Araştırma Makalesi
BibTex RIS Kaynak Göster

Araç Uygulamalarında Kullanılan Hibrit Sistemler için PEM Yakıt Pillerinin Elektrokimyasal Modellenmesi

Yıl 2024, Cilt: 14 Sayı: 4, 2190 - 2215, 15.12.2024
https://doi.org/10.31466/kfbd.1540148

Öz

Bu makale, Proton Değişim Membranlı Yakıt Hücresini (Proton Exchange Membrane Fuel Cell - PEMFC) ve araç dinamiği modeli kullanan hibrit sisteme dayalı olarak yakıt hücreli araca enerji sağlayan hibrit güç sisteminin matematiksel modellenmesine odaklanmaktadır. PEMFC’nin performansı; sıcaklık, membran kalınlığı, basınç ve nem gibi birçok farklı çalışma parametrelerinden büyük ölçüde etkilenir. Bu çalışmada, araç uygulamaları için önerilen hibrit sistemlerde 150 hücreli PEMFC yığınının elektrokimyasal modellenmesi ele alınmıştır. PEMFC’nin matematiksel modeli basitleştirilmiş varsayımlara ve yarı ampirik denklemlere dayanmaktadır. Ancak bu yaklaşımlar PEMFC’de meydana gelen temel kimyasal ve fiziksel etkileşimlere dayanarak kullanılmaktadır. Hibrit sistemler için PEMFC’nin polarizasyon eğrileri tartışılmış ve matematiksel modelin sonuçları farklı parametreler ile karşılaştırılmıştır. Önerilen elektrokimyasal modelde, sabit basınçta çalışma sıcaklığının artması ve membran kalınlığının azalmasıyla birlikte PEMFC yığının performansında bir iyileşme olduğu belirlenmiştir. Geliştirilen matematiksel model, bu koşullar altında PEMFC yığın performansını makul bir doğrulukla tahmin ederek hibrit araçların enerji yönetim sistemlerinin daha etkin ve verimli bir şekilde tasarlanmasına yardımcı olabilir.

Teşekkür

Bulut HÜNER bu yayını Türkiye Cumhuriyeti’nin 100. yılına ithaf etmiştir.

Kaynakça

  • Ahmadi, P., Torabi, S. H., Afsaneh, H., Sadegheih, Y., Ganjehsarabi, H., and Ashjaee, M. (2020). The effects of driving patterns and PEM fuel cell degradation on the lifecycle assessment of hydrogen fuel cell vehicles. International Journal of Hydrogen Energy, 45(5), 3595-3608.
  • Ahmadi, S., Bathaee, S., and Hosseinpour, A. H. (2018). Improving fuel economy and performance of a fuel-cell hybrid electric vehicle (fuel-cell, battery, and ultra-capacitor) using optimized energy management strategy. Energy Conversion and Management, 160, 74-84.
  • Akroot, A., Ekici, Ö., and Köksal, M. (2019). Process modeling of an automotive pem fuel cell system. International Journal of Green Energy, 16(10), 778-788.
  • Andari, W., Ghozzi, S., Allagui, H., and Mami, A. (2017). Design, modeling and energy management of a PEM fuel cell/supercapacitor hybrid vehicle. International Journal of Advanced Computer Science and Applications, 8(1), 273-278.
  • Asiaban, S., Bozalakov, D., and Vandevelde, L. (2024). Development of a dynamic mathematical model of PEM electrolyser for integration into large-scale power systems. Energy Conversion and Management: X, 23, 100610.
  • Ayyarao, T. S., Polumahanthi, N., and Khan, B. (2024). An accurate parameter estimation of PEM fuel cell using war strategy optimization. Energy, 290, 130235.
  • Baroutaji, A., Arjunan, A., Ramadan, M., Robinson, J., Alaswad, A., Abdelkareem, M. A., and Olabi, A.-G. (2021). Advancements and prospects of thermal management and waste heat recovery of PEMFC. International Journal of Thermofluids, 9, 100064.
  • Biberci, M. A., and Celik, M. B. (2020). Dynamic Modeling and Simulation of a PEM Fuel Cell (PEMFC) during an Automotive Vehicle’s Driving Cycle. Engineering, Technology & Applied Science Research, 10(3), 5796-5802.
  • Boyacıoğlu, N. M., Kocakulak, T., Batar, M., Uyumaz, A., and Solmaz, H. (2023). Modeling and Control of a PEM Fuel Cell Hybrid Energy System Used in a Vehicle with Fuzzy Logic Method. International Journal of Automotive Science And Technology, 7(4), 295-308.
  • Chen, Y., and Wang, N. (2019). Cuckoo search algorithm with explosion operator for modeling proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 44(5), 3075-3087.
  • Chugh, S., Chaudhari, C., Sonkar, K., Sharma, A., Kapur, G., and Ramakumar, S. (2020). Experimental and modelling studies of low temperature PEMFC performance. International Journal of Hydrogen Energy, 45(15), 8866-8874.
  • Dakurah, J. E., Solmaz, H., and Kocakulak, T. (2024). Modeling of a PEM Fuel Cell Electric Bus with MATLAB/Simulink. Automotive Experiences, 7(2).
  • Donkers, A., Yang, D., and Viktorović, M. (2020). Influence of driving style, infrastructure, weather and traffic on electric vehicle performance. Transportation Research Part D: Transport and Environment, 88, 102569.
  • Dreizler, A., Pitsch, H., Scherer, V., Schulz, C., and Janicka, J. (2021). The role of combustion science and technology in low and zero impact energy transformation processes. Applications in Energy and Combustion Science, 7, 100040.
  • Haddad, A., Mannah, M., & Bazzi, H. (2015). Nonlinear time-variant model of the PEM type fuel cell for automotive applications. Simulation Modelling Practice and Theory, 51, 31-44.
  • Hassan, Q., Viktor, P., Al-Musawi, T. J., Ali, B. M., Algburi, S., Alzoubi, H. M., Al-Jiboory, A. K., Sameen, A. Z., Salman, H. M., and Jaszczur, M. (2024). The renewable energy role in the global energy transformations. Renewable Energy Focus, 48, 100545.
  • Hosseinzadeh, E., Rokni, M., Rabbani, A., and Mortensen, H. H. (2013). Thermal and water management of low temperature proton exchange membrane fuel cell in fork-lift truck power system. Applied Energy, 104, 434-444.
  • Hou, X., Sun, R., Huang, J., Geng, W., Li, X., Wang, L., and Zhang, X. (2024). Energy, economic, and environmental analysis: A study of operational strategies for combined heat and power system based on PEM fuel cell in the East China region. Renewable Energy, 223, 120023.
  • Hüner, B., and Telli, E. (2023). Design and performance analysis of a green house based on hybrid and passive energy systems: A case study. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 45(4), 12859-12879.
  • Igourzal, A., Auger, F., Olivier, J.-C., and Retière, C. (2024). Electrical, thermal and degradation modelling of PEMFCs for naval applications. Mathematics and Computers in Simulation, 224, 34-49.
  • Ijaodola, O., El-Hassan, Z., Ogungbemi, E., Khatib, F., Wilberforce, T., Thompson, J., and Olabi, A. (2019). Energy efficiency improvements by investigating the water flooding management on proton exchange membrane fuel cell (PEMFC). Energy, 179, 246-267.
  • İnci, M. (2024). Connecting multiple vehicular PEM fuel cells to electrical power grid as alternative energy sources: A Case Study. International Journal of Hydrogen Energy, 52, 1035-1051.
  • Işıklı, F., Sürmen, A., and Gelen, A. (2021). Modelling and performance analysis of an electric vehicle powered by a PEM fuel cell on New European Driving Cycle (NEDC). Arabian Journal for Science and Engineering, 46(8), 7597-7609.
  • Jia, J., Li, Q., Wang, Y., Cham, Y., and Han, M. (2009). Modeling and dynamic characteristic simulation of a proton exchange membrane fuel cell. IEEE Transactions on Energy Conversion, 24(1), 283-291.
  • Jiang, F., Yuan, X., Hu, L., Xie, G., Zhang, Z., Li, X., Hu, J., Wang, C., and Wang, H. (2024). A comprehensive review of energy storage technology development and application for pure electric vehicles. Journal of Energy Storage, 86, 111159.
  • Jiang, S., Wang, C., Zhang, C., Bai, H., and Xu, L. (2019). Adaptive estimation of road slope and vehicle mass of fuel cell vehicle. ETransportation, 2, 100023.
  • Jiang, Y., Zhang, X., and Huang, L. (2023). Analysis on pressure anomaly within PEMFC stack based on semi-empirical and flow network models. International Journal of Hydrogen Energy, 48(8), 3188-3203.
  • Kahveci, O. (2022). Antimony and boron support to aluminum's hydrolysis performance and an application of PEM fuel cell. Fuel, 324, 124782.
  • Kahveci, O., and Kaya, M. F. (2022a). Hydrogen production from Al–Cu alloy using electric vehicle's waste DC motor coils. International Journal of Hydrogen Energy, 47(24), 12179-12188.
  • Kahveci, O., and Kaya, M. F. (2022b). W-Ir Alaşım Schottky Engel Diyotların Performansının Sonlu Elemanlar Metoduyla İncelenmesi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 38(2), 357-370.
  • Kandidayeni, M., Macias, A., Khalatbarisoltani, A., Boulon, L., and Kelouwani, S. (2019). Benchmark of proton exchange membrane fuel cell parameters extraction with metaheuristic optimization algorithms. Energy, 183, 912-925.
  • Kaya, K., and Hames, Y. (2019). Two new control strategies: For hydrogen fuel saving and extend the life cycle in the hydrogen fuel cell vehicles. International Journal of Hydrogen Energy, 44(34), 18967-18980.
  • Luciani, S., and Tonoli, A. (2022). Control strategy assessment for improving PEM fuel cell system efficiency in fuel cell hybrid vehicles. Energies, 15(6), 2004.
  • Mann, R. F., Amphlett, J. C., Hooper, M. A., Jensen, H. M., Peppley, B. A., and Roberge, P. R. (2000). Development and application of a generalised steady-state electrochemical model for a PEM fuel cell. Journal of Power Sources, 86(1-2), 173-180.
  • Mert, S., Dincer, I., and Ozcelik, Z. (2012). Performance investigation of a transportation PEM fuel cell system. International Journal of Hydrogen Energy, 37(1), 623-633.
  • Miao, D., Chen, W., Zhao, W., and Demsas, T. (2020). Parameter estimation of PEM fuel cells employing the hybrid grey wolf optimization method. Energy, 193, 116616.
  • Mogorosi, K., Oladiran, M. T., and Rakgati, E. (2020). Mathematical modelling and experimental investigation of a low temperature proton exchange membrane fuel cell. Energy and Power Engineering, 12(11), 653.
  • Mulach, J. (2024). Toyota Mirai price cut by 60 per cent as hydrogen demand dies. Retrieved from https://www.canberratimes.com.au/story/8539771/toyota-mirai-price-cut-by-60-per-cent-as-hydrogen-demand-dies/
  • Niya, S. M. R., and Hoorfar, M. (2014, July). Determination of Activation losses in proton exchange membrane fuel cells. International Conference on Fuel Cell Science, Engineering and Technology (s. 1-4). Boston, USA.
  • Ogungbemi, E., Ijaodola, O., Khatib, F. N., Wilberforce, T., El Hassan, Z., Thompson, J., Ramadan, M., and Olabi, A. G. (2019). Fuel cell membranes–Pros and cons. Energy, 172, 155-172.
  • Olabi, A. G., Wilberforce, T., and Abdelkareem, M. A. (2021). Fuel cell application in the automotive industry and future perspective. Energy, 214, 118955.
  • Omran, A., Lucchesi, A., Smith, D., Alaswad, A., Amiri, A., Wilberforce, T., Sodre J. R., and Olabi, A. (2021). Mathematical model of a proton-exchange membrane (PEM) fuel cell. International Journal of Thermofluids, 11, 100110.
  • Outeiro, M., Chibante, R., Carvalho, A., and De Almeida, A. (2008). A parameter optimized model of a proton exchange membrane fuel cell including temperature effects. Journal of Power Sources, 185(2), 952-960.
  • Özdoğan, E., Hüner, B., Süzen, Y. O., Eşiyok, T., Uzgören, İ. N., Kıstı, M., Uysal, S., Selçuklu, S. B., Demir, N., and Kaya, M. F. (2023). Effects of tank heating on hydrogen release from metal hydride system in VoltaFCEV Fuel Cell Electric Vehicle. International Journal of Hydrogen Energy, 48(18), 6811-6823.
  • Paraschiv, L. S., and Paraschiv, S. (2023). Contribution of renewable energy (hydro, wind, solar and biomass) to decarbonization and transformation of the electricity generation sector for sustainable development. Energy Reports, 9, 535-544.
  • Qin, Y., Du, Q., Fan, M., Chang, Y., and Yin, Y. (2017). Study on the operating pressure effect on the performance of a proton exchange membrane fuel cell power system. Energy Conversion and Management, 142, 357-365.
  • Rezk, H., Olabi, A., Ferahtia, S., and Sayed, E. T. (2022). Accurate parameter estimation methodology applied to model proton exchange membrane fuel cell. Energy, 255, 124454.
  • Sun, G., Park, S., and Lin, Z. (2019). Modeling and Simulation of PEM Fuel Cell/Battery Hybrid Vehicle. Journal of System Simulation, 30(12), 4816-4824.
  • Sun, Z., Wang, Y., and Chen, Z. (2023). Coordination control strategy for PEM fuel cell system considering vehicle velocity prediction information. ETransportation, 18, 100287.
  • Tzelepis, S., Kavadias, K. A., Marnellos, G. E., and Xydis, G. (2021). A review study on proton exchange membrane fuel cell electrochemical performance focusing on anode and cathode catalyst layer modelling at macroscopic level. Renewable and Sustainable Energy Reviews, 151, 111543.
  • Usmanov, U., Ruzimov, S., Tonoli, A., and Mukhitdinov, A. (2023). Modeling, simulation and control strategy optimization of fuel cell hybrid electric vehicle. Vehicles, 5(2), 464-481.
  • Veerendra, A. S., Mohamed, M. R., Leung, P. K., and Shah, A. A. (2021). Hybrid power management for fuel cell/supercapacitor series hybrid electric vehicle. International Journal of Green Energy, 18(2), 128-143.
  • Vichard, L., Steiner, N. Y., Zerhouni, N., and Hissel, D. (2021). Hybrid fuel cell system degradation modeling methods: A comprehensive review. Journal of Power Sources, 506, 230071.
  • Waloyo, H. T., Nizam, M., and Saidi, H. (2018, October). Model-based simulation for hybrid fuel cell/battery/ultracapacitor electric vehicle. 5th International Conference on Electric Vehicular Technology (ICEVT) (s. 112-115). Surakarta, Indonesia.
  • Xing, L., Xiang, W., Zhu, R., and Tu, Z. (2022). Modeling and thermal management of proton exchange membrane fuel cell for fuel cell/battery hybrid automotive vehicle. International Journal of Hydrogen Energy, 47(3), 1888-1900.
  • Xu, J., Zhang, C., Fan, R., Bao, H., Wang, Y., Huang, S., Chin, C. S., and Li, C. (2020). Modelling and control of vehicle integrated thermal management system of PEM fuel cell vehicle. Energy, 199, 117495.
  • Yang, Q., Zeng, T., Zhang, C., Zhou, W., Xu, L., Zhou, J., Jiang, P., and Jiang, S. (2023). Modeling and simulation of vehicle integrated thermal management system for a fuel cell hybrid vehicle. Energy Conversion and Management, 278, 116745.
  • Zeng, T., Zhang, C., Zhang, Y., Deng, C., Hao, D., Zhu, Z., Ran, H., and Cao, D. (2021). Optimization-oriented adaptive equivalent consumption minimization strategy based on short-term demand power prediction for fuel cell hybrid vehicle. Energy, 227, 120305.
  • Zhao, J., Li, X., Shum, C., and McPhee, J. (2021). A review of physics-based and data-driven models for real-time control of polymer electrolyte membrane fuel cells. Energy and AI, 6, 100114.
  • Zhao, Y., Luo, M., Yang, J., Chen, B., and Sui, P.-C. (2024). Numerical analysis of PEMFC stack performance degradation using an empirical approach. International Journal of Hydrogen Energy, 56, 147-163.

Electrochemical Modeling of PEM Fuel Cells for Hybrid Systems Used in Vehicle Applications

Yıl 2024, Cilt: 14 Sayı: 4, 2190 - 2215, 15.12.2024
https://doi.org/10.31466/kfbd.1540148

Öz

This manuscript focuses on the mathematical modeling of fuel cell vehicles based on a hybrid power system using Proton Exchange Membrane Fuel Cell (PEMFC) and vehicle dynamics model. The performance of a PEMFC is greatly affected by many different operating parameters such as temperature, membrane thickness, pressure, and humidity. This study addresses the electrochemical modeling of a 150-cell PEMFC stack in hybrid systems proposed for vehicle applications. The mathematical model of PEMFCs depends on simplified assumptions and semi-empirical equations. However, these approaches are used depending on the basic chemical and physical interactions occurring in PEMFC. Polarization curves of PEMFC for hybrid systems are discussed and the results of the mathematical model are compared with different parameters. In the proposed electrochemical model, it is observed that there is an advancement in the performance of the PEMFC stack with an increase in operating temperature at constant pressure and a decrease in membrane thickness. The developed mathematical model can predict the performance of the PEMFC stack under these conditions with reasonable accuracy, helping to design energy management systems for hybrid vehicles more effectively and efficiently.

Kaynakça

  • Ahmadi, P., Torabi, S. H., Afsaneh, H., Sadegheih, Y., Ganjehsarabi, H., and Ashjaee, M. (2020). The effects of driving patterns and PEM fuel cell degradation on the lifecycle assessment of hydrogen fuel cell vehicles. International Journal of Hydrogen Energy, 45(5), 3595-3608.
  • Ahmadi, S., Bathaee, S., and Hosseinpour, A. H. (2018). Improving fuel economy and performance of a fuel-cell hybrid electric vehicle (fuel-cell, battery, and ultra-capacitor) using optimized energy management strategy. Energy Conversion and Management, 160, 74-84.
  • Akroot, A., Ekici, Ö., and Köksal, M. (2019). Process modeling of an automotive pem fuel cell system. International Journal of Green Energy, 16(10), 778-788.
  • Andari, W., Ghozzi, S., Allagui, H., and Mami, A. (2017). Design, modeling and energy management of a PEM fuel cell/supercapacitor hybrid vehicle. International Journal of Advanced Computer Science and Applications, 8(1), 273-278.
  • Asiaban, S., Bozalakov, D., and Vandevelde, L. (2024). Development of a dynamic mathematical model of PEM electrolyser for integration into large-scale power systems. Energy Conversion and Management: X, 23, 100610.
  • Ayyarao, T. S., Polumahanthi, N., and Khan, B. (2024). An accurate parameter estimation of PEM fuel cell using war strategy optimization. Energy, 290, 130235.
  • Baroutaji, A., Arjunan, A., Ramadan, M., Robinson, J., Alaswad, A., Abdelkareem, M. A., and Olabi, A.-G. (2021). Advancements and prospects of thermal management and waste heat recovery of PEMFC. International Journal of Thermofluids, 9, 100064.
  • Biberci, M. A., and Celik, M. B. (2020). Dynamic Modeling and Simulation of a PEM Fuel Cell (PEMFC) during an Automotive Vehicle’s Driving Cycle. Engineering, Technology & Applied Science Research, 10(3), 5796-5802.
  • Boyacıoğlu, N. M., Kocakulak, T., Batar, M., Uyumaz, A., and Solmaz, H. (2023). Modeling and Control of a PEM Fuel Cell Hybrid Energy System Used in a Vehicle with Fuzzy Logic Method. International Journal of Automotive Science And Technology, 7(4), 295-308.
  • Chen, Y., and Wang, N. (2019). Cuckoo search algorithm with explosion operator for modeling proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 44(5), 3075-3087.
  • Chugh, S., Chaudhari, C., Sonkar, K., Sharma, A., Kapur, G., and Ramakumar, S. (2020). Experimental and modelling studies of low temperature PEMFC performance. International Journal of Hydrogen Energy, 45(15), 8866-8874.
  • Dakurah, J. E., Solmaz, H., and Kocakulak, T. (2024). Modeling of a PEM Fuel Cell Electric Bus with MATLAB/Simulink. Automotive Experiences, 7(2).
  • Donkers, A., Yang, D., and Viktorović, M. (2020). Influence of driving style, infrastructure, weather and traffic on electric vehicle performance. Transportation Research Part D: Transport and Environment, 88, 102569.
  • Dreizler, A., Pitsch, H., Scherer, V., Schulz, C., and Janicka, J. (2021). The role of combustion science and technology in low and zero impact energy transformation processes. Applications in Energy and Combustion Science, 7, 100040.
  • Haddad, A., Mannah, M., & Bazzi, H. (2015). Nonlinear time-variant model of the PEM type fuel cell for automotive applications. Simulation Modelling Practice and Theory, 51, 31-44.
  • Hassan, Q., Viktor, P., Al-Musawi, T. J., Ali, B. M., Algburi, S., Alzoubi, H. M., Al-Jiboory, A. K., Sameen, A. Z., Salman, H. M., and Jaszczur, M. (2024). The renewable energy role in the global energy transformations. Renewable Energy Focus, 48, 100545.
  • Hosseinzadeh, E., Rokni, M., Rabbani, A., and Mortensen, H. H. (2013). Thermal and water management of low temperature proton exchange membrane fuel cell in fork-lift truck power system. Applied Energy, 104, 434-444.
  • Hou, X., Sun, R., Huang, J., Geng, W., Li, X., Wang, L., and Zhang, X. (2024). Energy, economic, and environmental analysis: A study of operational strategies for combined heat and power system based on PEM fuel cell in the East China region. Renewable Energy, 223, 120023.
  • Hüner, B., and Telli, E. (2023). Design and performance analysis of a green house based on hybrid and passive energy systems: A case study. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 45(4), 12859-12879.
  • Igourzal, A., Auger, F., Olivier, J.-C., and Retière, C. (2024). Electrical, thermal and degradation modelling of PEMFCs for naval applications. Mathematics and Computers in Simulation, 224, 34-49.
  • Ijaodola, O., El-Hassan, Z., Ogungbemi, E., Khatib, F., Wilberforce, T., Thompson, J., and Olabi, A. (2019). Energy efficiency improvements by investigating the water flooding management on proton exchange membrane fuel cell (PEMFC). Energy, 179, 246-267.
  • İnci, M. (2024). Connecting multiple vehicular PEM fuel cells to electrical power grid as alternative energy sources: A Case Study. International Journal of Hydrogen Energy, 52, 1035-1051.
  • Işıklı, F., Sürmen, A., and Gelen, A. (2021). Modelling and performance analysis of an electric vehicle powered by a PEM fuel cell on New European Driving Cycle (NEDC). Arabian Journal for Science and Engineering, 46(8), 7597-7609.
  • Jia, J., Li, Q., Wang, Y., Cham, Y., and Han, M. (2009). Modeling and dynamic characteristic simulation of a proton exchange membrane fuel cell. IEEE Transactions on Energy Conversion, 24(1), 283-291.
  • Jiang, F., Yuan, X., Hu, L., Xie, G., Zhang, Z., Li, X., Hu, J., Wang, C., and Wang, H. (2024). A comprehensive review of energy storage technology development and application for pure electric vehicles. Journal of Energy Storage, 86, 111159.
  • Jiang, S., Wang, C., Zhang, C., Bai, H., and Xu, L. (2019). Adaptive estimation of road slope and vehicle mass of fuel cell vehicle. ETransportation, 2, 100023.
  • Jiang, Y., Zhang, X., and Huang, L. (2023). Analysis on pressure anomaly within PEMFC stack based on semi-empirical and flow network models. International Journal of Hydrogen Energy, 48(8), 3188-3203.
  • Kahveci, O. (2022). Antimony and boron support to aluminum's hydrolysis performance and an application of PEM fuel cell. Fuel, 324, 124782.
  • Kahveci, O., and Kaya, M. F. (2022a). Hydrogen production from Al–Cu alloy using electric vehicle's waste DC motor coils. International Journal of Hydrogen Energy, 47(24), 12179-12188.
  • Kahveci, O., and Kaya, M. F. (2022b). W-Ir Alaşım Schottky Engel Diyotların Performansının Sonlu Elemanlar Metoduyla İncelenmesi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 38(2), 357-370.
  • Kandidayeni, M., Macias, A., Khalatbarisoltani, A., Boulon, L., and Kelouwani, S. (2019). Benchmark of proton exchange membrane fuel cell parameters extraction with metaheuristic optimization algorithms. Energy, 183, 912-925.
  • Kaya, K., and Hames, Y. (2019). Two new control strategies: For hydrogen fuel saving and extend the life cycle in the hydrogen fuel cell vehicles. International Journal of Hydrogen Energy, 44(34), 18967-18980.
  • Luciani, S., and Tonoli, A. (2022). Control strategy assessment for improving PEM fuel cell system efficiency in fuel cell hybrid vehicles. Energies, 15(6), 2004.
  • Mann, R. F., Amphlett, J. C., Hooper, M. A., Jensen, H. M., Peppley, B. A., and Roberge, P. R. (2000). Development and application of a generalised steady-state electrochemical model for a PEM fuel cell. Journal of Power Sources, 86(1-2), 173-180.
  • Mert, S., Dincer, I., and Ozcelik, Z. (2012). Performance investigation of a transportation PEM fuel cell system. International Journal of Hydrogen Energy, 37(1), 623-633.
  • Miao, D., Chen, W., Zhao, W., and Demsas, T. (2020). Parameter estimation of PEM fuel cells employing the hybrid grey wolf optimization method. Energy, 193, 116616.
  • Mogorosi, K., Oladiran, M. T., and Rakgati, E. (2020). Mathematical modelling and experimental investigation of a low temperature proton exchange membrane fuel cell. Energy and Power Engineering, 12(11), 653.
  • Mulach, J. (2024). Toyota Mirai price cut by 60 per cent as hydrogen demand dies. Retrieved from https://www.canberratimes.com.au/story/8539771/toyota-mirai-price-cut-by-60-per-cent-as-hydrogen-demand-dies/
  • Niya, S. M. R., and Hoorfar, M. (2014, July). Determination of Activation losses in proton exchange membrane fuel cells. International Conference on Fuel Cell Science, Engineering and Technology (s. 1-4). Boston, USA.
  • Ogungbemi, E., Ijaodola, O., Khatib, F. N., Wilberforce, T., El Hassan, Z., Thompson, J., Ramadan, M., and Olabi, A. G. (2019). Fuel cell membranes–Pros and cons. Energy, 172, 155-172.
  • Olabi, A. G., Wilberforce, T., and Abdelkareem, M. A. (2021). Fuel cell application in the automotive industry and future perspective. Energy, 214, 118955.
  • Omran, A., Lucchesi, A., Smith, D., Alaswad, A., Amiri, A., Wilberforce, T., Sodre J. R., and Olabi, A. (2021). Mathematical model of a proton-exchange membrane (PEM) fuel cell. International Journal of Thermofluids, 11, 100110.
  • Outeiro, M., Chibante, R., Carvalho, A., and De Almeida, A. (2008). A parameter optimized model of a proton exchange membrane fuel cell including temperature effects. Journal of Power Sources, 185(2), 952-960.
  • Özdoğan, E., Hüner, B., Süzen, Y. O., Eşiyok, T., Uzgören, İ. N., Kıstı, M., Uysal, S., Selçuklu, S. B., Demir, N., and Kaya, M. F. (2023). Effects of tank heating on hydrogen release from metal hydride system in VoltaFCEV Fuel Cell Electric Vehicle. International Journal of Hydrogen Energy, 48(18), 6811-6823.
  • Paraschiv, L. S., and Paraschiv, S. (2023). Contribution of renewable energy (hydro, wind, solar and biomass) to decarbonization and transformation of the electricity generation sector for sustainable development. Energy Reports, 9, 535-544.
  • Qin, Y., Du, Q., Fan, M., Chang, Y., and Yin, Y. (2017). Study on the operating pressure effect on the performance of a proton exchange membrane fuel cell power system. Energy Conversion and Management, 142, 357-365.
  • Rezk, H., Olabi, A., Ferahtia, S., and Sayed, E. T. (2022). Accurate parameter estimation methodology applied to model proton exchange membrane fuel cell. Energy, 255, 124454.
  • Sun, G., Park, S., and Lin, Z. (2019). Modeling and Simulation of PEM Fuel Cell/Battery Hybrid Vehicle. Journal of System Simulation, 30(12), 4816-4824.
  • Sun, Z., Wang, Y., and Chen, Z. (2023). Coordination control strategy for PEM fuel cell system considering vehicle velocity prediction information. ETransportation, 18, 100287.
  • Tzelepis, S., Kavadias, K. A., Marnellos, G. E., and Xydis, G. (2021). A review study on proton exchange membrane fuel cell electrochemical performance focusing on anode and cathode catalyst layer modelling at macroscopic level. Renewable and Sustainable Energy Reviews, 151, 111543.
  • Usmanov, U., Ruzimov, S., Tonoli, A., and Mukhitdinov, A. (2023). Modeling, simulation and control strategy optimization of fuel cell hybrid electric vehicle. Vehicles, 5(2), 464-481.
  • Veerendra, A. S., Mohamed, M. R., Leung, P. K., and Shah, A. A. (2021). Hybrid power management for fuel cell/supercapacitor series hybrid electric vehicle. International Journal of Green Energy, 18(2), 128-143.
  • Vichard, L., Steiner, N. Y., Zerhouni, N., and Hissel, D. (2021). Hybrid fuel cell system degradation modeling methods: A comprehensive review. Journal of Power Sources, 506, 230071.
  • Waloyo, H. T., Nizam, M., and Saidi, H. (2018, October). Model-based simulation for hybrid fuel cell/battery/ultracapacitor electric vehicle. 5th International Conference on Electric Vehicular Technology (ICEVT) (s. 112-115). Surakarta, Indonesia.
  • Xing, L., Xiang, W., Zhu, R., and Tu, Z. (2022). Modeling and thermal management of proton exchange membrane fuel cell for fuel cell/battery hybrid automotive vehicle. International Journal of Hydrogen Energy, 47(3), 1888-1900.
  • Xu, J., Zhang, C., Fan, R., Bao, H., Wang, Y., Huang, S., Chin, C. S., and Li, C. (2020). Modelling and control of vehicle integrated thermal management system of PEM fuel cell vehicle. Energy, 199, 117495.
  • Yang, Q., Zeng, T., Zhang, C., Zhou, W., Xu, L., Zhou, J., Jiang, P., and Jiang, S. (2023). Modeling and simulation of vehicle integrated thermal management system for a fuel cell hybrid vehicle. Energy Conversion and Management, 278, 116745.
  • Zeng, T., Zhang, C., Zhang, Y., Deng, C., Hao, D., Zhu, Z., Ran, H., and Cao, D. (2021). Optimization-oriented adaptive equivalent consumption minimization strategy based on short-term demand power prediction for fuel cell hybrid vehicle. Energy, 227, 120305.
  • Zhao, J., Li, X., Shum, C., and McPhee, J. (2021). A review of physics-based and data-driven models for real-time control of polymer electrolyte membrane fuel cells. Energy and AI, 6, 100114.
  • Zhao, Y., Luo, M., Yang, J., Chen, B., and Sui, P.-C. (2024). Numerical analysis of PEMFC stack performance degradation using an empirical approach. International Journal of Hydrogen Energy, 56, 147-163.
Toplam 60 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Enerji, Elektrokimyasal Enerji Depolama ve Dönüşüm
Bölüm Makaleler
Yazarlar

Bulut Hüner 0000-0002-0134-3609

Yayımlanma Tarihi 15 Aralık 2024
Gönderilme Tarihi 28 Ağustos 2024
Kabul Tarihi 12 Kasım 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 14 Sayı: 4

Kaynak Göster

APA Hüner, B. (2024). Araç Uygulamalarında Kullanılan Hibrit Sistemler için PEM Yakıt Pillerinin Elektrokimyasal Modellenmesi. Karadeniz Fen Bilimleri Dergisi, 14(4), 2190-2215. https://doi.org/10.31466/kfbd.1540148