Araştırma Makalesi
BibTex RIS Kaynak Göster

Örtülü Elektrod Ark Kaynağı, Gazaltı Kaynağı ve Tozaltı Kaynağı ile Birleştirilen Yüksek Mukavemetli AH32 Gemi İnşa Çeliğinin Mekanik Özelliklerinin Karşılaştırmalı İncelenmesi

Yıl 2024, Cilt: 14 Sayı: 4, 1873 - 1887, 15.12.2024
https://doi.org/10.31466/kfbd.1501344

Öz

Gemiler, çeşitli dayanım değerlerine sahip çeliklerin kaynak yöntemiyle birleştirilmesiyle inşa edilir. Düşük-orta dayanımlı çelikler düşük maliyet ve tedarik kolaylığı açısından avantajlıyken, yüksek dayanımlı çelikler sundukları yüksek dayanım değerleriyle gemi inşaatında avantaj sağlamaktadırlar. Gemi inşasında kullanılan çeliklerin kaynakları incelendiğinde, çeşitli kaynak teknikleri kullanılmakla birlikte, en sık örtülü elektrot ark kaynağı, tozaltı kaynağı ve gazaltı kaynağının kullanıldığı görülmektedir. Literatür incelendiğinde, gemi inşasında kullanılan yüksek mukavemetli çeliklerin birleştirilmesine yönelik çalışmaların oldukça sınırlı olduğu görülmektedir. Ayrıca literatürde bu tür çeliklerin bu 3 kaynak tekniği kullanılarak birleştirildiğindeki mekanik özelliklerinin karşılaştırmalı analizi üzerine herhangi bir araştırma yapılmadığı da belirlenmiştir. Bu bağlamda bu çalışmada gemi yapımında yaygın olarak kullanılan AH32 çeliği örtülü elektrot ark kaynağı, tozaltı kaynağı ve gazaltı kaynağı ile birleştirilerek kaynak bölgelerinin çeşitli mekanik özellikleri incelenmiştir. İnceleme sonrasında sertlik, akma dayanımı, çekme dayanımı, darbe tokluğu ve eğilme dayanımı açısından en iyi sonuçların tozaltı kaynağı sonrasında, çekme uzaması ve eğilme uzaması açısından ise en iyi değerlerin gazaltı kaynağı sonrası elde edildiği belirlenmiştir.

Kaynakça

  • Ahmed, M. M. Z., El-Sayed Seleman, M. M., Touileb, K., Albaijan, I., & Habba, M. I. A. (2022). Microstructure, Crystallographic Texture, and Mechanical Properties of Friction Stir Welded Mild Steel for Shipbuilding Applications. Materials 15(8): 2905.
  • Cater, S., Martin, J., Galloway, A., & McPherson, N. (2016). Comparison between Friction Stir and Submerged Arc Welding Applied to Joining DH36 and E36 Shipbuilding Steel. In R. Mishra, M. W. Mahoney, Y. Sato, Y. Hovanski, & R. Verma (Eds.), Friction Stir Welding and Processing VII (pp. 49-58). Cham: Springer International Publishing.
  • Cho, K.-K., Sun, J.-G., & Oh, J.-S. (1999). An automated welding operation planning system for block assembly in shipbuilding. International Journal of Production Economics 60-61: 203-209. doi:https://doi.org/10.1016/S0925-5273(98)00151-0
  • Conte, R., Izquierdo, D.R. & Francesco, G. Submerged arc welding process: a numerical investigation of temperatures, displacements, and residual stresses in ASTM A516-Gr70 corner joined samples. Int J Adv Manuf Technol 127, 5437–5448 (2023). https://doi.org/10.1007/s00170-023-11908-x
  • Cunha, P. H. C. P. d., Lemos, G. V. B., Bergmann, L., Reguly, A., Santos, J. F. d., Marinho, R. R., & Paes, M. T. P. (2019). Effect of welding speed on friction stir welds of GL E36 shipbuilding steel. Journal of Materials Research and Technology 8(1): 1041-1051. doi:https://doi.org/10.1016/j.jmrt.2018.07.014
  • Çam, G., Yeni, Ç., Erim, S., Ventzke, V., & Koçak, M. (1998). Investigation into properties of laser welded similar and dissimilar steel joints. Sci. Technol. Weld. Join., 3 (4): 177-189. doi:https://doi.org/10.1179/stw.1998.3.4.177
  • Çam, G., Koçak, M., Dobi, D., Heikinheimo, L., & Siren, M. (1997). Fracture behaviour of diffusion bonded bimaterial Ti-Al joints. Sci. Technol. Weld. Join., 2 (3): 95-101. doi:https://doi.org/10.1179/stw.1997.2.3.95
  • Çolak, Z., Ayan, Y., & Kahraman, N. (2019). Gerçek deniz ortamında su altı kaynağı ile birleştirilen Grade AH36 gemi sacının kaynak bölgesinin karakterizasyonu. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 35(2), 775-786. https://doi.org/10.17341/gazimmfd.519055
  • Donizete Borba, T. M., Duarte Flores, W., de Oliveira Turani, L., & Cardoso Junior, R. (2017). Assessment of the Weldability of EH36 TMCP Shipbuilding Steel Welded by High Heat Input Submerged Arc Welding. Welding International 31(3): 184-195. doi:10.1080/09507116.2016.1218619
  • Ezer, M. & Çam, G. (2022). A Study on microstructure and mechanical performance of gas metal arc welded AISI 304L joints. Materialwissenschaft und Werkstofftechnik 53 (9): 1043-1052. doi:https://doi.org/10.1002/mawe.202200050
  • Görgün, E. (2024). Investigation of The Effect of SMAW Parameters On Properties of AH36 Joints And The Chemical Composition of Seawater. International Journal of Innovative Engineering Applications, 8(1), 28-36. https://doi.org/10.46460/ijiea.1418641
  • Hariprasath, P., Sivaraj, P., Balasubramanian, V., Pilli, S., & Sridhar, K. (2022). Effect of the welding technique on mechanical properties and metallurgical characteristics of the naval grade high strength low alloy steel joints produced by SMAW and GMAW. CIRP Journal of Manufacturing Science and Technology 37: 584-595. doi:https://doi.org/10.1016/j.cirpj.2022.03.007
  • Khamari, B. K., Dash, S. S., Karak, S. K., & Biswal, B. B. (2020). Effect of welding parameters on mechanical and microstructural properties of GMAW and SMAW mild steel joints. Ironmaking & Steelmaking 47(8): 844-851. doi:10.1080/03019233.2019.1623592
  • Kim, H., Kim, I., Kim, I., & Kang, B. (2008). Control of welding process for BV-AH 32 steel. Archives of Materials Science 46, 46.
  • Kim, J. H., Oh, Y. J., Hwang, I. S., Kim, D. J., & Kim, J. T. (2001). Fracture behavior of heat-affected zone in low alloy steels. Journal of Nuclear Materials, 299(2), 132-139. https://doi.org/10.1016/S0022-3115(01)00688-2
  • Konkol, P. J., Mathers, J. A., Johnson, R., & Pickens, J. R. (2003). Friction Stir Welding of HSLA-65 Steel for Shipbuilding. Journal of Ship Production 19(03): 159-164. doi:10.5957/jsp.2003.19.3.159
  • Lee, J. H., Park, S. H., Kwon, H. S., Kim, G. S., & Lee, C. S. (2014). Laser, tungsten inert gas, and metal active gas welding of DP780 steel: Comparison of hardness, tensile properties and fatigue resistance. Materials & Design 64: 559-565. doi:https://doi.org/10.1016/j.matdes.2014.07.065
  • Mahala, T. (2019). Gas Metal Arc Welding By Taguchi Technique. Journal of Emerging Technologies and Innovative Research 6 (3): 107-109
  • Mert, T., Bilgili, L., Senoz, K. M., Çelebi, U. B., & Ekinci, S. (2016). The Effect of Parameter Selection on Fume Formation Rate in SMAW of AH36 Shipbuilding Steel and Analysis with ANOVA Method. In P. Grammelis (Ed.), Energy, Transportation and Global Warming (pp. 795-802). Cham: Springer International Publishing.
  • Pankaj, P., Tiwari, A., Biswas, P., Rao, A. G., & Pal, S. (2020). Experimental studies on controlling of process parameters in dissimilar friction stir welding of DH36 shipbuilding steel–AISI 1008 steel. Welding in the World 64(6): 963-986. doi:10.1007/s40194-020-00886-3
  • Pratikno, H., Pahlawan, N. A., & Dhanista, W. L. (2021). Comparative Analysis of FCAW, and GMAW Welding With Heat Input Variations on A36 Steel Against Vickers Hardness Test and Macrostructure. International Journal of Offshore and Coastal Engineering (IJOCE) 5(2): 59-61
  • Ragu Nathan, S., Balasubramanian, V., Rao, A. G., Sonar, T., Ivanov, M., & Suganeswaran, K. (2023). Effect of tool rotational speed on microstructure and mechanical properties of friction stir welded DMR249A high strength low alloy steel butt joints for fabrication of light weight ship building structures. International Journal of Lightweight Materials and Manufacture 6(4): 469-482. doi:https://doi.org/10.1016/j.ijlmm.2023.05.004
  • Sekban, D. M., Aktarer, S. M., Xue, P., Ma, Z. Y., & Purcek, G. (2016). Impact toughness of friction stir processed low carbon steel used in shipbuilding. Materials Science and Engineering: A 672: 40-48. doi:https://doi.org/10.1016/j.msea.2016.06.063
  • Serindağ, H.T. & Çam, G. (2021). Microstructure and mechanical properties of gas metal arc welded AISI 430/AISI 304 dissimilar stainless steels butt joints. Journal of Physics: Conference Series, 1777: 012047. doi:https://doi.org/10.1088/1742-6596/1777/1/012047
  • Serindağ, H.T. & Çam, G. (2022). Multi-pass butt welding of thick AISI 316L plates by gas tungsten arc welding: Microstructural and mechanical characterization. International Journal of Pressure Vessels and Piping, 200: 104842. doi: https://doi.org/10.1016/j.ijpvp.2022.104842
  • Serindağ, H.T. & Çam, G. (2023). Characterizations of microstructure and properties of dissimilar AISI 316L/9Ni low alloy cryogenic steel joints fabricated by GTAW. Journal of Materials Engineering and Performance 32: 7039-7049. doi: https://doi.org/10.1007/s11665-022-07601-x
  • Serindağ, H.T., Tardu, C., Kirçiçek, I.Ö, & Çam, G. (2022). A study on microstructural and mechanical properties of gas tungsten arc welded thick cryogenic 9% Ni alloy steel butt joint. CIRP Journal of Manufacturing Science and Technology, 37: 1-10. doi:https://doi.org/10.1016/j.cirpj.2021.12.006
  • Soleymani, V. & Eghbali, B. (2012). Grain Refinement in a Low Carbon Steel Through Multidirectional Forging. Journal of Iron and Steel Research, International 19 (10): 74-78. https://doi.org/10.1016/S1006-706X(12)60155-1
  • Sönmez, U., & Ceyhun, V. (2014). Investigation of mechanical and microstructural properties of S 235 JR (ST 37-2) steels welded joints with FCAW. Kovove Materialy-Metallic Materials 52: 57-63
  • Şenol, M. & Çam, G. (2022). Investigation into microstructures and properties of AISI 430 ferritic steel butt joints fabricated by GMAW. International Journal of Pressure Vessels and Piping, 202: 104926. doi:https://doi.org/10.1016/j.ijpvp.2023.104926
  • Tiwari, A., Pankaj, P., Biswas, P., Kore, S. D., & Rao, A. G. (2019). Tool performance evaluation of friction stir welded shipbuilding grade DH36 steel butt joints. The International Journal of Advanced Manufacturing Technology 103(5): 1989-2005. doi:10.1007/s00170-019-03618-0
  • Unt, A., Poutiainen, I., & Salminen, A. (2015). Influence of Filler Wire Feed Rate in Laser-Arc Hybrid Welding of T-butt Joint in Shipbuilding Steel with Different Optical Setups. Physics Procedia 78: 45-52. doi:https://doi.org/10.1016/j.phpro.2015.11.016
  • Wu, Y., Yuan, X., Kaldre, I., Zhong, M., Wang, Z., & Wang, C. (2023). TiO2-Assisted Microstructural Variations in the Weld Metal of EH36 Shipbuilding Steel Subject to High Heat Input Submerged Arc Welding. Metallurgical and Materials Transactions B 54(1): 50-55. doi:10.1007/s11663-022-02697-x
  • Xie, X., Zhao, T., Zhao, H., Li, S., & Wang, C. (2021). Heterogeneous Microstructure-Induced Mechanical Responses in Various Sub-Zones of EH420 Shipbuilding Steel Welded Joint Under High Heat Input Electro-Gas Welding. Acta Metallurgica Sinica (English Letters) 34(10): 1427-1433. doi:10.1007/s40195-021-01245-x
  • Yıldız, N. B., Gürol, U., Baykal, H., Koçak, M. (2023). Sualtında Birleştirilen AH36 Gemi Sacının Mikro Yapı ve Mekanik Özelliklerinin İncelenmesi. Mühendis Ve Makina, 64(710), 1-16. https://doi.org/10.46399/muhendismakina.1027899
  • Yılmaz, R., & Tümer, M. (2013). Microstructural studies and impact toughness of dissimilar weldments between AISI 316 L and AH36 steels by FCAW. The International Journal of Advanced Manufacturing Technology 67(5): 1433-1447. doi:10.1007/s00170-012-4579-0
  • Yuan, X., Wu, Y., Zhong, M., Basu, S., Wang, Z., & Wang, C. (2022). Profiling inclusion characteristics in submerged arc welded metals of EH36 shipbuilding steel treated by CaF2–TiO2 fluxes. Science and Technology of Welding and Joining 27(8): 683-690. doi:10.1080/13621718.2022.2095589
  • Yuan, X., Zhong, M., Wu, Y., & Wang, C. (2022). Characterizing Inclusions in the Weld Metal of EH36 Shipbuilding Steel Processed by CaF2-30 Wt Pct TiO2 Flux. Metallurgical and Materials Transactions B 53(2): 656-661. doi:10.1007/s11663-022-02455-z
  • Zhang, J., Leng, J., & Wang, C. (2019). Tuning Weld Metal Mechanical Responses via Welding Flux Optimization of TiO2 Content: Application into EH36 Shipbuilding Steel. Metallurgical and Materials Transactions B 50(5): 2083-2087. doi:10.1007/s11663-019-01645-6
  • Zhang, Y., Zhang, J., Liu, H., Wang, Z., & Wang, C. (2022). Addressing Weld Metal Compositional Variations in EH36 Shipbuilding Steel Processed by CaF2-SiO2-CaO-TiO2 Fluxes. Metallurgical and Materials Transactions B 53(3): 1329-1334. doi:10.1007/s11663-022-02480-y
  • Zhong, M., Jiang, L., Bai, H.-y., Basu, S., Wang, Z.-j., & Wang, C. (2023). Simulating molten pool features of shipbuilding steel subjected to submerged arc welding. Journal of Iron and Steel Research International 30(3): 569-579. doi:10.1007/s42243-022-00908-y
  • Zou, X.-d., Sun, J.-c., Zhao, D.-p., Matsuura, H., & Wang, C. (2018). Effects of Zr addition on evolution behavior of inclusions in EH36 shipbuilding steel: from casting to welding. Journal of Iron and Steel Research International 25(2): 164-172. doi:10.1007/s42243-018-0022-6
  • Zou, X., Sun, J., Matsuura, H., & Wang, C. (2020). Unravelling Microstructure Evolution and Grain Boundary Misorientation in Coarse-Grained Heat-Affected Zone of EH420 Shipbuilding Steel Subject to Varied Welding Heat Inputs. Metallurgical and Materials Transactions A 51(3): 1044-1050. doi:10.1007/s11661-019-05604-3
  • Zou, X., Zhao, D., Sun, J., Wang, C., & Matsuura, H. (2018). An Integrated Study on the Evolution of Inclusions in EH36 Shipbuilding Steel with Mg Addition: From Casting to Welding. Metallurgical and Materials Transactions B 49(2): 481-489. doi:10.1007/s11663-017-1163-x

Investigation Mechanical Properties of Weld Zone High Strength AH32 Shipbuilding Steel Joined by Shielded Metal Arc, Gas Metal Arc and Submerged Arc Welding Methods

Yıl 2024, Cilt: 14 Sayı: 4, 1873 - 1887, 15.12.2024
https://doi.org/10.31466/kfbd.1501344

Öz

Ships are built by joining steels of varying strength values using a welding method. While low-medium strength steels are advantageous in terms of low cost and easy supply, high strength steels provide a significant advantage in terms of being preferred in shipbuilding with the high strength values they offer. Examining the welding of steels used in shipbuilding reveals that while several welding techniques are employed, shielded metal arc welding (SMAW), submerged arc welding (SAW) and gas metal arc welding (GMAW) are most frequently used. Examination of the literature indicates that the aforementioned welding procedures have been employed relatively little in studies on the joining of high-strength steels used in ship construction. Also, it has been noted that no research has been done on the comparative analysis of the mechanical characteristics of such steels when they are joined using these 3 welding techniques. In this study, SMAW, GMAW, and SAW are used to join AH32 steel, which is often used in shipbuilding, and the mechanical characteristics of the welding areas are compared. Examinations revealed that SAW produced the greatest results in terms of bending force, hardness, strength, and impact toughness. Following GMAW, the best results were also obtained in terms of bending and tensile elongation.

Kaynakça

  • Ahmed, M. M. Z., El-Sayed Seleman, M. M., Touileb, K., Albaijan, I., & Habba, M. I. A. (2022). Microstructure, Crystallographic Texture, and Mechanical Properties of Friction Stir Welded Mild Steel for Shipbuilding Applications. Materials 15(8): 2905.
  • Cater, S., Martin, J., Galloway, A., & McPherson, N. (2016). Comparison between Friction Stir and Submerged Arc Welding Applied to Joining DH36 and E36 Shipbuilding Steel. In R. Mishra, M. W. Mahoney, Y. Sato, Y. Hovanski, & R. Verma (Eds.), Friction Stir Welding and Processing VII (pp. 49-58). Cham: Springer International Publishing.
  • Cho, K.-K., Sun, J.-G., & Oh, J.-S. (1999). An automated welding operation planning system for block assembly in shipbuilding. International Journal of Production Economics 60-61: 203-209. doi:https://doi.org/10.1016/S0925-5273(98)00151-0
  • Conte, R., Izquierdo, D.R. & Francesco, G. Submerged arc welding process: a numerical investigation of temperatures, displacements, and residual stresses in ASTM A516-Gr70 corner joined samples. Int J Adv Manuf Technol 127, 5437–5448 (2023). https://doi.org/10.1007/s00170-023-11908-x
  • Cunha, P. H. C. P. d., Lemos, G. V. B., Bergmann, L., Reguly, A., Santos, J. F. d., Marinho, R. R., & Paes, M. T. P. (2019). Effect of welding speed on friction stir welds of GL E36 shipbuilding steel. Journal of Materials Research and Technology 8(1): 1041-1051. doi:https://doi.org/10.1016/j.jmrt.2018.07.014
  • Çam, G., Yeni, Ç., Erim, S., Ventzke, V., & Koçak, M. (1998). Investigation into properties of laser welded similar and dissimilar steel joints. Sci. Technol. Weld. Join., 3 (4): 177-189. doi:https://doi.org/10.1179/stw.1998.3.4.177
  • Çam, G., Koçak, M., Dobi, D., Heikinheimo, L., & Siren, M. (1997). Fracture behaviour of diffusion bonded bimaterial Ti-Al joints. Sci. Technol. Weld. Join., 2 (3): 95-101. doi:https://doi.org/10.1179/stw.1997.2.3.95
  • Çolak, Z., Ayan, Y., & Kahraman, N. (2019). Gerçek deniz ortamında su altı kaynağı ile birleştirilen Grade AH36 gemi sacının kaynak bölgesinin karakterizasyonu. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 35(2), 775-786. https://doi.org/10.17341/gazimmfd.519055
  • Donizete Borba, T. M., Duarte Flores, W., de Oliveira Turani, L., & Cardoso Junior, R. (2017). Assessment of the Weldability of EH36 TMCP Shipbuilding Steel Welded by High Heat Input Submerged Arc Welding. Welding International 31(3): 184-195. doi:10.1080/09507116.2016.1218619
  • Ezer, M. & Çam, G. (2022). A Study on microstructure and mechanical performance of gas metal arc welded AISI 304L joints. Materialwissenschaft und Werkstofftechnik 53 (9): 1043-1052. doi:https://doi.org/10.1002/mawe.202200050
  • Görgün, E. (2024). Investigation of The Effect of SMAW Parameters On Properties of AH36 Joints And The Chemical Composition of Seawater. International Journal of Innovative Engineering Applications, 8(1), 28-36. https://doi.org/10.46460/ijiea.1418641
  • Hariprasath, P., Sivaraj, P., Balasubramanian, V., Pilli, S., & Sridhar, K. (2022). Effect of the welding technique on mechanical properties and metallurgical characteristics of the naval grade high strength low alloy steel joints produced by SMAW and GMAW. CIRP Journal of Manufacturing Science and Technology 37: 584-595. doi:https://doi.org/10.1016/j.cirpj.2022.03.007
  • Khamari, B. K., Dash, S. S., Karak, S. K., & Biswal, B. B. (2020). Effect of welding parameters on mechanical and microstructural properties of GMAW and SMAW mild steel joints. Ironmaking & Steelmaking 47(8): 844-851. doi:10.1080/03019233.2019.1623592
  • Kim, H., Kim, I., Kim, I., & Kang, B. (2008). Control of welding process for BV-AH 32 steel. Archives of Materials Science 46, 46.
  • Kim, J. H., Oh, Y. J., Hwang, I. S., Kim, D. J., & Kim, J. T. (2001). Fracture behavior of heat-affected zone in low alloy steels. Journal of Nuclear Materials, 299(2), 132-139. https://doi.org/10.1016/S0022-3115(01)00688-2
  • Konkol, P. J., Mathers, J. A., Johnson, R., & Pickens, J. R. (2003). Friction Stir Welding of HSLA-65 Steel for Shipbuilding. Journal of Ship Production 19(03): 159-164. doi:10.5957/jsp.2003.19.3.159
  • Lee, J. H., Park, S. H., Kwon, H. S., Kim, G. S., & Lee, C. S. (2014). Laser, tungsten inert gas, and metal active gas welding of DP780 steel: Comparison of hardness, tensile properties and fatigue resistance. Materials & Design 64: 559-565. doi:https://doi.org/10.1016/j.matdes.2014.07.065
  • Mahala, T. (2019). Gas Metal Arc Welding By Taguchi Technique. Journal of Emerging Technologies and Innovative Research 6 (3): 107-109
  • Mert, T., Bilgili, L., Senoz, K. M., Çelebi, U. B., & Ekinci, S. (2016). The Effect of Parameter Selection on Fume Formation Rate in SMAW of AH36 Shipbuilding Steel and Analysis with ANOVA Method. In P. Grammelis (Ed.), Energy, Transportation and Global Warming (pp. 795-802). Cham: Springer International Publishing.
  • Pankaj, P., Tiwari, A., Biswas, P., Rao, A. G., & Pal, S. (2020). Experimental studies on controlling of process parameters in dissimilar friction stir welding of DH36 shipbuilding steel–AISI 1008 steel. Welding in the World 64(6): 963-986. doi:10.1007/s40194-020-00886-3
  • Pratikno, H., Pahlawan, N. A., & Dhanista, W. L. (2021). Comparative Analysis of FCAW, and GMAW Welding With Heat Input Variations on A36 Steel Against Vickers Hardness Test and Macrostructure. International Journal of Offshore and Coastal Engineering (IJOCE) 5(2): 59-61
  • Ragu Nathan, S., Balasubramanian, V., Rao, A. G., Sonar, T., Ivanov, M., & Suganeswaran, K. (2023). Effect of tool rotational speed on microstructure and mechanical properties of friction stir welded DMR249A high strength low alloy steel butt joints for fabrication of light weight ship building structures. International Journal of Lightweight Materials and Manufacture 6(4): 469-482. doi:https://doi.org/10.1016/j.ijlmm.2023.05.004
  • Sekban, D. M., Aktarer, S. M., Xue, P., Ma, Z. Y., & Purcek, G. (2016). Impact toughness of friction stir processed low carbon steel used in shipbuilding. Materials Science and Engineering: A 672: 40-48. doi:https://doi.org/10.1016/j.msea.2016.06.063
  • Serindağ, H.T. & Çam, G. (2021). Microstructure and mechanical properties of gas metal arc welded AISI 430/AISI 304 dissimilar stainless steels butt joints. Journal of Physics: Conference Series, 1777: 012047. doi:https://doi.org/10.1088/1742-6596/1777/1/012047
  • Serindağ, H.T. & Çam, G. (2022). Multi-pass butt welding of thick AISI 316L plates by gas tungsten arc welding: Microstructural and mechanical characterization. International Journal of Pressure Vessels and Piping, 200: 104842. doi: https://doi.org/10.1016/j.ijpvp.2022.104842
  • Serindağ, H.T. & Çam, G. (2023). Characterizations of microstructure and properties of dissimilar AISI 316L/9Ni low alloy cryogenic steel joints fabricated by GTAW. Journal of Materials Engineering and Performance 32: 7039-7049. doi: https://doi.org/10.1007/s11665-022-07601-x
  • Serindağ, H.T., Tardu, C., Kirçiçek, I.Ö, & Çam, G. (2022). A study on microstructural and mechanical properties of gas tungsten arc welded thick cryogenic 9% Ni alloy steel butt joint. CIRP Journal of Manufacturing Science and Technology, 37: 1-10. doi:https://doi.org/10.1016/j.cirpj.2021.12.006
  • Soleymani, V. & Eghbali, B. (2012). Grain Refinement in a Low Carbon Steel Through Multidirectional Forging. Journal of Iron and Steel Research, International 19 (10): 74-78. https://doi.org/10.1016/S1006-706X(12)60155-1
  • Sönmez, U., & Ceyhun, V. (2014). Investigation of mechanical and microstructural properties of S 235 JR (ST 37-2) steels welded joints with FCAW. Kovove Materialy-Metallic Materials 52: 57-63
  • Şenol, M. & Çam, G. (2022). Investigation into microstructures and properties of AISI 430 ferritic steel butt joints fabricated by GMAW. International Journal of Pressure Vessels and Piping, 202: 104926. doi:https://doi.org/10.1016/j.ijpvp.2023.104926
  • Tiwari, A., Pankaj, P., Biswas, P., Kore, S. D., & Rao, A. G. (2019). Tool performance evaluation of friction stir welded shipbuilding grade DH36 steel butt joints. The International Journal of Advanced Manufacturing Technology 103(5): 1989-2005. doi:10.1007/s00170-019-03618-0
  • Unt, A., Poutiainen, I., & Salminen, A. (2015). Influence of Filler Wire Feed Rate in Laser-Arc Hybrid Welding of T-butt Joint in Shipbuilding Steel with Different Optical Setups. Physics Procedia 78: 45-52. doi:https://doi.org/10.1016/j.phpro.2015.11.016
  • Wu, Y., Yuan, X., Kaldre, I., Zhong, M., Wang, Z., & Wang, C. (2023). TiO2-Assisted Microstructural Variations in the Weld Metal of EH36 Shipbuilding Steel Subject to High Heat Input Submerged Arc Welding. Metallurgical and Materials Transactions B 54(1): 50-55. doi:10.1007/s11663-022-02697-x
  • Xie, X., Zhao, T., Zhao, H., Li, S., & Wang, C. (2021). Heterogeneous Microstructure-Induced Mechanical Responses in Various Sub-Zones of EH420 Shipbuilding Steel Welded Joint Under High Heat Input Electro-Gas Welding. Acta Metallurgica Sinica (English Letters) 34(10): 1427-1433. doi:10.1007/s40195-021-01245-x
  • Yıldız, N. B., Gürol, U., Baykal, H., Koçak, M. (2023). Sualtında Birleştirilen AH36 Gemi Sacının Mikro Yapı ve Mekanik Özelliklerinin İncelenmesi. Mühendis Ve Makina, 64(710), 1-16. https://doi.org/10.46399/muhendismakina.1027899
  • Yılmaz, R., & Tümer, M. (2013). Microstructural studies and impact toughness of dissimilar weldments between AISI 316 L and AH36 steels by FCAW. The International Journal of Advanced Manufacturing Technology 67(5): 1433-1447. doi:10.1007/s00170-012-4579-0
  • Yuan, X., Wu, Y., Zhong, M., Basu, S., Wang, Z., & Wang, C. (2022). Profiling inclusion characteristics in submerged arc welded metals of EH36 shipbuilding steel treated by CaF2–TiO2 fluxes. Science and Technology of Welding and Joining 27(8): 683-690. doi:10.1080/13621718.2022.2095589
  • Yuan, X., Zhong, M., Wu, Y., & Wang, C. (2022). Characterizing Inclusions in the Weld Metal of EH36 Shipbuilding Steel Processed by CaF2-30 Wt Pct TiO2 Flux. Metallurgical and Materials Transactions B 53(2): 656-661. doi:10.1007/s11663-022-02455-z
  • Zhang, J., Leng, J., & Wang, C. (2019). Tuning Weld Metal Mechanical Responses via Welding Flux Optimization of TiO2 Content: Application into EH36 Shipbuilding Steel. Metallurgical and Materials Transactions B 50(5): 2083-2087. doi:10.1007/s11663-019-01645-6
  • Zhang, Y., Zhang, J., Liu, H., Wang, Z., & Wang, C. (2022). Addressing Weld Metal Compositional Variations in EH36 Shipbuilding Steel Processed by CaF2-SiO2-CaO-TiO2 Fluxes. Metallurgical and Materials Transactions B 53(3): 1329-1334. doi:10.1007/s11663-022-02480-y
  • Zhong, M., Jiang, L., Bai, H.-y., Basu, S., Wang, Z.-j., & Wang, C. (2023). Simulating molten pool features of shipbuilding steel subjected to submerged arc welding. Journal of Iron and Steel Research International 30(3): 569-579. doi:10.1007/s42243-022-00908-y
  • Zou, X.-d., Sun, J.-c., Zhao, D.-p., Matsuura, H., & Wang, C. (2018). Effects of Zr addition on evolution behavior of inclusions in EH36 shipbuilding steel: from casting to welding. Journal of Iron and Steel Research International 25(2): 164-172. doi:10.1007/s42243-018-0022-6
  • Zou, X., Sun, J., Matsuura, H., & Wang, C. (2020). Unravelling Microstructure Evolution and Grain Boundary Misorientation in Coarse-Grained Heat-Affected Zone of EH420 Shipbuilding Steel Subject to Varied Welding Heat Inputs. Metallurgical and Materials Transactions A 51(3): 1044-1050. doi:10.1007/s11661-019-05604-3
  • Zou, X., Zhao, D., Sun, J., Wang, C., & Matsuura, H. (2018). An Integrated Study on the Evolution of Inclusions in EH36 Shipbuilding Steel with Mg Addition: From Casting to Welding. Metallurgical and Materials Transactions B 49(2): 481-489. doi:10.1007/s11663-017-1163-x
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Deniz Teknolojisi, Deniz Yapıları, Gemi İnşaatı
Bölüm Makaleler
Yazarlar

Dursun Murat Sekban 0000-0002-7493-1081

Haci Yildiz 0009-0000-7405-0746

Yayımlanma Tarihi 15 Aralık 2024
Gönderilme Tarihi 14 Haziran 2024
Kabul Tarihi 11 Kasım 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 14 Sayı: 4

Kaynak Göster

APA Sekban, D. M., & Yildiz, H. (2024). Investigation Mechanical Properties of Weld Zone High Strength AH32 Shipbuilding Steel Joined by Shielded Metal Arc, Gas Metal Arc and Submerged Arc Welding Methods. Karadeniz Fen Bilimleri Dergisi, 14(4), 1873-1887. https://doi.org/10.31466/kfbd.1501344