Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of Effects of Process Parameters on Coating and Wear Properties in Boriding of Inconel 718 Through Machine Learning Methods

Yıl 2024, Cilt: 14 Sayı: 4, 1929 - 1954, 15.12.2024
https://doi.org/10.31466/kfbd.1505889

Öz

Boronizing is an effective process that enhances the surface and wear properties of nickel-based superalloys. However, there is a need for a detailed understanding to optimize this process and improve coating quality. The primary objective of this study is to demonstrate the use of machine learning for optimizing boronizing process parameters and enhancing coating quality. Within the scope of the study, variations in coating thickness, surface roughness, microhardness, as well as the average coefficient of friction and wear volume loss at temperatures of 25, 400, and 750 °C were investigated in relation to boronizing temperature and duration. Initially, the most suitable machine learning algorithm was determined for each dependent variable, and three-dimensional surface graphs were generated using these algorithms to visualize the variations of dependent variables with boronizing temperature and duration. Upon examination of the graphs, it was observed that an increase in process temperature and duration led to an increase in coating thickness and hardness, along with an increase in surface roughness. The lowest coefficient of friction value (0.26) in friction tests conducted at room temperature and 750°C was found to be achieved within the 1000-1050 °C range with a process duration of 5-6 hours. When friction tests were conducted at 400°C, the lowest coefficient of friction (0.31) was determined to occur within the temperature range of 900-1000 °C and a process duration of 3-5 hours. Additionally, it was found that the effect of boronizing temperature on wear volume loss is more significant than that of the boronizing process duration.

Kaynakça

  • Bölükbaşı, Ö. S., Serindağ, T., Gürol, U., Günen, A., ve Çam, G. (2023). Improving oxidation resistance of wire arc additive manufactured Inconel 625 Ni-based superalloy by pack aluminizing. CIRP Journal of Manufacturing Science and Technology, 46, 89–97. https://doi.org/10.1016/j.cirpj.2023.07.011
  • Bourithis, L., Papaefthymiou, S., ve Papadimitriou, G. D. (2002). Plasma transferred arc boriding of a low carbon steel: microstructure and wear properties. Applied Surface Science, 200(1–4), 203–218. https://doi.org/10.1016/S0169-4332(02)00901-7
  • Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
  • Campos-Silva, I., Contla-Pacheco, A. D., Figueroa-López, U., Martínez-Trinidad, J., Garduño-Alva, A., & Ortega-Avilés, M. (2019). Sliding wear resistance of nickel boride layers on an Inconel 718 superalloy. Surface and Coatings Technology, 378, 124862. https://doi.org/10.1016/j.surfcoat.2019.06.099
  • Chen, T., ve Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–794. https://doi.org/10.1145/2939672.2939785
  • Çavdar, F., Günen, A., Kanca, E., Er, Y., Gök, M. S., Campos-Silva, I., ve Olivares-Luna, M. (2022). An Experimental and Statistical Analysis on Dry Sliding Wear Failure Behavior of Incoloy 825 at Elevated Temperatures. Journal of Materials Engineering and Performance, 1–24.
  • Deng, D. W., Wang, C. G., Liu, Q. Q., & Niu, T. T. (2015). Effect of standard heat treatment on microstructure and properties of borided Inconel 718. Transactions of Nonferrous Metals Society of China, 25(2), 437-443. https://doi.org/10.1016/S1003-6326(15)63621-4
  • Döleker, K. M., Erdogan, A., Yener, T., Karaoglanlı, A. C., Uzun, O., Gök, M. S., ve Zeytin, S. (2021). Enhancing the wear and oxidation behaviors of the Inconel 718 by low temperature aluminizing. Surface and Coatings Technology, 412, 127069. https://doi.org/10.1016/j.surfcoat.2021.127069
  • Donachie, M. J., ve Donachie, S. J. (2002). Superalloys: A Technical Guide, 2nd Edition. ASM International. https://books.google.com.tr/books?id=vjCJ5pI1QpkC
  • Eliasen, K. M., Christiansen, T. L., ve Somers, M. A. J. (2010). Low temperature gaseous nitriding of Ni based superalloys. Surface Engineering, 26(4), 248–255. https://doi.org/10.1179/026708409X12490360426043
  • Ganji, D. K., ve Rajyalakshmi, G. (2020). Influence of Alloying Compositions on the Properties of Nickel-Based Superalloys: A Review (pp. 537–555). https://doi.org/10.1007/978-981-15-1071-7_44
  • Géron, A. (2019). Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media. https://books.google.com.tr/books?id=HHetDwAAQBAJ
  • Girisken, I., ve Çam, G. (2023). Characterization of microstructure and high-temperature wear behavior of pack-borided Co-based Haynes 25 superalloy. CIRP Journal of Manufacturing Science and Technology, 45, 82–98. https://doi.org/10.1016/j.cirpj.2023.06.012
  • Günen, A. (2020). Properties and High Temperature Dry Sliding Wear Behavior of Boronized Inconel 718. Metallurgical and Materials Transactions A, 51(2), 927–939. https://doi.org/10.1007/s11661-019-05577-3
  • Günen, A., ve Ergin, Ö. (2023). A Comparative Study on Characterization and High-Temperature Wear Behaviors of Thermochemical Coatings Applied to Cobalt-Based Haynes 25 Superalloys. Coatings, 13(7), 1272. https://doi.org/10.3390/coatings13071272
  • Günen, A., ve Kanca, E. (2017). Characterization of borided Inconel 625 alloy with different boron chemicals. Pamukkale University Journal of Engineering Sciences, 23(4), 411–416. https://doi.org/10.5505/pajes.2017.56689
  • Günen, A., Kanca, Y., Karahan, İ. H., Karakaş, M. S., Gök, M. S., Kanca, E., ve Çürük, A. (2018). A Comparative Study on the Effects of Different Thermochemical Coating Techniques on Corrosion Resistance of STKM-13A Steel. Metallurgical and Materials Transactions A, 49(11), 5833–5847. https://doi.org/10.1007/s11661-018-4862-2
  • Günen, A., Keddam, M., Alkan, S., Erdoğan, A., ve Çetin, M. (2022). Microstructural characterization, boriding kinetics and tribo-wear behavior of borided Fe-based A286 superalloy. Materials Characterization, 186, 111778. https://doi.org/10.1016/j.matchar.2022.111778
  • James, G., Witten, D., Hastie, T., ve Tibshirani, R. (2021). An Introduction to Statistical Learning. Springer US. https://doi.org/10.1007/978-1-0716-1418-1
  • Kanca, Y., Uçgun, M. C., & Günen, A. (2023). Microstructural and tribological behavior of pack-borided Ni-based Hastelloy C-276 superalloy. Metallurgical and materials transactions A, 54(2), 671-687. https://doi.org/10.1007/s11661-022-06915-8
  • Karakaş, M. S., Günen, A., Kanca, E., & Yilmaz, E. (2018). Boride layer growth kinetics of AISI H13 steel borided with nano-sized powders. Archives of Metallurgy and Materials. https://doi.org/10.24425/118923
  • Kayalı, Y., Kanca, E., ve Günen, A. (2022). Effect of boronizing on microstructure, high-temperature wear and corrosion behavior of additive manufactured Inconel 718. Materials Characterization, 191, 112155. https://doi.org/10.1016/j.matchar.2022.112155
  • Mathew, M., ve Rajendrakumar, P. K. (2014). Effect of Precarburization on Growth Kinetics and Mechanical Properties of Borided Low-Carbon Steel. Materials and Manufacturing Processes, 29(9), 1073–1084. https://doi.org/10.1080/10426914.2014.901538
  • Meriç, C., Sahin, S., & Yilmaz, S. S. (2000). Investigation of the effect on boride layer of powder particle size used in boronizing with solid boron-yielding substances. Materials Research Bulletin, 35(13), 2165-2172. https://doi.org/10.1016/S0025-5408(00)00427-X
  • Müller, A. C., ve Guido, S. (2016). Introduction to Machine Learning with Python: A Guide for Data Scientists. O’Reilly Media. https://books.google.com.tr/books?id=1-4lDQAAQBAJ
  • Rai, A. K., Paul, C. P., Mishra, G. K., Singh, R., Rai, S. K., & Bindra, K. S. (2021). Study of microstructure and wear properties of laser borided Inconel 718. Journal of Materials Processing Technology, 298, 117298. https://doi.org/10.1016/j.jmatprotec.2021.117298
  • Reed, R. C. (2008). The Superalloys: Fundamentals and Applications. Cambridge University Press. https://books.google.com.tr/books?id=SgFiPwAACAAJ
  • Şahin, S. (2009). Effects of boronizing process on the surface roughness and dimensions of AISI 1020, AISI 1040 and AISI 2714. Journal of Materials Processing Technology, 209(4), 1736–1741. https://doi.org/10.1016/j.jmatprotec.2008.04.040
  • Sato, J., Omori, T., Oikawa, K., Ohnuma, I., Kainuma, R., ve Ishida, K. (2006). Cobalt-Base High-Temperature Alloys. Science, 312(5770), 90–91. https://doi.org/10.1126/science.1121738
  • Satyanarayana, D. V. V, ve Eswara Prasad, N. (2017). Nickel-Based Superalloys. In N. E. Prasad ve R. J. H. Wanhill (Eds.), Aerospace Materials and Material Technologies : Volume 1: Aerospace Materials (pp. 199–228). Springer Singapore. https://doi.org/10.1007/978-981-10-2134-3_9
  • Selvaraj, S. K., Sundaramali, G., Jithin Dev, S., Srii Swathish, R., Karthikeyan, R., Vijay Vishaal, K. E., ve Paramasivam, V. (2021). Recent Advancements in the Field of Ni-Based Superalloys. Advances in Materials Science and Engineering, 2021, 1–60. https://doi.org/10.1155/2021/9723450
  • Tang, Z., Yang, C., Duan, Y., Ma, L., Zheng, S., Peng, M., & Li, M. (2024). Effects of boriding and aluminizing on the electrochemical and wear behavior of IN-718 nickel-based alloy. Surface and Coatings Technology, 494, 131314. https://doi.org/10.1016/j.surfcoat.2024.131314
  • Tuncay Turan, Hasan Güleryüz, ve Hüseyin Çimenoğlu. (2019). Effect of Nitriding on Surface Characteristics and High Temperature Wear Behaviour of Inconel 718 Superalloy. UDCS’19 Fourth International Iron and Steel Symposium, 379–382.
  • Turgut, S., ve Günen, A. (2020). Mechanical Properties and Corrosion Resistance of Borosintered Distaloy Steels. Journal of Materials Engineering and Performance, 29(11), 6997–7010. https://doi.org/10.1007/s11665-020-05186-x
  • Wade, C., ve Glynn, K. (2020). Hands-On Gradient Boosting with XGBoost and Scikit-learn: Perform Accessible Machine Learning and Extreme Gradient Boosting with Python. Packt Publishing, Limited. https://books.google.com.tr/books?id=jqrRzQEACAAJ
  • Wu, Z., Liu, Y., Shao, M., Wang, J., Li, Y., Peng, J., ... & Chen, S. (2025). Insights into the microstructure and load-dependent wear characteristics of the boride layer on Inconel 718 alloy. Tribology International, 202, 110298. https://doi.org/10.1016/j.triboint.2024.110298

Inconel 718 Malzemenin Borlanmasında İşlem Parametrelerinin Kaplama ve Aşınma Özelliklerine Etkisinin Makine Öğrenmesi Yöntemleri Kullanılarak Araştırılması

Yıl 2024, Cilt: 14 Sayı: 4, 1929 - 1954, 15.12.2024
https://doi.org/10.31466/kfbd.1505889

Öz

Borlama, nikel esaslı süper alaşımların yüzey ve aşınma özelliklerini iyileştiren etkili bir işlemdir. Ancak, bu işlemin optimize edilmesi ve kaplama kalitesinin arttırılması için detaylı bir anlayışın gerekliliği ortaya çıkmaktadır. Çalışmanın temel amacı, borlama işlem parametrelerinin optimize edilmesi ve kaplama kalitesinin arttırılması için makine öğrenmesi kullanımını ortaya koymaktır. Çalışma kapsamında, kaplama kalınlığı, yüzey pürüzlülüğü, mikrosertlik gibi özellikler yanında 25, 400 ve 750 °C sıcaklık şartlarındaki ortalama sürtünme katsayısı ve aşınma hacim kaybının borlama sıcaklığı ve süresine bağlı değişimi incelenmiştir. Çalışmada öncelikle her bağımlı değişken için en uygun makine öğrenmesi algoritması belirlenmiş ve bu algoritmalar kullanılarak oluşturulan üç boyutlu yüzey grafikleri yardımıyla bağımlı değişkenlerin borlama sıcaklığı ve süresi ile değişimi görselleştirilmiştir. Grafikler üzerinde yapılan incelemeler sonucunda işlem sıcaklığı ve süresinin artmasıyla kaplama kalınlığı ve sertliğiyle birlikte yüzey pürüzlülüğünün de arttığı görülmüştür. Oda sıcaklığında ve 750 C’de yapılan aşınma deneylerinde sürtünme katsayısının en düşük değerinin (0,26) 1000-1050 °C arasında 5-6 saat aralığındaki işlem süresinde 0,26 elde edileceği saptanmıştır. Aşınma testlerinin 400 °C’de yapılması durumunda ise en düşük sürtünme katsayısının 900-1000 °C sıcaklık ve 3-5 saat işlem süresi aralığında (0,31) olacağı tespit edilmiştir. Ek olarak borlama sıcaklığın aşınma hacim kaybı üzerindeki etkisinin borlama işlem süresinden daha fazla olduğu tespit edilmiştir.

Etik Beyan

Yapılan çalışmada araştırma ve yayın etiğine uyulmuştur.

Destekleyen Kurum

Destekleyen kurum bulunmamaktadır.

Kaynakça

  • Bölükbaşı, Ö. S., Serindağ, T., Gürol, U., Günen, A., ve Çam, G. (2023). Improving oxidation resistance of wire arc additive manufactured Inconel 625 Ni-based superalloy by pack aluminizing. CIRP Journal of Manufacturing Science and Technology, 46, 89–97. https://doi.org/10.1016/j.cirpj.2023.07.011
  • Bourithis, L., Papaefthymiou, S., ve Papadimitriou, G. D. (2002). Plasma transferred arc boriding of a low carbon steel: microstructure and wear properties. Applied Surface Science, 200(1–4), 203–218. https://doi.org/10.1016/S0169-4332(02)00901-7
  • Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
  • Campos-Silva, I., Contla-Pacheco, A. D., Figueroa-López, U., Martínez-Trinidad, J., Garduño-Alva, A., & Ortega-Avilés, M. (2019). Sliding wear resistance of nickel boride layers on an Inconel 718 superalloy. Surface and Coatings Technology, 378, 124862. https://doi.org/10.1016/j.surfcoat.2019.06.099
  • Chen, T., ve Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–794. https://doi.org/10.1145/2939672.2939785
  • Çavdar, F., Günen, A., Kanca, E., Er, Y., Gök, M. S., Campos-Silva, I., ve Olivares-Luna, M. (2022). An Experimental and Statistical Analysis on Dry Sliding Wear Failure Behavior of Incoloy 825 at Elevated Temperatures. Journal of Materials Engineering and Performance, 1–24.
  • Deng, D. W., Wang, C. G., Liu, Q. Q., & Niu, T. T. (2015). Effect of standard heat treatment on microstructure and properties of borided Inconel 718. Transactions of Nonferrous Metals Society of China, 25(2), 437-443. https://doi.org/10.1016/S1003-6326(15)63621-4
  • Döleker, K. M., Erdogan, A., Yener, T., Karaoglanlı, A. C., Uzun, O., Gök, M. S., ve Zeytin, S. (2021). Enhancing the wear and oxidation behaviors of the Inconel 718 by low temperature aluminizing. Surface and Coatings Technology, 412, 127069. https://doi.org/10.1016/j.surfcoat.2021.127069
  • Donachie, M. J., ve Donachie, S. J. (2002). Superalloys: A Technical Guide, 2nd Edition. ASM International. https://books.google.com.tr/books?id=vjCJ5pI1QpkC
  • Eliasen, K. M., Christiansen, T. L., ve Somers, M. A. J. (2010). Low temperature gaseous nitriding of Ni based superalloys. Surface Engineering, 26(4), 248–255. https://doi.org/10.1179/026708409X12490360426043
  • Ganji, D. K., ve Rajyalakshmi, G. (2020). Influence of Alloying Compositions on the Properties of Nickel-Based Superalloys: A Review (pp. 537–555). https://doi.org/10.1007/978-981-15-1071-7_44
  • Géron, A. (2019). Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media. https://books.google.com.tr/books?id=HHetDwAAQBAJ
  • Girisken, I., ve Çam, G. (2023). Characterization of microstructure and high-temperature wear behavior of pack-borided Co-based Haynes 25 superalloy. CIRP Journal of Manufacturing Science and Technology, 45, 82–98. https://doi.org/10.1016/j.cirpj.2023.06.012
  • Günen, A. (2020). Properties and High Temperature Dry Sliding Wear Behavior of Boronized Inconel 718. Metallurgical and Materials Transactions A, 51(2), 927–939. https://doi.org/10.1007/s11661-019-05577-3
  • Günen, A., ve Ergin, Ö. (2023). A Comparative Study on Characterization and High-Temperature Wear Behaviors of Thermochemical Coatings Applied to Cobalt-Based Haynes 25 Superalloys. Coatings, 13(7), 1272. https://doi.org/10.3390/coatings13071272
  • Günen, A., ve Kanca, E. (2017). Characterization of borided Inconel 625 alloy with different boron chemicals. Pamukkale University Journal of Engineering Sciences, 23(4), 411–416. https://doi.org/10.5505/pajes.2017.56689
  • Günen, A., Kanca, Y., Karahan, İ. H., Karakaş, M. S., Gök, M. S., Kanca, E., ve Çürük, A. (2018). A Comparative Study on the Effects of Different Thermochemical Coating Techniques on Corrosion Resistance of STKM-13A Steel. Metallurgical and Materials Transactions A, 49(11), 5833–5847. https://doi.org/10.1007/s11661-018-4862-2
  • Günen, A., Keddam, M., Alkan, S., Erdoğan, A., ve Çetin, M. (2022). Microstructural characterization, boriding kinetics and tribo-wear behavior of borided Fe-based A286 superalloy. Materials Characterization, 186, 111778. https://doi.org/10.1016/j.matchar.2022.111778
  • James, G., Witten, D., Hastie, T., ve Tibshirani, R. (2021). An Introduction to Statistical Learning. Springer US. https://doi.org/10.1007/978-1-0716-1418-1
  • Kanca, Y., Uçgun, M. C., & Günen, A. (2023). Microstructural and tribological behavior of pack-borided Ni-based Hastelloy C-276 superalloy. Metallurgical and materials transactions A, 54(2), 671-687. https://doi.org/10.1007/s11661-022-06915-8
  • Karakaş, M. S., Günen, A., Kanca, E., & Yilmaz, E. (2018). Boride layer growth kinetics of AISI H13 steel borided with nano-sized powders. Archives of Metallurgy and Materials. https://doi.org/10.24425/118923
  • Kayalı, Y., Kanca, E., ve Günen, A. (2022). Effect of boronizing on microstructure, high-temperature wear and corrosion behavior of additive manufactured Inconel 718. Materials Characterization, 191, 112155. https://doi.org/10.1016/j.matchar.2022.112155
  • Mathew, M., ve Rajendrakumar, P. K. (2014). Effect of Precarburization on Growth Kinetics and Mechanical Properties of Borided Low-Carbon Steel. Materials and Manufacturing Processes, 29(9), 1073–1084. https://doi.org/10.1080/10426914.2014.901538
  • Meriç, C., Sahin, S., & Yilmaz, S. S. (2000). Investigation of the effect on boride layer of powder particle size used in boronizing with solid boron-yielding substances. Materials Research Bulletin, 35(13), 2165-2172. https://doi.org/10.1016/S0025-5408(00)00427-X
  • Müller, A. C., ve Guido, S. (2016). Introduction to Machine Learning with Python: A Guide for Data Scientists. O’Reilly Media. https://books.google.com.tr/books?id=1-4lDQAAQBAJ
  • Rai, A. K., Paul, C. P., Mishra, G. K., Singh, R., Rai, S. K., & Bindra, K. S. (2021). Study of microstructure and wear properties of laser borided Inconel 718. Journal of Materials Processing Technology, 298, 117298. https://doi.org/10.1016/j.jmatprotec.2021.117298
  • Reed, R. C. (2008). The Superalloys: Fundamentals and Applications. Cambridge University Press. https://books.google.com.tr/books?id=SgFiPwAACAAJ
  • Şahin, S. (2009). Effects of boronizing process on the surface roughness and dimensions of AISI 1020, AISI 1040 and AISI 2714. Journal of Materials Processing Technology, 209(4), 1736–1741. https://doi.org/10.1016/j.jmatprotec.2008.04.040
  • Sato, J., Omori, T., Oikawa, K., Ohnuma, I., Kainuma, R., ve Ishida, K. (2006). Cobalt-Base High-Temperature Alloys. Science, 312(5770), 90–91. https://doi.org/10.1126/science.1121738
  • Satyanarayana, D. V. V, ve Eswara Prasad, N. (2017). Nickel-Based Superalloys. In N. E. Prasad ve R. J. H. Wanhill (Eds.), Aerospace Materials and Material Technologies : Volume 1: Aerospace Materials (pp. 199–228). Springer Singapore. https://doi.org/10.1007/978-981-10-2134-3_9
  • Selvaraj, S. K., Sundaramali, G., Jithin Dev, S., Srii Swathish, R., Karthikeyan, R., Vijay Vishaal, K. E., ve Paramasivam, V. (2021). Recent Advancements in the Field of Ni-Based Superalloys. Advances in Materials Science and Engineering, 2021, 1–60. https://doi.org/10.1155/2021/9723450
  • Tang, Z., Yang, C., Duan, Y., Ma, L., Zheng, S., Peng, M., & Li, M. (2024). Effects of boriding and aluminizing on the electrochemical and wear behavior of IN-718 nickel-based alloy. Surface and Coatings Technology, 494, 131314. https://doi.org/10.1016/j.surfcoat.2024.131314
  • Tuncay Turan, Hasan Güleryüz, ve Hüseyin Çimenoğlu. (2019). Effect of Nitriding on Surface Characteristics and High Temperature Wear Behaviour of Inconel 718 Superalloy. UDCS’19 Fourth International Iron and Steel Symposium, 379–382.
  • Turgut, S., ve Günen, A. (2020). Mechanical Properties and Corrosion Resistance of Borosintered Distaloy Steels. Journal of Materials Engineering and Performance, 29(11), 6997–7010. https://doi.org/10.1007/s11665-020-05186-x
  • Wade, C., ve Glynn, K. (2020). Hands-On Gradient Boosting with XGBoost and Scikit-learn: Perform Accessible Machine Learning and Extreme Gradient Boosting with Python. Packt Publishing, Limited. https://books.google.com.tr/books?id=jqrRzQEACAAJ
  • Wu, Z., Liu, Y., Shao, M., Wang, J., Li, Y., Peng, J., ... & Chen, S. (2025). Insights into the microstructure and load-dependent wear characteristics of the boride layer on Inconel 718 alloy. Tribology International, 202, 110298. https://doi.org/10.1016/j.triboint.2024.110298
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliğinde Optimizasyon Teknikleri, Malzeme Tasarım ve Davranışları, Sayısal Modelleme ve Mekanik Karakterizasyon, Kaplama Teknolojisi
Bölüm Makaleler
Yazarlar

Faruk Çavdar 0000-0002-4981-6428

Ali Günen 0000-0002-4101-9520

Yayımlanma Tarihi 15 Aralık 2024
Gönderilme Tarihi 27 Haziran 2024
Kabul Tarihi 9 Kasım 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 14 Sayı: 4

Kaynak Göster

APA Çavdar, F., & Günen, A. (2024). Inconel 718 Malzemenin Borlanmasında İşlem Parametrelerinin Kaplama ve Aşınma Özelliklerine Etkisinin Makine Öğrenmesi Yöntemleri Kullanılarak Araştırılması. Karadeniz Fen Bilimleri Dergisi, 14(4), 1929-1954. https://doi.org/10.31466/kfbd.1505889