Araştırma Makalesi
BibTex RIS Kaynak Göster

Carthamus tinctorius L.’da Krom ve Kurşun Stresine Bağlı Fizyolojik Değişiklikler

Yıl 2024, Cilt: 14 Sayı: 4, 1709 - 1722, 15.12.2024
https://doi.org/10.31466/kfbd.1424762

Öz

Ağır metal kirliliği, özellikle gelişmekte olan ülkelerde önemli bir çevre ve halk sağlığı sorunu haline gelmiştir. Krom (Cr) ve kurşun (Pb), subletal konsantrasyonlarda bile ekolojik bütünlük ve insan sağlığı için önemli tehditler oluşturan ve her yerde bulunan çevresel kirleticilerdir. Bu çalışma, Carthamus tinctorius L. cv. Zirkon’ da Cr ve Pb stresinin fotosentetik pigmentler ve prolin içeriği üzerindeki etkilerini ortaya koymak için yapılmıştır. Bulgular, Cr ve Pb uygulamasının klorofil a, klorofil b, toplam klorofil, toplam karotenoidler ve prolin içeriğinde önemli bir azalmaya neden olduğunu ve aynı zamanda ağır metal stresli bitkilerde Chl a/b oranını artırdığını ortaya koymuştur. Cr ve Pb uygulamasının karşılaştırılması, Cr uygulamasının eşdeğer konsantrasyonlarda Pb uygulamasına kıyasla daha belirgin hasara yol açtığını göstermiştir. Her iki ağır metal stresine yanıt olarak, C. tinctorius L.cv. Zirkon bitkilerinde artan bir prolin birikimi gözlenmiştir. Bu bulgular, Cr ve Pb uygulamasının klorofil ve prolin içeriğini önemli bir şekilde etkileyerek C. tinctorius cv. Zirkon’da fizyolojik değişikliklere yol açtığını göstermektedir.

Kaynakça

  • Afshan, S., Ali, S., Bharwana, S. A., Rizwan, M., Farid, M., Abbas, F., Ibrahim, M., Mehmood, M. A., & Abbasi, G. H. (2015). Citric acid enhances the phytoextraction of chromium, plant growth, and photosynthesis by alleviating the oxidative damages in Brassica napus L. Environmental Science and Pollution Research, 22(15), 11679–11689. https://doi.org/10.1007/s11356-015-4396-8
  • Al Chami, Z., Amer, N., Al Bitar, L., & Cavoski, I. (2015). Potential use of Sorghum bicolor and Carthamus tinctorius in phytoremediation of nickel, lead and zinc. International Journal of Environmental Science and Technology, 12(12), 3957–3970. https://doi.org/10.1007/s13762-015-0823-0
  • Ali, S., Rizwan, M., Bano, R., Bharwana, S. A., Rehman, M. Z. ur, Hussain, M. B., & Al-Wabel, M. I. (2018). Effects of biochar on growth, photosynthesis, and chromium (Cr) uptake in Brassica rapa L. under Cr stress. Arabian Journal of Geosciences, 11(507), 1–9. https://doi.org/10.1007/s12517-018-3861-3
  • Alvarez, M. E., Savouré, A., & Szabados, L. (2022). Proline metabolism as regulatory hub. In Trends in Plant Science (Vol. 27, Issue 1). Elsevier Ltd. https://doi.org/10.1016/j.tplants.2021.07.009
  • Angelova, V. (2016). Accumulation of Heavy Metals in Safflower (Carthamus tinctorius L.). World Academy of Science, Engineering and Technology International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering, 10(7), 356–361. https://www.researchgate.net/publication/306347051
  • Arias, J. A., Peralta-Videa, J. R., Ellzey, J. T., Ren, M., Viveros, M. N., & Gardea-Torresdey, J. L. (2010). Effects of Glomus deserticola inoculation on Prosopis: Enhancing chromium and lead uptake and translocation as confirmed by X-ray mapping, ICP-OES and TEM techniques. Environmental and Experimental Botany, 68(2), 139–148. https://doi.org/10.1016/j.envexpbot.2009.08.009
  • Arif, M. S., Yasmeen, T., Abbas, Z., Ali, S., Rizwan, M., Aljarba, N. H., Alkahtani, S., & Abdel-Daim, M. M. (2021). Role of Exogenous and Endogenous Hydrogen Sulfide (H2S) on Functional Traits of Plants Under Heavy Metal Stresses: A Recent Perspective. Frontiers in Plant Science, 11, 1–14. https://doi.org/10.3389/fpls.2020.545453
  • Baran, U., & Ekmekçi, Y. (2022a). Physiological, photochemical, and antioxidant responses of wild and cultivated Carthamus species exposed to nickel toxicity and evaluation of their usage potential in phytoremediation. Environmental Science and Pollution Research, 29(3), 4446–4460. https://doi.org/10.1007/s11356-021-15493-y
  • Baran, U., & Ekmekçi, Y. (2022b). Physiological, photochemical, and antioxidant responses of wild and cultivated Carthamus species exposed to nickel toxicity and evaluation of their usage potential in phytoremediation. Environmental Science and Pollution Research, 29(3), 4446–4460. https://doi.org/10.1007/s11356-021-15493-y
  • Baskaran, L., Ganesh, K. S., Chidambaram, A. A., & Sundaramoorthy, P. (2009). Influence of chromium stress on proline accumulation in soybean (glycine max L. Merr.) genotypes. Global Journal of Environmental Research, 3, 106–108.
  • Bates, L. S. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205–207. https://doi.org/10.1007/BF00018060
  • Beyersmann, D., & Hartwig, A. (2008). Carcinogenic metal compounds: Recent insight into molecular and cellular mechanisms. In Archives of Toxicology (Vol. 82, Issue 8, pp. 493–512). https://doi.org/10.1007/s00204-008-0313-y
  • Bhatti, K. H., Anwar, S., Nawaz, K., Hussain, K., Siddiqi, E. H., Sharif, R. U., Talat, A., & Khalid, A. (2013). Effect of heavy metal lead (PB) stress of different concentration on wheat (Triticum aestivum L.). Middle East Journal of Scientific Research, 14(2), 148–154. https://doi.org/10.5829/idosi.mejsr.2013.14.2.19560
  • Brunet, J., Varrault, G., Zuily-Fodil, Y., & Repellin, A. (2009). Accumulation of lead in the roots of grass pea (Lathyrus sativus L.) plants triggers systemic variation in gene expression in the shoots. Chemosphere, 77(8), 1113–1120. https://doi.org/10.1016/j.chemosphere.2009.07.058
  • Cenkci, S., Ciǧerci, I. H., Yildiz, M., Özay, C., Bozdaǧ, A., & Terzi, H. (2010). Lead contamination reduces chlorophyll biosynthesis and genomic template stability in Brassica rapa L. Environmental and Experimental Botany, 67(3), 467–473. https://doi.org/10.1016/j.envexpbot.2009.10.001
  • Cervantes, C., Campos-García, J., Devars, S., Gutiérrez-Corona, F., Loza-Tavera, H., Torres-Guzmán, J. C., & Moreno-Sánchez, R. (2001). Interactions of chromium with microorganisms and plants. FEMS Microbiology Reviews, 25(3), 335–347. https://doi.org/10.1016/S0168-6445(01)00057-2
  • Chandra, P. (2004). Chromium accumulation and toxicity in aquatic vascular plants. The Botanical Review, 70(3), 313–327.
  • Cia, M. C., Guimarães, A. C. R., Medici, L. O., Chabregas, S. M., & Azevedo, R. A. (2012). Antioxidant responses to water deficit by drought-tolerant and -sensitive sugarcane varieties. Annals of Applied Biology, 161(3), 313–324. https://doi.org/10.1111/j.1744-7348.2012.00575.x
  • Ciaramella, B. R., Corinzia, S. A., Cosentino, S. L., & Testa, G. (2022). Phytoremediation of Heavy Metal Contaminated Soils Using Safflower. Agronomy, 12(10). https://doi.org/10.3390/agronomy12102302
  • Delfine, S., Alvino, A., Villani, M. C., & Loreto, F. (1999). Restrictions to Carbon Dioxide Conductance and Photosynthesis in Spinach Leaves Recovering from Salt Stress. Plant Physiology, 119, 1101–1106. https://academic.oup.com/plphys/article/119/3/1101/6087495
  • Dogan, M., Sahin Yigit, S., & Cinar, G. (2021). Effects of lead accumulation on physiological parameters and nutritional elements in safflower (Carthamus tinctorius L.) seedlings. AgroLife Scientific Journal, 10(2), 57–62.
  • Dorado, M. P., Ballesteros, E., López, F. J., & Mittelbach, M. (2004). Optimization of alkali-catalyzed transesterification of Brassica Carinata oil for biodiesel production. Energy and Fuels, 18(1), 77–83. https://doi.org/10.1021/ef0340110
  • Ernst, W. H. O. (1998). Effects of heavy metals in plants at the cellular and organismic levels. In Schuurmann G (Ed.), Exotoxicology: Ecological Fundamentals, Chemical Exposure and biological effects (pp. 587–620). Wiley.
  • Ewais, E. A. (1997). Effects of cadmium, nickel and lead on growth, chlorophyll content and proteins of weeds. Biologia Plantarum, 39(3), 403–410.
  • Farid, M., Ali, S., Saeed, R., Rizwan, M., Bukhari, S. A. H., Abbasi, G. H., Hussain, A., Ali, B., Zamir, M. S. I., & Ahmad, I. (2019). Combined application of citric acid and 5-aminolevulinic acid improved biomass, photosynthesis and gas exchange attributes of sunflower (Helianthus annuus L.) grown on chromium contaminated soil. International Journal of Phytoremediation, 21(8), 760–767. https://doi.org/10.1080/15226514.2018.1556595
  • Flora, G., Gupta, D., & Tiwari, A. (2012). Toxicity of lead: A review with recent updates. Interdisciplinary Toxicology, 5(2), 47–58. https://doi.org/10.2478/v10102-012-0009-2
  • Gopal, R., & Rizvi, A. H. (2008). Excess lead alters growth, metabolism and translocation of certain nutrients in radish. Chemosphere, 70(9), 1539–1544. https://doi.org/10.1016/j.chemosphere.2007.08.043
  • Grover, P., Rekhadevi, P. V., Danadevi, K., Vuyyuri, S. B., Mahboob, M., & Rahman, M. F. (2010). Genotoxicity evaluation in workers occupationally exposed to lead. International Journal of Hygiene and Environmental Health, 213(2), 99–106. https://doi.org/10.1016/j.ijheh.2010.01.005
  • Gupta, D. K., Huang, H. G., Yang, X. E., Razafindrabe, B. H. N., & Inouhe, M. (2010). The detoxification of lead in Sedum alfredii H. is not related to phytochelatins but the glutathione. Journal of Hazardous Materials, 177(1–3), 437–444. https://doi.org/10.1016/j.jhazmat.2009.12.052
  • Gupta, D. K., Nicoloso, F. T., Schetinger, M. R. C., Rossato, L. V., Pereira, L. B., Castro, G. Y., Srivastava, S., & Tripathi, R. D. (2009). Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress. Journal of Hazardous Materials, 172(1), 479–484. https://doi.org/10.1016/j.jhazmat.2009.06.141
  • Hayat, S., Hayat, Q., Alyemeni, M. N., & Ahmad, A. (2013). Proline enhances antioxidative enzyme activity, photosynthesis and yield of Cicer arietinum L. exposed to cadmium stress. Acta Bot. Croat, 72(2), 323–335.
  • Iyaka, Y. A. (2009). Chromium in soils: a review of its distribution and impacts. Continental J. Environmental Sciences, 3, 13–18.
  • Jiang, W., & Liu, D. (2010). Pb-induced cellular defense system in the root meristematic cells of Allium sativum L. Plant Biology, 10(40), 1–8. http://www.biomedcentral.com/1471-2229/10/40
  • Kasmiyati, S., & Sucahyo, D. (2014). Detection of oxidative stress due to chromium toxicity on sonchus oleraceus L. by spectrophotometrically and histochemical determination of reactive oxygen species. Journai of Agricutural Science, 85–98.
  • Khan, M. I. R. , Reddy, P. S. , Ferrante, A. , & Khan, N. A. (2019). Plant Signaling Molecules: Role and Regulation under Stressful Environments. Woodhead Publishing.
  • Lichtenthaler, H. K., & Wellburn, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11(5), 591–592. https://doi.org/10.1042/bst0110591
  • Liu, W., Le, A., Hancock, C., Lane, A. N., Dang, C. V., Fan, T. W. M., & Phang, J. M. (2012). Reprogramming of proline and glutamine metabolism contributes to the proliferative and metabolic responses regulated by oncogenic transcription factor c-MYC. Proceedings of the National Academy of Sciences of the United States of America, 109(23), 8983–8988. https://doi.org/10.1073/pnas.1203244109
  • Mahaffey, K. R. (1990). Environmental lead toxicity: nutrition as a component of intervention. Environmental Health Perspectives, 89, 75–78.
  • Mahdi Hadif, W., Abd Rahim, S., Sahid, I., Rahman, A., & Ibrahim, I. (2015). Influence of chromium metal on chlorophyll content in leaves of paddy oryza sativa L. Int. J. Chem. Sci, 13(3), 1238–1252. www.sadgurupublications.com
  • Mahmoud, W., Rehab, H. K. A., & Taha, E. (2014). Economic evaluation of some safflower (carthamus tinctorius, l.) genotypes under upper egypt conditions. Alexandria Journal of Agricultural Research, 59(3), 147–156.
  • Malar, S., Vikram, S. S., Favas, P. J. C., & Perumal, V. (2014). Lead heavy metal toxicity induced changes on growth and antioxidative enzymes level in water hyacinths [Eichhornia crassipes (Mart.)]. Botanical Studies, 55(1), 1–11. https://doi.org/10.1186/S40529-014-0054-6
  • Małecka, A., Piechalak, A., Morkunas, I., & Tomaszewska, B. (2008). Accumulation of lead in root cells of Pisum sativum. Acta Physiologiae Plantarum, 30(5), 629–637. https://doi.org/10.1007/s11738-008-0159-1
  • Manvelian, J., Weisany, W., Tahir, N. A. razzak, Jabbari, H., & Diyanat, M. (2021). Physiological and biochemical response of safflower (Carthamus tinctorius L.) cultivars to zinc application under drought stress. Industrial Crops and Products, 172, 1–12. https://doi.org/10.1016/j.indcrop.2021.114069
  • Mudgal, V., Madaan, N., Mudgal, A., Singh, R. B., & Mishra, S. (2010). Effect of toxic metals on human health. The Open Nutraceuticals Journal, 3, 94–99.
  • Patra, M., Bhowmik, N., Bandopadhyay, B., & Sharma, A. (2004a). Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environmental and Experimental Botany, 52(3), 199–223. https://doi.org/10.1016/j.envexpbot.2004.02.009
  • Patra, M., Bhowmik, N., Bandopadhyay, B., & Sharma, A. (2004b). Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environmental and Experimental Botany, 52, 199–223.
  • Piršelová, B., Trebichalský, A., & Kuna, R. (2015). Citlivosť vybraných poľnohospodárskych plodín na olovo, kadmium a arzén v skorých štádiách individuálneho vývinu. Journal of Central European Agriculture, 16(4), 476–488. https://doi.org/10.5513/JCEA01/16.4.1655
  • Pourghasemian, N., Landberg, T., Ehsanzadeh, P., & Greger, M. (2019). Different response to Cd stress in domesticated and wild safflower (Carthamus spp.). Ecotoxicology and Environmental Safety, 171, 321–328. https://doi.org/10.1016/j.ecoenv.2018.12.052
  • Rai, V., Vajpayee, P., Singh, S. N., & Mehrotra, S. (2004). Effect of chromium accumulation on photosynthetic pigments, oxidative stress defense system, nitrate reduction, proline level and eugenol content of Ocimum tenuiflorum L. Plant Science, 167(5), 1159–1169. https://doi.org/10.1016/j.plantsci.2004.06.016
  • Raza, A., Charagh, S., Abbas, S., Hassan, M. U., Saeed, F., Haider, S., Sharif, R., Anand, A., Corpas, F. J., Jin, W., & Varshney, R. K. (2023). Assessment of proline function in higher plants under extreme temperatures. Plant Biology, 25(3), 379–395. https://doi.org/10.1111/plb.13510
  • Rodriguez, E., Santos, C., Lucas, E., & Pereira, M. J. (2011). Evaluation of chromium (VI) toxicity to chlorella vulgaris Beijerinck cultures. Fresenius Environmental Bulletin, 20, 334–339.
  • Saud, S., Wang Depeng, Fahad Shah, Javed Talha, Jaremko Mariusz, Abdulsalam Nader S., & Ghareeb, R. Y. (2022). The impact of chromium ion stress on plant growth, developmental physiology, and molecular regulation. Frontiers in Plant Sicence, 1–16. https://doi.org/10.3389/fpls.2022.994785
  • Sayyad, G., Afyuni, M., Mousavi, S. F., Abbaspour, K. C., Hajabbasi, M. A., Richards, B. K., & Schulin, R. (2009). Effects of cadmium, copper, lead, and zinc contamination on metal accumulation by safflower and wheat. Soil and Sediment Contamination, 18(2), 216–228. https://doi.org/10.1080/15320380802660248
  • Sengar, R. S., Gautam, M., Sengar, R. S., Garg, S. K., Sengar, K., & Chaudhary, R. (2008). Lead stress effects on physiobiochemical activities of higher plants. Reviews of Environmental Contamination and Toxicology, 196, 73–93. https://doi.org/10.1007/978-0-387-78444-1_3
  • Shahid, M., Shamshad, S., Ra, M., Khalid, S., Bibi, I., Khan, N., Dumat, C., & Imtiaz, M. (2017). Chromium speciation , bioavailability , uptake , toxicity and detoxi fi cation in soil-plant system : A review. Chemosphere, 178, 513–533.
  • Shanker, A. K., Cervantes, C., Loza-Tavera, H., & Avudainayagam, S. (2005). Chromium toxicity in plants. Environment International, 31(5), 739–753. https://doi.org/10.1016/j.envint.2005.02.003
  • Sharma, P., & Dubey, R. S. (2005). Lead toxicity in plants. Braz. J. Plant. Physiol., 17, 35–52.
  • Signorelli, S. (2016). The fermentation analogy: A point of view for understanding the intriguing role of proline accumulation in stressed plants. Frontiers in Plant Science, 7, 1–6. https://doi.org/10.3389/fpls.2016.01339
  • Singh, R., Tripathi, R. D., Dwivedi, S., Kumar, A., Trivedi, P. K., & Chakrabarty, D. (2010). Lead bioaccumulation potential of an aquatic macrophyte Najas indica are related to antioxidant system. Bioresource Technology, 101(9), 3025–3032. https://doi.org/10.1016/j.biortech.2009.12.031
  • Smaoui, A., Mahmoudi, H., Medimagh, S., Taheri, A., Zribi, F., Ouerghi, Z., & Ben Salah, I. (2023). Physiological and biochemical responses of Carthamus tinctorius L. to zinc at vegetative stage. Journal of Plant Nutrition and Soil Science, 186(5), 495–506. https://doi.org/10.1002/jpln.202200339
  • Steinberg, R. V. (2009). Contaminated Soils: Environmental Impact, Disposal and Treatment. In Phytoremediation of heavy metal/metalloid-contaminated soils (Vol. 6, pp. 181–206). Nova Science Publishers.
  • Tunçtürk, M., Rezaee Danesh, Y., Tunçtürk, R., Oral, E., Najafi, S., Nohutçu, L., Jalal, A., da Silva Oliveira, C. E., & Filho, M. C. M. T. (2023). Safflower (Carthamus tinctorius L.) Response to Cadmium Stress: Morpho-Physiological Traits and Mineral Concentrations. Life, 13(1). https://doi.org/10.3390/life13010135
  • Ugwu, E. I., & Agunwamba, J. C. (2020). A review on the applicability of activated carbon derived from plant biomass in adsorption of chromium, copper, and zinc from industrial wastewater. Environmental Monitoring and Assessment, 192(240), 1–12. https://doi.org/10.1007/s10661-020-8162-0
  • Vajpayee, P., Tripathi, R. D., Rai, U. N., Ali, M. B., & Singh, S. N. (2000). Chromium (VI) accumulation reduces chlorophyll biosynthesis, nitrate reductase activity and protein content in Nymphaea alba L. Chemosphere, 41, 1075–1082.
  • Von Burg, R., & Liu, D. (1993). Toxicology update. Journal of Applied Toxicology, 13(3), 225–230. https://doi.org/10.1002/jat.2550130315
  • Zaheer, I. E., Ali, S., Rizwan, M., Bareen, F. e., Abbas, Z., Bukhari, S. A. H., Wijaya, L., Alyemeni, M. N., & Ahmad, P. (2019). Zinc-lysine prevents chromium-induced morphological, photosynthetic, and oxidative alterations in spinach irrigated with tannery wastewater. Environmental Science and Pollution Research, 26(28), 28951–28961. https://doi.org/10.1007/s11356-019-06084-z

Physiological Changes Due to Stress of Chromium and Lead in Carthamus tinctorius L.

Yıl 2024, Cilt: 14 Sayı: 4, 1709 - 1722, 15.12.2024
https://doi.org/10.31466/kfbd.1424762

Öz

Heavy metal contamination has become a pressing environmental and public health concern, particularly in developing nations. Chromium (Cr) and lead (Pb) are ubiquitous environmental pollutants that pose substantial threats to ecological integrity and human health, even at sublethal concentrations. This study was conducted to elucidate the effects of Cr and Pb stress on photosynthetic pigments and proline content in Carthamus tinctorius L.cv. Zirkon. The findings revealed that Cr and Pb exposure caused a substantial reduction in chlorophyll a, chlorophyll b, total chlorophyll, total carotenoids, and proline content, while simultaneously increasing the Chl a/b ratio in heavy metal-stressed plants. A comparison of Cr and Pb exposure demonstrated that Cr exposure resulted in more pronounced damage compared to Pb exposure at equivalent concentrations. In response to both heavy metal stress, C. tinctorius L.cv. Zirkon plants displayed an increased accumulation of proline. These findings suggest that Cr and Pb exposure profoundly affects chlorophyll and proline content, leading to physiological alterations in C. tinctorius cv. Zirkon.

Kaynakça

  • Afshan, S., Ali, S., Bharwana, S. A., Rizwan, M., Farid, M., Abbas, F., Ibrahim, M., Mehmood, M. A., & Abbasi, G. H. (2015). Citric acid enhances the phytoextraction of chromium, plant growth, and photosynthesis by alleviating the oxidative damages in Brassica napus L. Environmental Science and Pollution Research, 22(15), 11679–11689. https://doi.org/10.1007/s11356-015-4396-8
  • Al Chami, Z., Amer, N., Al Bitar, L., & Cavoski, I. (2015). Potential use of Sorghum bicolor and Carthamus tinctorius in phytoremediation of nickel, lead and zinc. International Journal of Environmental Science and Technology, 12(12), 3957–3970. https://doi.org/10.1007/s13762-015-0823-0
  • Ali, S., Rizwan, M., Bano, R., Bharwana, S. A., Rehman, M. Z. ur, Hussain, M. B., & Al-Wabel, M. I. (2018). Effects of biochar on growth, photosynthesis, and chromium (Cr) uptake in Brassica rapa L. under Cr stress. Arabian Journal of Geosciences, 11(507), 1–9. https://doi.org/10.1007/s12517-018-3861-3
  • Alvarez, M. E., Savouré, A., & Szabados, L. (2022). Proline metabolism as regulatory hub. In Trends in Plant Science (Vol. 27, Issue 1). Elsevier Ltd. https://doi.org/10.1016/j.tplants.2021.07.009
  • Angelova, V. (2016). Accumulation of Heavy Metals in Safflower (Carthamus tinctorius L.). World Academy of Science, Engineering and Technology International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering, 10(7), 356–361. https://www.researchgate.net/publication/306347051
  • Arias, J. A., Peralta-Videa, J. R., Ellzey, J. T., Ren, M., Viveros, M. N., & Gardea-Torresdey, J. L. (2010). Effects of Glomus deserticola inoculation on Prosopis: Enhancing chromium and lead uptake and translocation as confirmed by X-ray mapping, ICP-OES and TEM techniques. Environmental and Experimental Botany, 68(2), 139–148. https://doi.org/10.1016/j.envexpbot.2009.08.009
  • Arif, M. S., Yasmeen, T., Abbas, Z., Ali, S., Rizwan, M., Aljarba, N. H., Alkahtani, S., & Abdel-Daim, M. M. (2021). Role of Exogenous and Endogenous Hydrogen Sulfide (H2S) on Functional Traits of Plants Under Heavy Metal Stresses: A Recent Perspective. Frontiers in Plant Science, 11, 1–14. https://doi.org/10.3389/fpls.2020.545453
  • Baran, U., & Ekmekçi, Y. (2022a). Physiological, photochemical, and antioxidant responses of wild and cultivated Carthamus species exposed to nickel toxicity and evaluation of their usage potential in phytoremediation. Environmental Science and Pollution Research, 29(3), 4446–4460. https://doi.org/10.1007/s11356-021-15493-y
  • Baran, U., & Ekmekçi, Y. (2022b). Physiological, photochemical, and antioxidant responses of wild and cultivated Carthamus species exposed to nickel toxicity and evaluation of their usage potential in phytoremediation. Environmental Science and Pollution Research, 29(3), 4446–4460. https://doi.org/10.1007/s11356-021-15493-y
  • Baskaran, L., Ganesh, K. S., Chidambaram, A. A., & Sundaramoorthy, P. (2009). Influence of chromium stress on proline accumulation in soybean (glycine max L. Merr.) genotypes. Global Journal of Environmental Research, 3, 106–108.
  • Bates, L. S. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205–207. https://doi.org/10.1007/BF00018060
  • Beyersmann, D., & Hartwig, A. (2008). Carcinogenic metal compounds: Recent insight into molecular and cellular mechanisms. In Archives of Toxicology (Vol. 82, Issue 8, pp. 493–512). https://doi.org/10.1007/s00204-008-0313-y
  • Bhatti, K. H., Anwar, S., Nawaz, K., Hussain, K., Siddiqi, E. H., Sharif, R. U., Talat, A., & Khalid, A. (2013). Effect of heavy metal lead (PB) stress of different concentration on wheat (Triticum aestivum L.). Middle East Journal of Scientific Research, 14(2), 148–154. https://doi.org/10.5829/idosi.mejsr.2013.14.2.19560
  • Brunet, J., Varrault, G., Zuily-Fodil, Y., & Repellin, A. (2009). Accumulation of lead in the roots of grass pea (Lathyrus sativus L.) plants triggers systemic variation in gene expression in the shoots. Chemosphere, 77(8), 1113–1120. https://doi.org/10.1016/j.chemosphere.2009.07.058
  • Cenkci, S., Ciǧerci, I. H., Yildiz, M., Özay, C., Bozdaǧ, A., & Terzi, H. (2010). Lead contamination reduces chlorophyll biosynthesis and genomic template stability in Brassica rapa L. Environmental and Experimental Botany, 67(3), 467–473. https://doi.org/10.1016/j.envexpbot.2009.10.001
  • Cervantes, C., Campos-García, J., Devars, S., Gutiérrez-Corona, F., Loza-Tavera, H., Torres-Guzmán, J. C., & Moreno-Sánchez, R. (2001). Interactions of chromium with microorganisms and plants. FEMS Microbiology Reviews, 25(3), 335–347. https://doi.org/10.1016/S0168-6445(01)00057-2
  • Chandra, P. (2004). Chromium accumulation and toxicity in aquatic vascular plants. The Botanical Review, 70(3), 313–327.
  • Cia, M. C., Guimarães, A. C. R., Medici, L. O., Chabregas, S. M., & Azevedo, R. A. (2012). Antioxidant responses to water deficit by drought-tolerant and -sensitive sugarcane varieties. Annals of Applied Biology, 161(3), 313–324. https://doi.org/10.1111/j.1744-7348.2012.00575.x
  • Ciaramella, B. R., Corinzia, S. A., Cosentino, S. L., & Testa, G. (2022). Phytoremediation of Heavy Metal Contaminated Soils Using Safflower. Agronomy, 12(10). https://doi.org/10.3390/agronomy12102302
  • Delfine, S., Alvino, A., Villani, M. C., & Loreto, F. (1999). Restrictions to Carbon Dioxide Conductance and Photosynthesis in Spinach Leaves Recovering from Salt Stress. Plant Physiology, 119, 1101–1106. https://academic.oup.com/plphys/article/119/3/1101/6087495
  • Dogan, M., Sahin Yigit, S., & Cinar, G. (2021). Effects of lead accumulation on physiological parameters and nutritional elements in safflower (Carthamus tinctorius L.) seedlings. AgroLife Scientific Journal, 10(2), 57–62.
  • Dorado, M. P., Ballesteros, E., López, F. J., & Mittelbach, M. (2004). Optimization of alkali-catalyzed transesterification of Brassica Carinata oil for biodiesel production. Energy and Fuels, 18(1), 77–83. https://doi.org/10.1021/ef0340110
  • Ernst, W. H. O. (1998). Effects of heavy metals in plants at the cellular and organismic levels. In Schuurmann G (Ed.), Exotoxicology: Ecological Fundamentals, Chemical Exposure and biological effects (pp. 587–620). Wiley.
  • Ewais, E. A. (1997). Effects of cadmium, nickel and lead on growth, chlorophyll content and proteins of weeds. Biologia Plantarum, 39(3), 403–410.
  • Farid, M., Ali, S., Saeed, R., Rizwan, M., Bukhari, S. A. H., Abbasi, G. H., Hussain, A., Ali, B., Zamir, M. S. I., & Ahmad, I. (2019). Combined application of citric acid and 5-aminolevulinic acid improved biomass, photosynthesis and gas exchange attributes of sunflower (Helianthus annuus L.) grown on chromium contaminated soil. International Journal of Phytoremediation, 21(8), 760–767. https://doi.org/10.1080/15226514.2018.1556595
  • Flora, G., Gupta, D., & Tiwari, A. (2012). Toxicity of lead: A review with recent updates. Interdisciplinary Toxicology, 5(2), 47–58. https://doi.org/10.2478/v10102-012-0009-2
  • Gopal, R., & Rizvi, A. H. (2008). Excess lead alters growth, metabolism and translocation of certain nutrients in radish. Chemosphere, 70(9), 1539–1544. https://doi.org/10.1016/j.chemosphere.2007.08.043
  • Grover, P., Rekhadevi, P. V., Danadevi, K., Vuyyuri, S. B., Mahboob, M., & Rahman, M. F. (2010). Genotoxicity evaluation in workers occupationally exposed to lead. International Journal of Hygiene and Environmental Health, 213(2), 99–106. https://doi.org/10.1016/j.ijheh.2010.01.005
  • Gupta, D. K., Huang, H. G., Yang, X. E., Razafindrabe, B. H. N., & Inouhe, M. (2010). The detoxification of lead in Sedum alfredii H. is not related to phytochelatins but the glutathione. Journal of Hazardous Materials, 177(1–3), 437–444. https://doi.org/10.1016/j.jhazmat.2009.12.052
  • Gupta, D. K., Nicoloso, F. T., Schetinger, M. R. C., Rossato, L. V., Pereira, L. B., Castro, G. Y., Srivastava, S., & Tripathi, R. D. (2009). Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress. Journal of Hazardous Materials, 172(1), 479–484. https://doi.org/10.1016/j.jhazmat.2009.06.141
  • Hayat, S., Hayat, Q., Alyemeni, M. N., & Ahmad, A. (2013). Proline enhances antioxidative enzyme activity, photosynthesis and yield of Cicer arietinum L. exposed to cadmium stress. Acta Bot. Croat, 72(2), 323–335.
  • Iyaka, Y. A. (2009). Chromium in soils: a review of its distribution and impacts. Continental J. Environmental Sciences, 3, 13–18.
  • Jiang, W., & Liu, D. (2010). Pb-induced cellular defense system in the root meristematic cells of Allium sativum L. Plant Biology, 10(40), 1–8. http://www.biomedcentral.com/1471-2229/10/40
  • Kasmiyati, S., & Sucahyo, D. (2014). Detection of oxidative stress due to chromium toxicity on sonchus oleraceus L. by spectrophotometrically and histochemical determination of reactive oxygen species. Journai of Agricutural Science, 85–98.
  • Khan, M. I. R. , Reddy, P. S. , Ferrante, A. , & Khan, N. A. (2019). Plant Signaling Molecules: Role and Regulation under Stressful Environments. Woodhead Publishing.
  • Lichtenthaler, H. K., & Wellburn, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11(5), 591–592. https://doi.org/10.1042/bst0110591
  • Liu, W., Le, A., Hancock, C., Lane, A. N., Dang, C. V., Fan, T. W. M., & Phang, J. M. (2012). Reprogramming of proline and glutamine metabolism contributes to the proliferative and metabolic responses regulated by oncogenic transcription factor c-MYC. Proceedings of the National Academy of Sciences of the United States of America, 109(23), 8983–8988. https://doi.org/10.1073/pnas.1203244109
  • Mahaffey, K. R. (1990). Environmental lead toxicity: nutrition as a component of intervention. Environmental Health Perspectives, 89, 75–78.
  • Mahdi Hadif, W., Abd Rahim, S., Sahid, I., Rahman, A., & Ibrahim, I. (2015). Influence of chromium metal on chlorophyll content in leaves of paddy oryza sativa L. Int. J. Chem. Sci, 13(3), 1238–1252. www.sadgurupublications.com
  • Mahmoud, W., Rehab, H. K. A., & Taha, E. (2014). Economic evaluation of some safflower (carthamus tinctorius, l.) genotypes under upper egypt conditions. Alexandria Journal of Agricultural Research, 59(3), 147–156.
  • Malar, S., Vikram, S. S., Favas, P. J. C., & Perumal, V. (2014). Lead heavy metal toxicity induced changes on growth and antioxidative enzymes level in water hyacinths [Eichhornia crassipes (Mart.)]. Botanical Studies, 55(1), 1–11. https://doi.org/10.1186/S40529-014-0054-6
  • Małecka, A., Piechalak, A., Morkunas, I., & Tomaszewska, B. (2008). Accumulation of lead in root cells of Pisum sativum. Acta Physiologiae Plantarum, 30(5), 629–637. https://doi.org/10.1007/s11738-008-0159-1
  • Manvelian, J., Weisany, W., Tahir, N. A. razzak, Jabbari, H., & Diyanat, M. (2021). Physiological and biochemical response of safflower (Carthamus tinctorius L.) cultivars to zinc application under drought stress. Industrial Crops and Products, 172, 1–12. https://doi.org/10.1016/j.indcrop.2021.114069
  • Mudgal, V., Madaan, N., Mudgal, A., Singh, R. B., & Mishra, S. (2010). Effect of toxic metals on human health. The Open Nutraceuticals Journal, 3, 94–99.
  • Patra, M., Bhowmik, N., Bandopadhyay, B., & Sharma, A. (2004a). Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environmental and Experimental Botany, 52(3), 199–223. https://doi.org/10.1016/j.envexpbot.2004.02.009
  • Patra, M., Bhowmik, N., Bandopadhyay, B., & Sharma, A. (2004b). Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environmental and Experimental Botany, 52, 199–223.
  • Piršelová, B., Trebichalský, A., & Kuna, R. (2015). Citlivosť vybraných poľnohospodárskych plodín na olovo, kadmium a arzén v skorých štádiách individuálneho vývinu. Journal of Central European Agriculture, 16(4), 476–488. https://doi.org/10.5513/JCEA01/16.4.1655
  • Pourghasemian, N., Landberg, T., Ehsanzadeh, P., & Greger, M. (2019). Different response to Cd stress in domesticated and wild safflower (Carthamus spp.). Ecotoxicology and Environmental Safety, 171, 321–328. https://doi.org/10.1016/j.ecoenv.2018.12.052
  • Rai, V., Vajpayee, P., Singh, S. N., & Mehrotra, S. (2004). Effect of chromium accumulation on photosynthetic pigments, oxidative stress defense system, nitrate reduction, proline level and eugenol content of Ocimum tenuiflorum L. Plant Science, 167(5), 1159–1169. https://doi.org/10.1016/j.plantsci.2004.06.016
  • Raza, A., Charagh, S., Abbas, S., Hassan, M. U., Saeed, F., Haider, S., Sharif, R., Anand, A., Corpas, F. J., Jin, W., & Varshney, R. K. (2023). Assessment of proline function in higher plants under extreme temperatures. Plant Biology, 25(3), 379–395. https://doi.org/10.1111/plb.13510
  • Rodriguez, E., Santos, C., Lucas, E., & Pereira, M. J. (2011). Evaluation of chromium (VI) toxicity to chlorella vulgaris Beijerinck cultures. Fresenius Environmental Bulletin, 20, 334–339.
  • Saud, S., Wang Depeng, Fahad Shah, Javed Talha, Jaremko Mariusz, Abdulsalam Nader S., & Ghareeb, R. Y. (2022). The impact of chromium ion stress on plant growth, developmental physiology, and molecular regulation. Frontiers in Plant Sicence, 1–16. https://doi.org/10.3389/fpls.2022.994785
  • Sayyad, G., Afyuni, M., Mousavi, S. F., Abbaspour, K. C., Hajabbasi, M. A., Richards, B. K., & Schulin, R. (2009). Effects of cadmium, copper, lead, and zinc contamination on metal accumulation by safflower and wheat. Soil and Sediment Contamination, 18(2), 216–228. https://doi.org/10.1080/15320380802660248
  • Sengar, R. S., Gautam, M., Sengar, R. S., Garg, S. K., Sengar, K., & Chaudhary, R. (2008). Lead stress effects on physiobiochemical activities of higher plants. Reviews of Environmental Contamination and Toxicology, 196, 73–93. https://doi.org/10.1007/978-0-387-78444-1_3
  • Shahid, M., Shamshad, S., Ra, M., Khalid, S., Bibi, I., Khan, N., Dumat, C., & Imtiaz, M. (2017). Chromium speciation , bioavailability , uptake , toxicity and detoxi fi cation in soil-plant system : A review. Chemosphere, 178, 513–533.
  • Shanker, A. K., Cervantes, C., Loza-Tavera, H., & Avudainayagam, S. (2005). Chromium toxicity in plants. Environment International, 31(5), 739–753. https://doi.org/10.1016/j.envint.2005.02.003
  • Sharma, P., & Dubey, R. S. (2005). Lead toxicity in plants. Braz. J. Plant. Physiol., 17, 35–52.
  • Signorelli, S. (2016). The fermentation analogy: A point of view for understanding the intriguing role of proline accumulation in stressed plants. Frontiers in Plant Science, 7, 1–6. https://doi.org/10.3389/fpls.2016.01339
  • Singh, R., Tripathi, R. D., Dwivedi, S., Kumar, A., Trivedi, P. K., & Chakrabarty, D. (2010). Lead bioaccumulation potential of an aquatic macrophyte Najas indica are related to antioxidant system. Bioresource Technology, 101(9), 3025–3032. https://doi.org/10.1016/j.biortech.2009.12.031
  • Smaoui, A., Mahmoudi, H., Medimagh, S., Taheri, A., Zribi, F., Ouerghi, Z., & Ben Salah, I. (2023). Physiological and biochemical responses of Carthamus tinctorius L. to zinc at vegetative stage. Journal of Plant Nutrition and Soil Science, 186(5), 495–506. https://doi.org/10.1002/jpln.202200339
  • Steinberg, R. V. (2009). Contaminated Soils: Environmental Impact, Disposal and Treatment. In Phytoremediation of heavy metal/metalloid-contaminated soils (Vol. 6, pp. 181–206). Nova Science Publishers.
  • Tunçtürk, M., Rezaee Danesh, Y., Tunçtürk, R., Oral, E., Najafi, S., Nohutçu, L., Jalal, A., da Silva Oliveira, C. E., & Filho, M. C. M. T. (2023). Safflower (Carthamus tinctorius L.) Response to Cadmium Stress: Morpho-Physiological Traits and Mineral Concentrations. Life, 13(1). https://doi.org/10.3390/life13010135
  • Ugwu, E. I., & Agunwamba, J. C. (2020). A review on the applicability of activated carbon derived from plant biomass in adsorption of chromium, copper, and zinc from industrial wastewater. Environmental Monitoring and Assessment, 192(240), 1–12. https://doi.org/10.1007/s10661-020-8162-0
  • Vajpayee, P., Tripathi, R. D., Rai, U. N., Ali, M. B., & Singh, S. N. (2000). Chromium (VI) accumulation reduces chlorophyll biosynthesis, nitrate reductase activity and protein content in Nymphaea alba L. Chemosphere, 41, 1075–1082.
  • Von Burg, R., & Liu, D. (1993). Toxicology update. Journal of Applied Toxicology, 13(3), 225–230. https://doi.org/10.1002/jat.2550130315
  • Zaheer, I. E., Ali, S., Rizwan, M., Bareen, F. e., Abbas, Z., Bukhari, S. A. H., Wijaya, L., Alyemeni, M. N., & Ahmad, P. (2019). Zinc-lysine prevents chromium-induced morphological, photosynthetic, and oxidative alterations in spinach irrigated with tannery wastewater. Environmental Science and Pollution Research, 26(28), 28951–28961. https://doi.org/10.1007/s11356-019-06084-z
Toplam 66 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yapısal Biyoloji
Bölüm Makaleler
Yazarlar

Adnan Akçin 0000-0001-7767-6613

Zakire Tülay Aytaş Akçin 0000-0002-1716-3936

Veli Çeliktaş 0000-0001-7753-1422

Yayımlanma Tarihi 15 Aralık 2024
Gönderilme Tarihi 23 Ocak 2024
Kabul Tarihi 13 Kasım 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 14 Sayı: 4

Kaynak Göster

APA Akçin, A., Aytaş Akçin, Z. T., & Çeliktaş, V. (2024). Physiological Changes Due to Stress of Chromium and Lead in Carthamus tinctorius L. Karadeniz Fen Bilimleri Dergisi, 14(4), 1709-1722. https://doi.org/10.31466/kfbd.1424762