Araştırma Makalesi
BibTex RIS Kaynak Göster

SILAR Tekniği Kullanılarak Sentezlenen Polikristal Copper Oxide İnce Filmlerin Yapısal ve Optiksel Özellikleri

Yıl 2024, Cilt: 14 Sayı: 4, 2216 - 2226, 15.12.2024
https://doi.org/10.31466/kfbd.1543126

Öz

Bu çalışmada farklı pH değerlerinde polikristal bakır oksit (CuO) yarı iletken ince filmleri ardışık iyon tabakası adsorpsiyonu ve reaksiyon (SILAR) tekniği kullanılarak elde edilmiştir. Üretilen ince filmlerin yapısal ve optik karakteristikleri üzerinde pH’ın etkisi incelenmiştir. Filmler, X-ışınları kırınımı (XRD) ve Uv-vis spektroskopisi ölçümleri ile karakterize edilmişlerdir. XRD bulguları, elde edilen tüm filmlerin kristal yapıda monoklinik CuO fazına sahip olduğunu göstermiştir. Tauc bağıntısı kullanılarak, filmlerin direkt optik bant aralığı enerjilerinin 1.49 eV ile 2.89 eV arasında değiştiği belirlenmiştir. Optik parametreler; kırılma indisi (n), sönüm katsayısı (k), dielektrik sabitinin real (ε_1), ve sanal (ε_2) kısımları soğurma ve geçirgenlik ölçümleri kullanılarak hesaplanmıştır. CuO ince filmin n değerleri 3.10 ile 11.14 arasında değişirken k değerleri 0.79 ile 1.70 arasında değişmiştir. Benzer şekilde CuO ince filmleri için ε_1, ve ε_2 değerleri sırasıyla 8.96 ile 121.15 ve 4.89 ile 37.90 arasında değişmiştir.

Kaynakça

  • Abdelmoneim, A., K. Elfayoumi, M. A., Sh. Abdel-wahab, M., M. Al-Enizi, A., Key Lee, J., and Tawfik, W.Z. (2024). Enhanced solar-driven photoelectrochemical water splitting using nanoflower Au/CuO/GaN hybrid photoanodes. RSC Advances, 14(24), 16846-16858. https://doi.org/10.1039/D4RA01931H
  • Abeles, F. (1972). Optical Properties of Solids. North-Holland, London.
  • Alami, A. H., Allagui, A., and Alawadhi, H. (2014). Microstructural and optical studies of CuO thin films prepared by chemical ageing of copper substrate in alkaline ammonia solution. Journal of Alloys and Compounds, 617, 542-546. https://doi.org/10.1016/j.jallcom.2014.07.221
  • Anitha, T. V., Gadha Menon, K., Venugopal, K., and Vimalkumar, T. V. (2024). Investigating the role of film thickness on the physical properties of sol-gel coated CuO thin films: Discussing its potentiality in optoelectronic applications. Materials Science and Engineering: B, 299, 116960. https://doi.org/10.1016/j.mseb.2023.116960
  • Arulkumar, E., and Thanikaikarasan, S. (2024). Structure, morphology, composition, optical properties and catalytic activity of nanomaterials CuO, NiO, CuO/NiO using methylene blue. Optik, 302, 171685. https://doi.org/10.1016/j.ijleo.2024.171685
  • Babu, M. H., Podder, J., Dev, B. C., and Sharmin, M. (2020). P to n-type transition with wide blue shift optical band gap of spray synthesized Cd doped CuO thin films for optoelectronic device applications. Surfaces and Interfaces, 19, 100459. https://doi.org/10.1016/j.surfin.2020.100459
  • Chen, Y., Zhang, L., Zhang, H., Zhong, K., Zhao, G., Chen, G., Lin, Y., Chen, S., and Huang, Z. (2018). Band gap manipulation and physical properties of preferred orientation CuO thin films with nano wheatear array. Ceramics International, 44(1), 1134-1141. https://doi.org/10.1016/j.ceramint.2017.10.070
  • Cullity, B. D., and Stock, S. R. (2001). Elements of X-ray diffraction (3. ed). Prentice Hall.
  • Djebian, R., Boudjema, B., Kabir, A., and Sedrati, C. (2020). Physical characterization of CuO thin films obtained by thermal oxidation of vacuum evaporated Cu. Solid State Sciences, 101, 106147. https://doi.org/10.1016/j.solidstatesciences.2020.106147
  • Gnanasekar, T., Valanarasu, S., Poul Raj, I. L., Juliet, A. V., Behera, P. K., Mahmoud, Z. M. M., Shkir, Mohd., and AlFaify, S. (2021). Improved photocurrent properties of La doped CuO thin films coated by nebulizer spray pyrolysis method for photosensor applications. Optical Materials, 122, 111790. https://doi.org/10.1016/j.optmat.2021.111790
  • Gode, F., Guneri, E., and Baglayan, O. (2014). Effect of tri-sodium citrate concentration on structural, optical and electrical properties of chemically deposited tin sulfide films. Applied Surface Science, 318, 227-233. https://doi.org/10.1016/j.apsusc.2014.04.128
  • Goede, C., Guemues, C., and Zor, M. (2007). Influence of the thickness on physical properties of chemical bath deposited hexagonal ZnS thin films. Journal of Optoelectronıcs and Advanced Materıals, 9(7). https://avesis.cu.edu.tr/yayin/6da201ec-1689-49cb-b209-a4187af3420e/influence-of-the-thickness-on-physical-properties-of-chemical-bath-deposited-hexagonal-ZnS-thin-films
  • Göde, F. (2019). Effect of Cu doping on CdS as a multifunctional nanomaterial: Structural, morphological, optical and electrical properties. Optik, 197, 163217. https://doi.org/10.1016/j.ijleo.2019.163217
  • Hassan, J., Karar Mahdi, T., Ghufran Ammar, G., and Qin, C. (2024). Green fabrication of CuO-egTiO2 composite for photodegradation of organic pollutant under direct visible light illumination. Advanced Powder Technology, 35(4), 104394. https://doi.org/10.1016/j.apt.2024.104394
  • Kandulna, R., Rimpi, Das, U., Choudhary, R. B., Kachhap, B., and Kumar, A. (2023). Enriched properties of polypyrrole-copper oxide-reduced graphene oxide (PPY-CuO-rGO) hybrid nanocomposite for organic light emitting diodes (OLEDs) as electron transport layer (ETL) material. Optik, 292, 171393. https://doi.org/10.1016/j.ijleo.2023.171393
  • Kumar, V., Kaphle, A., Rathnasekara, R., Neupane, G. R., and Hari, P. (2024). Role of Al doping in morphology and interface of Al-doped ZnO/CuO film for device performance of thin film-based heterojunction solar cells. Hybrid Advances, 5, 100148. https://doi.org/10.1016/j.hybadv.2024.100148
  • Mageshwari, K., and Sathyamoorthy, R. (2013). Physical properties of nanocrystalline CuO thin films prepared by the SILAR method. Materials Science in Semiconductor Processing, 16(2), 337-343. https://doi.org/10.1016/j.mssp.2012.09.016
  • Narale, D. K., Kumbhar, P. D., Bhosale, R. R., Patil, K. D., Jambhale, C. L., Kim, J. H., and Kolekar, S. S. (2024). Engineering of both binder-free CuCo2O4 nanorod@CuO flower-like nanosheet core-shell heterostructure and NiFe2O4 nanoflake electrodes for asymmetric supercapacitor. Journal of Energy Storage, 84, 110942. https://doi.org/10.1016/j.est.2024.110942
  • Nitta, R., Kubota, Y., Kishi, T., and Matsushita, N. (2022). Fabrication of nanostructured CuO thin films with controllable optical band gaps using a mist spin spray technique at 90 C. Thin Solid Films, 762, 139555. https://doi.org/10.1016/j.tsf.2022.139555
  • Pankove, J. I. (1975). Optical processes in semiconductors. Dover Publications, Inc.
  • Perkowitz, S. (1993). Optical characterization of semiconductors: Infrared, Raman, and photoluminescence spectroscopy. Academic Press.
  • Sagadevan, S., Pal, K., and Chowdhury, Z. Z. (2017). Fabrication of CuO nanoparticles for structural, optical and dielectric analysis using chemical precipitation method. Journal of Materials Science: Materials in Electronics, 28(17), 12591-12597. https://doi.org/10.1007/s10854-017-7083-3
  • Sahu, K., Bisht, A., Khan, S. A., Pandey, A., and Mohapatra, S. (2020). Engineering of morphological, optical, structural, photocatalytic and catalytic properties of nanostructured CuO thin films fabricated by reactive DC magnetron sputtering. Ceramics International, 46(6), 7499-7509. https://doi.org/10.1016/j.ceramint.2019.11.248
  • Shkir, M., Yahia, I. S., Ganesh, V., Algarni, H., and AlFaify, S. (2016). Facile hydrothermal-assisted synthesis of Gd3+ doped PbI2 nanostructures and their characterization. Materials Letters, 176, 135-138. https://doi.org/10.1016/j.matlet.2016.04.062
  • Shkir, M., and AlFaify, S. (2019). A facile low-temperature synthesis of nanosheets assembled PbS microflowers and their structural, morphological, optical, photoluminescence, dielectric and electrical studies. Material Research. Express, 6(10), 105013. https://doi.org/10.1088/2053-1591/ab3535
  • Srinivasan, N. kumar, and Ponnusamy, C. (2024). Influence of various surfactants on the stability and solidification characteristics of DI water-based CuO NFPCM for cool thermal energy storage system. Journal of Energy Storage, 86, 111314. https://doi.org/10.1016/j.est.2024.111314
  • Sultana, J., Paul, S., Karmakar, A., Yi, R., Dalapati, G. K., and Chattopadhyay, S. (2017). Chemical bath deposited (CBD) CuO thin films on n-silicon substrate for electronic and optical applications: Impact of growth time. Applied Surface Science, 418, 380-387. https://doi.org/10.1016/j.apsusc.2016.12.139
  • Yahya Salih, E., Ramizy, A., Sabbar Mohammed, A., Hassan Ibnaouf, K., Hassan Eisa, M., and Aldaghri, O. (2024). Photo-responsive analysis of branchy dendrites-like CuO/PS p-n junction visible light photodetector. Materials Science and Engineering: B, 301, 117172. https://doi.org/10.1016/j.mseb.2023.117172
  • Yousefizad, M., Zarasvand, M. M., Bagheritabar, M., Ghezelayagh, M. M., Farahi, A., Ghafouri, T., Raissi, F., Zeidabadi, M. A., and Manavizadeh, N. (2023). Performance investigation of low-power flexible n-ZnO/p-CuO/n-ZnO heterojunction bipolar transistor: Simulation study. Micro and Nanostructures, 180, 207594. https://doi.org/10.1016/j.micrna.2023.207594

The Structural and Optical Properties of Polycrystalline Copper Oxide Thin Films Synthesized Using the SILAR Technique

Yıl 2024, Cilt: 14 Sayı: 4, 2216 - 2226, 15.12.2024
https://doi.org/10.31466/kfbd.1543126

Öz

In this study, polycrystalline copper oxide (CuO) thin films with the presence of various pH levels were fabricated using the successive ion layer adsorption and reaction (SILAR) method. The impact of pH on the structural and optical properties of the produced films was examined. The present films were characterized by X-ray diffraction (XRD) and UV-vis absorption spectroscopy measurements. The XRD result showed that all films had a polycrystalline nature with a monoclinic CuO crystal phase. Direct optical band gap energies of the films, determined using the Tauc equation, ranged from 1.49 eV to 2.89 eV. The optical parameters such as refractive index (n), extinction coefficient (k), real (ε_1), and imaginary (ε_2) parts of the dielectric constant were derived from the absorbance and transmittance spectra of the produced films. CuO thin film n values ranged from 3.10 to 11.14, while k values varied from 0.79 to 1.70. Likewise, the values of ε_1 and ε_2 for CuO thin films ranged from 8.96 to 121.15 and 4.89 to 37.90, respectively.

Kaynakça

  • Abdelmoneim, A., K. Elfayoumi, M. A., Sh. Abdel-wahab, M., M. Al-Enizi, A., Key Lee, J., and Tawfik, W.Z. (2024). Enhanced solar-driven photoelectrochemical water splitting using nanoflower Au/CuO/GaN hybrid photoanodes. RSC Advances, 14(24), 16846-16858. https://doi.org/10.1039/D4RA01931H
  • Abeles, F. (1972). Optical Properties of Solids. North-Holland, London.
  • Alami, A. H., Allagui, A., and Alawadhi, H. (2014). Microstructural and optical studies of CuO thin films prepared by chemical ageing of copper substrate in alkaline ammonia solution. Journal of Alloys and Compounds, 617, 542-546. https://doi.org/10.1016/j.jallcom.2014.07.221
  • Anitha, T. V., Gadha Menon, K., Venugopal, K., and Vimalkumar, T. V. (2024). Investigating the role of film thickness on the physical properties of sol-gel coated CuO thin films: Discussing its potentiality in optoelectronic applications. Materials Science and Engineering: B, 299, 116960. https://doi.org/10.1016/j.mseb.2023.116960
  • Arulkumar, E., and Thanikaikarasan, S. (2024). Structure, morphology, composition, optical properties and catalytic activity of nanomaterials CuO, NiO, CuO/NiO using methylene blue. Optik, 302, 171685. https://doi.org/10.1016/j.ijleo.2024.171685
  • Babu, M. H., Podder, J., Dev, B. C., and Sharmin, M. (2020). P to n-type transition with wide blue shift optical band gap of spray synthesized Cd doped CuO thin films for optoelectronic device applications. Surfaces and Interfaces, 19, 100459. https://doi.org/10.1016/j.surfin.2020.100459
  • Chen, Y., Zhang, L., Zhang, H., Zhong, K., Zhao, G., Chen, G., Lin, Y., Chen, S., and Huang, Z. (2018). Band gap manipulation and physical properties of preferred orientation CuO thin films with nano wheatear array. Ceramics International, 44(1), 1134-1141. https://doi.org/10.1016/j.ceramint.2017.10.070
  • Cullity, B. D., and Stock, S. R. (2001). Elements of X-ray diffraction (3. ed). Prentice Hall.
  • Djebian, R., Boudjema, B., Kabir, A., and Sedrati, C. (2020). Physical characterization of CuO thin films obtained by thermal oxidation of vacuum evaporated Cu. Solid State Sciences, 101, 106147. https://doi.org/10.1016/j.solidstatesciences.2020.106147
  • Gnanasekar, T., Valanarasu, S., Poul Raj, I. L., Juliet, A. V., Behera, P. K., Mahmoud, Z. M. M., Shkir, Mohd., and AlFaify, S. (2021). Improved photocurrent properties of La doped CuO thin films coated by nebulizer spray pyrolysis method for photosensor applications. Optical Materials, 122, 111790. https://doi.org/10.1016/j.optmat.2021.111790
  • Gode, F., Guneri, E., and Baglayan, O. (2014). Effect of tri-sodium citrate concentration on structural, optical and electrical properties of chemically deposited tin sulfide films. Applied Surface Science, 318, 227-233. https://doi.org/10.1016/j.apsusc.2014.04.128
  • Goede, C., Guemues, C., and Zor, M. (2007). Influence of the thickness on physical properties of chemical bath deposited hexagonal ZnS thin films. Journal of Optoelectronıcs and Advanced Materıals, 9(7). https://avesis.cu.edu.tr/yayin/6da201ec-1689-49cb-b209-a4187af3420e/influence-of-the-thickness-on-physical-properties-of-chemical-bath-deposited-hexagonal-ZnS-thin-films
  • Göde, F. (2019). Effect of Cu doping on CdS as a multifunctional nanomaterial: Structural, morphological, optical and electrical properties. Optik, 197, 163217. https://doi.org/10.1016/j.ijleo.2019.163217
  • Hassan, J., Karar Mahdi, T., Ghufran Ammar, G., and Qin, C. (2024). Green fabrication of CuO-egTiO2 composite for photodegradation of organic pollutant under direct visible light illumination. Advanced Powder Technology, 35(4), 104394. https://doi.org/10.1016/j.apt.2024.104394
  • Kandulna, R., Rimpi, Das, U., Choudhary, R. B., Kachhap, B., and Kumar, A. (2023). Enriched properties of polypyrrole-copper oxide-reduced graphene oxide (PPY-CuO-rGO) hybrid nanocomposite for organic light emitting diodes (OLEDs) as electron transport layer (ETL) material. Optik, 292, 171393. https://doi.org/10.1016/j.ijleo.2023.171393
  • Kumar, V., Kaphle, A., Rathnasekara, R., Neupane, G. R., and Hari, P. (2024). Role of Al doping in morphology and interface of Al-doped ZnO/CuO film for device performance of thin film-based heterojunction solar cells. Hybrid Advances, 5, 100148. https://doi.org/10.1016/j.hybadv.2024.100148
  • Mageshwari, K., and Sathyamoorthy, R. (2013). Physical properties of nanocrystalline CuO thin films prepared by the SILAR method. Materials Science in Semiconductor Processing, 16(2), 337-343. https://doi.org/10.1016/j.mssp.2012.09.016
  • Narale, D. K., Kumbhar, P. D., Bhosale, R. R., Patil, K. D., Jambhale, C. L., Kim, J. H., and Kolekar, S. S. (2024). Engineering of both binder-free CuCo2O4 nanorod@CuO flower-like nanosheet core-shell heterostructure and NiFe2O4 nanoflake electrodes for asymmetric supercapacitor. Journal of Energy Storage, 84, 110942. https://doi.org/10.1016/j.est.2024.110942
  • Nitta, R., Kubota, Y., Kishi, T., and Matsushita, N. (2022). Fabrication of nanostructured CuO thin films with controllable optical band gaps using a mist spin spray technique at 90 C. Thin Solid Films, 762, 139555. https://doi.org/10.1016/j.tsf.2022.139555
  • Pankove, J. I. (1975). Optical processes in semiconductors. Dover Publications, Inc.
  • Perkowitz, S. (1993). Optical characterization of semiconductors: Infrared, Raman, and photoluminescence spectroscopy. Academic Press.
  • Sagadevan, S., Pal, K., and Chowdhury, Z. Z. (2017). Fabrication of CuO nanoparticles for structural, optical and dielectric analysis using chemical precipitation method. Journal of Materials Science: Materials in Electronics, 28(17), 12591-12597. https://doi.org/10.1007/s10854-017-7083-3
  • Sahu, K., Bisht, A., Khan, S. A., Pandey, A., and Mohapatra, S. (2020). Engineering of morphological, optical, structural, photocatalytic and catalytic properties of nanostructured CuO thin films fabricated by reactive DC magnetron sputtering. Ceramics International, 46(6), 7499-7509. https://doi.org/10.1016/j.ceramint.2019.11.248
  • Shkir, M., Yahia, I. S., Ganesh, V., Algarni, H., and AlFaify, S. (2016). Facile hydrothermal-assisted synthesis of Gd3+ doped PbI2 nanostructures and their characterization. Materials Letters, 176, 135-138. https://doi.org/10.1016/j.matlet.2016.04.062
  • Shkir, M., and AlFaify, S. (2019). A facile low-temperature synthesis of nanosheets assembled PbS microflowers and their structural, morphological, optical, photoluminescence, dielectric and electrical studies. Material Research. Express, 6(10), 105013. https://doi.org/10.1088/2053-1591/ab3535
  • Srinivasan, N. kumar, and Ponnusamy, C. (2024). Influence of various surfactants on the stability and solidification characteristics of DI water-based CuO NFPCM for cool thermal energy storage system. Journal of Energy Storage, 86, 111314. https://doi.org/10.1016/j.est.2024.111314
  • Sultana, J., Paul, S., Karmakar, A., Yi, R., Dalapati, G. K., and Chattopadhyay, S. (2017). Chemical bath deposited (CBD) CuO thin films on n-silicon substrate for electronic and optical applications: Impact of growth time. Applied Surface Science, 418, 380-387. https://doi.org/10.1016/j.apsusc.2016.12.139
  • Yahya Salih, E., Ramizy, A., Sabbar Mohammed, A., Hassan Ibnaouf, K., Hassan Eisa, M., and Aldaghri, O. (2024). Photo-responsive analysis of branchy dendrites-like CuO/PS p-n junction visible light photodetector. Materials Science and Engineering: B, 301, 117172. https://doi.org/10.1016/j.mseb.2023.117172
  • Yousefizad, M., Zarasvand, M. M., Bagheritabar, M., Ghezelayagh, M. M., Farahi, A., Ghafouri, T., Raissi, F., Zeidabadi, M. A., and Manavizadeh, N. (2023). Performance investigation of low-power flexible n-ZnO/p-CuO/n-ZnO heterojunction bipolar transistor: Simulation study. Micro and Nanostructures, 180, 207594. https://doi.org/10.1016/j.micrna.2023.207594
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Klasik Fizik (Diğer)
Bölüm Makaleler
Yazarlar

Ali Çelik 0000-0001-8218-6512

Fatma Göde 0000-0003-0195-9208

Yayımlanma Tarihi 15 Aralık 2024
Gönderilme Tarihi 3 Eylül 2024
Kabul Tarihi 2 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 14 Sayı: 4

Kaynak Göster

APA Çelik, A., & Göde, F. (2024). The Structural and Optical Properties of Polycrystalline Copper Oxide Thin Films Synthesized Using the SILAR Technique. Karadeniz Fen Bilimleri Dergisi, 14(4), 2216-2226. https://doi.org/10.31466/kfbd.1543126