Arbuscular mycorrhizal fungi mediated enhanced biomass, root morphological traits and nutrient uptake under drought stress: A meta-analysis. Journal of Fungi (Basel), 8, 660.
  • Du, Z., Zhu, Y., Zhu, L., Zhang, J., Li, B., Wang, J., Wang, J., Zhang, C., and Cheng, C., (2018). Effects of the herbicide mesotrione on soil enzyme activity and microbial communities. Ecotoxicology and Environmental Safety, 164, 571–578.
  • Hasanuzzaman, M., Bhuyan, M.H.M.B., Parvin, Bhuiyan, K. T.F., Anee, T.I., Nahar, K., Hossen, M.S,Zulfiqar, F., Alam, M.M., and Fujita, M., (2020). Regulation of ROS metabolism in plants under environmental stress: a review of recent experimental evidence. International Journal of Molecular Sciences, 21, 1-44,
  • Hashem, A., Abd-Allah, E.F., Alqarawı, G., Al-didamony, G., Al-Whibi, M., Egamberdieva, D., and Ahmad, P. (2014). Alleviation of adverse impact of salinity on faba bean (Vicia faba L.) by arbuscular mycorrhizal fungi. Pakistan Journal of Botany, 46(6), 2003-2013
  • Hashem, A., Alqarawi, A. A., Radhakrishnan, R., Al-Arjani, A. F., Aldehaish, H. A., and Egamberdieva, D., (2018). Arbuscular mycorrhizal fungi regulate the oxidative system, hormones and ionic equilibrium to trigger salt stress tolerance in Cucumis sativus L. Saudi Journal of Biological Sciences, 25 (6), 1102–1114
  • He, F., Sheng, M., and Tang, M., (2017). Effects of Rhizophagus irregularis on photosynthesis and antioxidative enzymatic system in Robinia pseudoacacia L. under drought Stress. Frontiers in Plant Science, 8, 183.
  • Khan, M.I.R., Nazır, F., Asger, M., Per, T.S., and Khan, N.A., (2015). Selenium and sulfur influence ethylene formation and alleviate cadmium-induced oxidative stress by improving proline and glutathione production in wheat. Journal of Plant Physiology, 173, 9-18
  • Kumar, A., Yadav, A., Dhanda, P., Delta, A.K., Sharma, M., and Kaushik, P., (2022). salinity stress and the ınfluence of bioinoculants on the morphological and biochemical characteristics of faba bean (Vicia faba L.). Sustainability, 14, 1-15.
  • Lynch, J., Cain, M., Frame, D., and Pierrehumbert, R., (2021). Agriculture's contribution to climate change and role in mitigation is distinct from predominantly fossil CO2-emitting sectors. Frontiers in Sustainable Food Systems, 4, 1-9.
  • Malhi, G.S., Kaur, M., and Kaushik, P., (2021). Impact of climate change on agriculture and its mitigation strategies: a review. Sustainability, 13, 1-21.
  • Mukhopadhyay, R., Sarkar, B., Jat, H.S., Sharma, R.C., and Bolan, N.S., (2021). Challenges for sustainable agriculture and food security. Journal of Environmental Management.280, 1-15.
  • Pepper, I.L., Gerba, C.P., and Brendecke, J.W., (1995). Brendecke: Environmental Microbiology, A Laboratory Manual. Academic Press, New York.
  • Raza, A., Tabassum, J., Fakhar, A.Z., Sharif, R., Chen, H., Zhang, C., Ju, L., Fotopoulos, V., Siddque, K.H.M., Singh, R.K., Zhuang, W., and Varshney, R.K., (2022). Smart reprograming of plants against salinity stress using modern biotechnological tools, Critical Reviews in Biotechnology, 1, 1-29.
  • Singh, P., Chaudhary, O.P., and Mavi, M.S. (2018). Irrigation-induced salinization effects on soil chemical and biological properties under Cotton-Wheat rotation on loamy sand soil in Northwest India. Journal of the Indian Society of Soil Science, 66, 386–391.
  • Sousa, B., Rodrigues, F., Soares, C., Martins, M., Azenha, M., Lino-Neto, T., Santos, C., Cunha, A., and Fidalgo, F. (2022). Impact of combined heat and salt stresses on tomato plants—insights into nutrient uptake and redox homeostasis. Antioxidants, 11, 478
  • Tabatabai, M.A., and Bremner, J.M., (1969). Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biology and Biochemistry. 1, 301–307.
  • Tarafdar, J.C., and Gharu, A., (2006). Mobilization of organic and poorly soluble phosphates by Chaetomium globosum. Applied Soil Ecology, 32, 273-283.
  • TUİK, (2020). Türkiye İstatistik Kurumu Erişim: http://www.tuik.gov.tr/PreTablo.do?alt_id=1001 [Erişim tarihi 07.05.2020].
  • Ünal, B.T., Aktaş, L.Y., and Güven, A., (2014). Effects of salinity on antioxidant enzymes and proline in leaves of barley seedlings in different growth stages. Bulgarian Journal of Agricultural Sciences. 20, 883-887.
  • Wani, S.H., Kumar, V., Khare, T., Guddimalli, R., Parveda, M., Solymosi, K., Suprasanna, P., and Kishor, P.B.K., (2020). Engineering salinity tolerance in plants: progress and prospects. Planta, 251, 76.
  • Wang, Y., Wang, M., Wu, A., and Huang, J. (2018). Effects of arbuscular mycorrhizal fungi on growth and nitrogen uptake of Chrysanthemum morifolium under salt stress. PlosOne, 13, 1-14.
  • Yan, N., Marshner, P., Cao, W., Zuo, C.,and Qin, W. (2015). Influence of salinity and water content on soil microorganisms. International Soil and Water Conservation Research, 3, 316–323.
  • Zong, J., Zhang, Z., Huang, P., and Yang, Y., (2023). Arbuscular mycorrhizal fungi alleviates salt stress in Xanthoceras sorbifolium through improved osmotic tolerance, antioxidant activity, and photosynthesis. Frontiers in Microbiology, 3, 1-14.
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sucul Kültür ve Balıkçılık (Diğer)
Bölüm Makaleler
Yazarlar

Çiğdem Küçük 0000-0001-5688-5440

Hala Aksoy 0000-0002-2839-9194

Erken Görünüm Tarihi 11 Eylül 2024
Yayımlanma Tarihi 15 Eylül 2024
Gönderilme Tarihi 7 Kasım 2023
Kabul Tarihi 7 Eylül 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 14 Sayı: 3

Kaynak Göster

APA Küçük, Ç., & Aksoy, H. (2024). Arpada Tuz Stresinin Hafifletilmesinde Mikorizanın Etkisi. Karadeniz Fen Bilimleri Dergisi, 14(3), 1029-1040. https://doi.org/10.31466/kfbd.1387429