Araştırma Makalesi
BibTex RIS Kaynak Göster

Comparative Analysis of Combined FWM and SRS Impact on DWDM-PON System Architecture Using Different Types of Optical Fiber

Yıl 2024, Cilt: 14 Sayı: 3, 1503 - 1523, 15.09.2024
https://doi.org/10.31466/kfbd.1479309

Öz

Wavelength division multiplexing based passive optical networks (WDM-PONs) become an important choice for 5G fronthaul applications. Dominant nonlinear impacts on the performance of WDM-based optical fiber systems are four-wave mixing (FWM) and stimulated Raman scattering (SRS). In one of our previous works, making use of the ability of standard single mode fibers (SSMFs) about operating in 1310 nm and 1550 nm wavelength regions, a PON architecture using dense WDM (DWDM) technique for upstream and downstream transmission was proposed. Combined FWM and SRS (FWM+SRS) impact on 2x15- and 2x63-channel examples of proposed architecture was analyzed with simulations. It was determined that proposed architecture has a bidirectional transmission potential with a signal-to-crosstalk ratio (SXR) over 23 dB when some important points are taken into consideration. In this research, considering the raising usage of non-zero dispersion-shifted fibers (NZDSFs) in access networks, FWM+SRS impact on 2x31-channel examples of formerly proposed DWDM-PON architecture using SSMF and NZDSF is analyzed. Channel spacings are selected as 12.5 GHz, 25 GHz, 50 GHz, 100 GHz. Firstly, FWM+SRS impact on network architectures with 25 km lengths is analyzed with SXR vs. channel input power simulations. Then, comparative results of simulations performed for other transmission lengths given in the literature are presented. Results emphasize the importance of usage of NZDSFs for reliable bidirectional transmission over single optical fiber in DWDM-PONs under FWM+SRS impact.

Kaynakça

  • Acharya, K., and Raja, M. Y. A., (2007, November). SRS crosstalk mitigation in WDM-PON using quadrature amplitude modulation. International Symposium on High Capacity Optical Networks and Enabling Technologies (HONET2007). Dubai, United Arab Emirates. https://doi.org/10.1109/HONET.2007.4600253
  • Agrawal, G.P., (2019). Nonlinear fiber optics (6th ed.). Academic Press.
  • Agrawal, G.P., (2021). Fiber-optic communication systems (5th ed.). Wiley.
  • Ahmed, M. T., Sahu, P. K., (2018, October). Performance improvement in BUCSA spaced UDWDM-PON system by differential input power scheme (DIPS). International Conference on Applied Electromagnetics, Signal Processing and Communication (AESPC2018). Bhubaneswar, India. https://doi.org/10.1109/AESPC44649.2018.9033306
  • Aleksejeva, M., Lyashuk, I., Kudojars, R., Prigunovs, D., Ortiz, D., Braunfelds, J., Salgals, T., Spolitis, S., Bobrovs, V., (2021, November). Research on Super-PON communication system with FWM-based comb source. Photonics & Electromagnetics Research Symposium (PIERS2021) (pp. 2940-2946). Hangzhou, China. https://doi.org/10.1109/PIERS53385.2021.9694669
  • Bi, M., Xiao, S., Li, J., and He, H., (2014). A bandwidth-efficient channel allocation scheme for mitigating FWM in ultra-dense WDM-PON. Optik, 125, 1957–1961. https://doi.org/10.1016/j.ijleo.2013.11.004
  • Bogoni, A., and Poti, L., (2004). Effective channel allocation to reduce inband FWM crosstalk in DWDM transmission systems. IEEE Journal of Selected Topics in Quantum Electronics, 10 (2), 387-392. https://doi.org/10.1109/JSTQE.2004.825952
  • Brackett, C.A., (1990). Dense wavelength division multiplexing networks: principles and application. IEEE Journal on Selected Areas in Communications, 8 (6), 948-964.
  • Corning® SMF-28e® Optical Fiber, (2007). Product information. Corning Inc. www.corning.com/opticalfiber
  • Draka TeraLightTM Optical Fiber, (2010). Draka Communications. www.draka.com/communications
  • Effenberger, F. J., and Zhang, D., (2022). WDM-PON for 5G wireless fronthaul. IEEE Wireless Communications, 29 (2), 94-99. https://doi.org/10.1109/MWC.001.2100420
  • Elsayed, E. E., Yousif, B. B., and Alzalabani, M. M., (2018). Performance enhancement of the power penalty in DWDM FSO communication using DPPM and OOK modulation. Optical and Quantum Electronics, 50, 282. https://doi.org/10.1007/s11082-018-1508-y
  • Elsayed, E. E., Yousif, B. B., and Singh, M., (2022). Performance enhancement of hybrid fiber wavelength division multiplexing passive optical network FSO systems using M-ary DPPM techniques under interchannel crosstalk and atmospheric turbulence. Optical and Quantum Electronics, 54, 116. https://doi.org/10.1007/s11082-021-03485-8
  • Elsayed, E. E., Alharbi, A. G., Singh, M., and Grover, A., (2022). Investigations on wavelength- division multiplexed fiber/FSO PON system employing DPPM scheme. Optical and Quantum Electronics, 54, 358. https://doi.org/10.1007/s11082-022-03717-5
  • Fazea, Y., (2019). Mode division multiplexing and dense WDM-PON for fiber-to-the-home. Optik, 183, 994-998. https://doi.org/10.1016/j.ijleo.2019.02.072
  • Garg, A.K., Janyani, V., Singh, G., Ismail, T., and Selmy, H., (2019). Dedicated and broadcasting downstream transmission with energy-efficient and latency-aware ONU interconnection in WDM-PON for smart cities. Optical Fiber Technology, 52, 101949. https://doi.org/10.1016/j.yofte.2019.101949
  • Gebrewold, S. A., Bonjour, R., Brenot, R., Hillerkuss, D., and Leuthold, J., (2017). Bit- and power-loading –A comparative study on maximizing the capacity of RSOA based colorless DMT transmitters. Applied Sciences-Basel, 7 (10), 999. https://doi.org/10.3390/app7100999
  • Guo, Y., Gan, C., and Zhan, N., (2021). Cost-effective WDM-PON for flexible ONU-communication featuring high wavelength utilization and low latency. Optical Fiber Technology, 67, 102709. https://doi.org/10.1016/j.yofte.2021.102709
  • Hann, S., Kim, D. H., and Park, C. S., (2004). Uni-lambda bidirectional 10/1.25GbE access service based on WDM-PON. Electronics Letters, 40 (3), 194-195. https://doi.org/10.1049/el:20040121
  • Harboe, P. B., da Silva, E., and Souza, J. R., (2008). Analysis of FWM penalties in DWDM systems based on G.652, G.653, and G.655 optical fibers. International Journal of Electronics and Communication Engineering, 2 (12), 2674-2680. https://doi.org/10.5281/zenodo.1333622
  • Iannone, E., Franco, P., and Santoni, S., (2008). WDM-PON architecture for FTTx networks. Fiber and Integrated Optics, 27 (4), 176-182. https://doi.org/10.1080/01468030802189498
  • ITU-T, (2009). G.655 (11/2009): Characteristics of a non-zero dispersion-shifted single-mode optical fibre and cable. ITU. https://www.itu.int/rec/T-REC-G.655-200911-I/en
  • ITU-T, (2016). G.652 (11/2016): Characteristics of a single-mode optical fibre and cable. ITU. https://www.itu.int/rec/T-REC-G.652-201611-I/en
  • ITU-T, (2021). G.9802.1 (08/2021): Wavelength division multiplexed passive optical networks (WDM PON): General requirements. ITU. https://www.itu.int/rec/T-REC-G.9802.1/en
  • Karlık, S. E., (2016). Analysis of the four-wave mixing impact on the most heavily affected channels of dense and ultra-dense wavelength division multiplexing systems using non-zero dispersion shifted fibers. Optik, 127 (19), 7469–7486. https://doi.org/10.1016/j.ijleo.2016.05.077
  • Karlık, S. E., (2023). Modelling and numerical analysis of combined dual impact of SRS and FWM on the performance of upstream and downstream channels of a novel UDWDM/DWDM-PON. Optical Fiber Technology, 81, 103586. https://doi.org/10.1016/j.yofte.2023.103586
  • Kaur, G., Singh, M. L., and Patterh, S. M., (2010). Impact of fiber nonlinearities in optical DWDM transmission systems at different data rates. Optik, 121 (23), 2166-2171. https://doi.org/10.1016/j.ijleo.2009.11.001
  • Kaur, K. P., Randhawa, R., and Kaler, R. S., (2014). Performance analysis of WDM-PON architecture using different receiver filters. Optik, 125, 4742-4744. https://doi.org/10.1016/j.ijleo.2014.04.070
  • Maier, G., Martinelli, M., Pattavina, A., and Salvadori, E., (2000). Design and cost performance of the multistage WDM-PON access networks, Journal of Lightwave Technology, 18 (2), 125-143. https://doi.org/10.1109/50.822785
  • Manzoor, H. U., Hussain, A., Yu, C. X., and Manzoor, T., (2015). Complete suppression of FWM in ultra dense WDM-PON optical networks using centralized light source. Journal of Nonlinear Optical Physics and Materials, 24 (4), 1550053-1 – 1550053-9. https://doi.org/10.1142/S0218863515500538
  • Manzoor, H. U., Zafar, M., Manzoor, S. U., Khan, T., Liu, S. Z., Manzoor, T., Saleem, S., Kim, W. Y., and Ali, M., (2020). Improving FWM efficiency in bi-directional ultra DWDM-PON networking centered light source by using PMD emulator. Results in Physics, 16, 102922. https://doi.org/10.1016/j.rinp.2019.102922
  • Monnard, R., Zirngibl, M., Doerr, C. R., Joyner, C. H., and Stulz, L. W., (1997). Demonstration of a 12x155 Mb/s WDM PON under outside plant temperature conditions. IEEE Photonics Technology Letters, 9 (12), 1655-1657. https://doi.org/10.1109/68.643302
  • Nakajima, K., Ohashi, M., Miyajima, Y., and Shiraki, K., (1997). Assessment of dispersion varying fibre in WDM system. Electronics Letters, 33 (12), 1059-1060. https://doi.org/10.1049/el:19970699
  • Neto, B., Shahpari, A., Vujicic, Z., Barros, A., Pinho, J., Pavlovic, N., and Teixeira, A. L. J., (2017, September). Impairment assessment due to Raman crosstalk in coexistence of coherent UDWDM-PON with GPON Technologies. European Conference on Optical Communication (ECOC2017). Gothenburg, Sweden. https://doi.org/10.1109/ECOC.2017.8346022
  • Park, J., Baik, J., and Lee, C., (2007). Fault detection technique in a WDM-PON. Optics Express, 15 (4), 1461-1466. https://doi.org/10.1364/OE.15.001461
  • Reis, J. D., Neves, D. M., and Teixeira, A. L., (2012). Analysis of nonlinearities on coherent ultradense WDM-PONs using Volterra series. Journal of Lightwave Technology, 30 (2), 234-241. https://doi.org/10.1109/JLT.2011.2180698
  • Sabapathi, T., and Sundaravadivelu, S., (2011). Analysis of bottlenecks in DWDM fiber optic communication system. Optik, 122 (16), 1453–1457. https://doi.org/10.1016/j.ijleo.2010.08.023
  • Sabapathi, T., and Poovitha, R., (2019). Mitigation of nonlinearities in fiber optic DWDM system. Optik, 185, 657-664. https://doi.org/10.1016/j.ijleo.2019.02.073
  • Schneider, T., (2004). Nonlinear optics in telecommunications. Springer.
  • Shahpari, A., Ferreira, R., Riberio, V., Sousa, A., Ziaie, S., Tavares, A., Vujicic, Z., Guiomar, F. P., Reis, J. D., Pinto, A. N., and Teixeira, A., (2015). Coherent ultra dense wavelength division multiplexing passive optical networks. Optical Fiber Technology, 26, 100-107. https://doi.org/10.1016/j.yofte.2015.07.001
  • Singh, M. L., and Hudiara, I. S., (2004). A piece wise linear solution for nonlinear SRS effect in DWDM fiber optic communication systems. Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 3 (4), 29-37. http://www.jmoe.org/index.php/jmoe/article/view/121
  • Song, Y., Yu, P., Xu, Y., and Li, Z., (2021). Simulation and experimental investigation of nonlinear effects in 5G fronthaul transmission system based on WDM-PON architecture. Optical Fiber Technology, 65, 102628. https://doi.org/10.1016/j.yofte.2021.102628
  • Vardanyan, V. A., (2017). Effect of four-wave mixing interference on spectrally separated channels in passive optical networks. Optoelectronics, Instrumentation and Data Processing, 53 (1), 51-58. https://doi.org/10.3103/S8756699017010083
  • Wagner, S. S., Lemberg, H. L., Kobrinski, H., Smoot, L. S., and Robe, T. J., (1988 November). A passive photonic loop architecture employing wavelength-division multiplexing. IEEE Global Telecommunications Conference and Exhibition (GLOCOM1988) (pp.1569-1573). Hollywood, FL, USA. https://doi.org/10.1109/GLOCOM.1988.26086
  • Xin, L., Xu, X., Du, L., Sun, C., Gao, F., and Zhao, J., (2023). Suppression of nonlinear optical effects in DWDM-PON by frequency modulation non-coherent detection. Photonics, 10 (3), 323. https://doi.org/10.3390/photonics10030323
  • Yücel, M., and Açıkgöz, M., (2023). Optical communication infrastructure in new generation mobile networks. Fiber and Integrated Optics, 42 (2), 53-92. https://doi.org/10.1080/01468030.2023.2186811
  • Zhou, Y., Gan, C., Chen, B., and Ma, X., (2010). An upgradeable WDM-PON for broadcast and LAN services. Optical and Quantum Electronics, 42, 157-163. https://doi.org/10.1007/s11082-011-9441-3

Farklı Tiplerde Optik Fiber Kullanan DWDM-PON Sistem Mimarisi Üzerindeki Birleşik FWM ve SRS Etkisinin Karşılaştırmalı Analizi

Yıl 2024, Cilt: 14 Sayı: 3, 1503 - 1523, 15.09.2024
https://doi.org/10.31466/kfbd.1479309

Öz

Dalgaboyu bölmeli çoğullama tabanlı pasif optik ağlar (WDM-PON), 5G ağlarının ön bağlantı uygulamaları için önemli bir seçenek oluşturmaktadır. WDM tabanlı optik fiberli sistemlerin performansı üzerindeki baskın doğrusal olmayan etkiler, dört dalga karışımı (FWM) ile uyarılmış Raman saçılmasıdır (SRS). Önceki çalışmalarımızdan birinde, standart tek modlu fiberin (SSMF), 1310 nm ve 1550 nm dalgaboyu bölgelerinde çalışabilme özelliğinden yararlanılarak, hem yukarı yönlü hem aşağı yönlü iletimde yoğun WDM (DWDM) tekniğini kullanan bir PON mimarisi önerilmiştir. Mimarinin 2x15 ve 2x63 kanallı örneklerinde birleşik FWM ve SRS (FWM+SRS) etkisi benzetimlerle incelenmiş; önerilen mimarinin, bazı önemli noktalara dikkat edildiğinde, 23 dB’in üzerindeki işaret-çapraz karışım oranıyla (SXR) çift yönlü iletim potansiyeline sahip olduğu belirlenmiştir. Bu çalışmada, sıfır olmayan dispersiyonu kaydırılmış fiberlerin (NZDSF) erişim ağlarında yaygınlaşan kullanımları göz önünde bulundurularak, daha önce önerdiğimiz DWDM-PON mimarisinin SSMF ve NZDSF kullanan 2x31 kanallı örneklerinde FWM+SRS etkisi incelenmiştir. Benzetimlerde, kanallar arası boşluk değerleri, 12.5 GHz, 25 GHz, 50 GHz, 100 GHz alınmıştır. Öncelikle 25 km uzunluklu ağ mimarilerinde, SXR-kanal giriş gücü benzetimleriyle FWM+SRS etkisi incelenmiştir. Daha sonra, literatürde belirtilen diğer iletim uzunlukları için karşılaştırmalı benzetim sonuçları sunulmuştur. Elde edilen sonuçlar, FWM+SRS etkisi altındaki DWDM-PON’larda, tek optik fiber üzerinden güvenilir çift yönlü iletim için NZDSF kullanımının önemine vurgu yapmaktadır.

Etik Beyan

Bu makalede, etik kurul onayı gerektiren herhangi bir çalışma yapılmamıştır.

Kaynakça

  • Acharya, K., and Raja, M. Y. A., (2007, November). SRS crosstalk mitigation in WDM-PON using quadrature amplitude modulation. International Symposium on High Capacity Optical Networks and Enabling Technologies (HONET2007). Dubai, United Arab Emirates. https://doi.org/10.1109/HONET.2007.4600253
  • Agrawal, G.P., (2019). Nonlinear fiber optics (6th ed.). Academic Press.
  • Agrawal, G.P., (2021). Fiber-optic communication systems (5th ed.). Wiley.
  • Ahmed, M. T., Sahu, P. K., (2018, October). Performance improvement in BUCSA spaced UDWDM-PON system by differential input power scheme (DIPS). International Conference on Applied Electromagnetics, Signal Processing and Communication (AESPC2018). Bhubaneswar, India. https://doi.org/10.1109/AESPC44649.2018.9033306
  • Aleksejeva, M., Lyashuk, I., Kudojars, R., Prigunovs, D., Ortiz, D., Braunfelds, J., Salgals, T., Spolitis, S., Bobrovs, V., (2021, November). Research on Super-PON communication system with FWM-based comb source. Photonics & Electromagnetics Research Symposium (PIERS2021) (pp. 2940-2946). Hangzhou, China. https://doi.org/10.1109/PIERS53385.2021.9694669
  • Bi, M., Xiao, S., Li, J., and He, H., (2014). A bandwidth-efficient channel allocation scheme for mitigating FWM in ultra-dense WDM-PON. Optik, 125, 1957–1961. https://doi.org/10.1016/j.ijleo.2013.11.004
  • Bogoni, A., and Poti, L., (2004). Effective channel allocation to reduce inband FWM crosstalk in DWDM transmission systems. IEEE Journal of Selected Topics in Quantum Electronics, 10 (2), 387-392. https://doi.org/10.1109/JSTQE.2004.825952
  • Brackett, C.A., (1990). Dense wavelength division multiplexing networks: principles and application. IEEE Journal on Selected Areas in Communications, 8 (6), 948-964.
  • Corning® SMF-28e® Optical Fiber, (2007). Product information. Corning Inc. www.corning.com/opticalfiber
  • Draka TeraLightTM Optical Fiber, (2010). Draka Communications. www.draka.com/communications
  • Effenberger, F. J., and Zhang, D., (2022). WDM-PON for 5G wireless fronthaul. IEEE Wireless Communications, 29 (2), 94-99. https://doi.org/10.1109/MWC.001.2100420
  • Elsayed, E. E., Yousif, B. B., and Alzalabani, M. M., (2018). Performance enhancement of the power penalty in DWDM FSO communication using DPPM and OOK modulation. Optical and Quantum Electronics, 50, 282. https://doi.org/10.1007/s11082-018-1508-y
  • Elsayed, E. E., Yousif, B. B., and Singh, M., (2022). Performance enhancement of hybrid fiber wavelength division multiplexing passive optical network FSO systems using M-ary DPPM techniques under interchannel crosstalk and atmospheric turbulence. Optical and Quantum Electronics, 54, 116. https://doi.org/10.1007/s11082-021-03485-8
  • Elsayed, E. E., Alharbi, A. G., Singh, M., and Grover, A., (2022). Investigations on wavelength- division multiplexed fiber/FSO PON system employing DPPM scheme. Optical and Quantum Electronics, 54, 358. https://doi.org/10.1007/s11082-022-03717-5
  • Fazea, Y., (2019). Mode division multiplexing and dense WDM-PON for fiber-to-the-home. Optik, 183, 994-998. https://doi.org/10.1016/j.ijleo.2019.02.072
  • Garg, A.K., Janyani, V., Singh, G., Ismail, T., and Selmy, H., (2019). Dedicated and broadcasting downstream transmission with energy-efficient and latency-aware ONU interconnection in WDM-PON for smart cities. Optical Fiber Technology, 52, 101949. https://doi.org/10.1016/j.yofte.2019.101949
  • Gebrewold, S. A., Bonjour, R., Brenot, R., Hillerkuss, D., and Leuthold, J., (2017). Bit- and power-loading –A comparative study on maximizing the capacity of RSOA based colorless DMT transmitters. Applied Sciences-Basel, 7 (10), 999. https://doi.org/10.3390/app7100999
  • Guo, Y., Gan, C., and Zhan, N., (2021). Cost-effective WDM-PON for flexible ONU-communication featuring high wavelength utilization and low latency. Optical Fiber Technology, 67, 102709. https://doi.org/10.1016/j.yofte.2021.102709
  • Hann, S., Kim, D. H., and Park, C. S., (2004). Uni-lambda bidirectional 10/1.25GbE access service based on WDM-PON. Electronics Letters, 40 (3), 194-195. https://doi.org/10.1049/el:20040121
  • Harboe, P. B., da Silva, E., and Souza, J. R., (2008). Analysis of FWM penalties in DWDM systems based on G.652, G.653, and G.655 optical fibers. International Journal of Electronics and Communication Engineering, 2 (12), 2674-2680. https://doi.org/10.5281/zenodo.1333622
  • Iannone, E., Franco, P., and Santoni, S., (2008). WDM-PON architecture for FTTx networks. Fiber and Integrated Optics, 27 (4), 176-182. https://doi.org/10.1080/01468030802189498
  • ITU-T, (2009). G.655 (11/2009): Characteristics of a non-zero dispersion-shifted single-mode optical fibre and cable. ITU. https://www.itu.int/rec/T-REC-G.655-200911-I/en
  • ITU-T, (2016). G.652 (11/2016): Characteristics of a single-mode optical fibre and cable. ITU. https://www.itu.int/rec/T-REC-G.652-201611-I/en
  • ITU-T, (2021). G.9802.1 (08/2021): Wavelength division multiplexed passive optical networks (WDM PON): General requirements. ITU. https://www.itu.int/rec/T-REC-G.9802.1/en
  • Karlık, S. E., (2016). Analysis of the four-wave mixing impact on the most heavily affected channels of dense and ultra-dense wavelength division multiplexing systems using non-zero dispersion shifted fibers. Optik, 127 (19), 7469–7486. https://doi.org/10.1016/j.ijleo.2016.05.077
  • Karlık, S. E., (2023). Modelling and numerical analysis of combined dual impact of SRS and FWM on the performance of upstream and downstream channels of a novel UDWDM/DWDM-PON. Optical Fiber Technology, 81, 103586. https://doi.org/10.1016/j.yofte.2023.103586
  • Kaur, G., Singh, M. L., and Patterh, S. M., (2010). Impact of fiber nonlinearities in optical DWDM transmission systems at different data rates. Optik, 121 (23), 2166-2171. https://doi.org/10.1016/j.ijleo.2009.11.001
  • Kaur, K. P., Randhawa, R., and Kaler, R. S., (2014). Performance analysis of WDM-PON architecture using different receiver filters. Optik, 125, 4742-4744. https://doi.org/10.1016/j.ijleo.2014.04.070
  • Maier, G., Martinelli, M., Pattavina, A., and Salvadori, E., (2000). Design and cost performance of the multistage WDM-PON access networks, Journal of Lightwave Technology, 18 (2), 125-143. https://doi.org/10.1109/50.822785
  • Manzoor, H. U., Hussain, A., Yu, C. X., and Manzoor, T., (2015). Complete suppression of FWM in ultra dense WDM-PON optical networks using centralized light source. Journal of Nonlinear Optical Physics and Materials, 24 (4), 1550053-1 – 1550053-9. https://doi.org/10.1142/S0218863515500538
  • Manzoor, H. U., Zafar, M., Manzoor, S. U., Khan, T., Liu, S. Z., Manzoor, T., Saleem, S., Kim, W. Y., and Ali, M., (2020). Improving FWM efficiency in bi-directional ultra DWDM-PON networking centered light source by using PMD emulator. Results in Physics, 16, 102922. https://doi.org/10.1016/j.rinp.2019.102922
  • Monnard, R., Zirngibl, M., Doerr, C. R., Joyner, C. H., and Stulz, L. W., (1997). Demonstration of a 12x155 Mb/s WDM PON under outside plant temperature conditions. IEEE Photonics Technology Letters, 9 (12), 1655-1657. https://doi.org/10.1109/68.643302
  • Nakajima, K., Ohashi, M., Miyajima, Y., and Shiraki, K., (1997). Assessment of dispersion varying fibre in WDM system. Electronics Letters, 33 (12), 1059-1060. https://doi.org/10.1049/el:19970699
  • Neto, B., Shahpari, A., Vujicic, Z., Barros, A., Pinho, J., Pavlovic, N., and Teixeira, A. L. J., (2017, September). Impairment assessment due to Raman crosstalk in coexistence of coherent UDWDM-PON with GPON Technologies. European Conference on Optical Communication (ECOC2017). Gothenburg, Sweden. https://doi.org/10.1109/ECOC.2017.8346022
  • Park, J., Baik, J., and Lee, C., (2007). Fault detection technique in a WDM-PON. Optics Express, 15 (4), 1461-1466. https://doi.org/10.1364/OE.15.001461
  • Reis, J. D., Neves, D. M., and Teixeira, A. L., (2012). Analysis of nonlinearities on coherent ultradense WDM-PONs using Volterra series. Journal of Lightwave Technology, 30 (2), 234-241. https://doi.org/10.1109/JLT.2011.2180698
  • Sabapathi, T., and Sundaravadivelu, S., (2011). Analysis of bottlenecks in DWDM fiber optic communication system. Optik, 122 (16), 1453–1457. https://doi.org/10.1016/j.ijleo.2010.08.023
  • Sabapathi, T., and Poovitha, R., (2019). Mitigation of nonlinearities in fiber optic DWDM system. Optik, 185, 657-664. https://doi.org/10.1016/j.ijleo.2019.02.073
  • Schneider, T., (2004). Nonlinear optics in telecommunications. Springer.
  • Shahpari, A., Ferreira, R., Riberio, V., Sousa, A., Ziaie, S., Tavares, A., Vujicic, Z., Guiomar, F. P., Reis, J. D., Pinto, A. N., and Teixeira, A., (2015). Coherent ultra dense wavelength division multiplexing passive optical networks. Optical Fiber Technology, 26, 100-107. https://doi.org/10.1016/j.yofte.2015.07.001
  • Singh, M. L., and Hudiara, I. S., (2004). A piece wise linear solution for nonlinear SRS effect in DWDM fiber optic communication systems. Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 3 (4), 29-37. http://www.jmoe.org/index.php/jmoe/article/view/121
  • Song, Y., Yu, P., Xu, Y., and Li, Z., (2021). Simulation and experimental investigation of nonlinear effects in 5G fronthaul transmission system based on WDM-PON architecture. Optical Fiber Technology, 65, 102628. https://doi.org/10.1016/j.yofte.2021.102628
  • Vardanyan, V. A., (2017). Effect of four-wave mixing interference on spectrally separated channels in passive optical networks. Optoelectronics, Instrumentation and Data Processing, 53 (1), 51-58. https://doi.org/10.3103/S8756699017010083
  • Wagner, S. S., Lemberg, H. L., Kobrinski, H., Smoot, L. S., and Robe, T. J., (1988 November). A passive photonic loop architecture employing wavelength-division multiplexing. IEEE Global Telecommunications Conference and Exhibition (GLOCOM1988) (pp.1569-1573). Hollywood, FL, USA. https://doi.org/10.1109/GLOCOM.1988.26086
  • Xin, L., Xu, X., Du, L., Sun, C., Gao, F., and Zhao, J., (2023). Suppression of nonlinear optical effects in DWDM-PON by frequency modulation non-coherent detection. Photonics, 10 (3), 323. https://doi.org/10.3390/photonics10030323
  • Yücel, M., and Açıkgöz, M., (2023). Optical communication infrastructure in new generation mobile networks. Fiber and Integrated Optics, 42 (2), 53-92. https://doi.org/10.1080/01468030.2023.2186811
  • Zhou, Y., Gan, C., Chen, B., and Ma, X., (2010). An upgradeable WDM-PON for broadcast and LAN services. Optical and Quantum Electronics, 42, 157-163. https://doi.org/10.1007/s11082-011-9441-3
Toplam 47 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Fiber Optik Haberleşme Sistemleri ve Teknolojileri
Bölüm Makaleler
Yazarlar

Sait Eser Karlık 0000-0001-5985-210X

Yayımlanma Tarihi 15 Eylül 2024
Gönderilme Tarihi 6 Mayıs 2024
Kabul Tarihi 28 Temmuz 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 14 Sayı: 3

Kaynak Göster

APA Karlık, S. E. (2024). Farklı Tiplerde Optik Fiber Kullanan DWDM-PON Sistem Mimarisi Üzerindeki Birleşik FWM ve SRS Etkisinin Karşılaştırmalı Analizi. Karadeniz Fen Bilimleri Dergisi, 14(3), 1503-1523. https://doi.org/10.31466/kfbd.1479309