Araştırma Makalesi
BibTex RIS Kaynak Göster

Typha latifolia ile Sulu Çözeltiden Kristal Viyole Boyasının Adsorpsiyonu; Doğrusal ve Doğrusal Olmayan İzoterm, Kinetik ve Dizayn

Yıl 2024, Cilt: 14 Sayı: 4, 2227 - 2243, 15.12.2024
https://doi.org/10.31466/kfbd.1548851

Öz

Boyalar dünya çapında pek çok sektörde yaygın olarak kullanılmaktadır. Boya ile kirlenmiş atıksular hem su kaynakları hem de canlı yaşamı için tehdit oluşturan önemli bir kirlilik unsurudur. Bu nedenle boyalı atıksuların çevreye deşarj edilmeden önce arıtılmaları gerekmektedir. Adsorpsiyon teknolojisi, boyaların gideriminde etkin olarak kullanılan sistemlerden biridir. Sistemin verimliliği ve maliyeti kullanılan adsorbentle yakından ilişkilidir. Çalışma kapsamında sulak alanlarda bol miktarda bulunan bir su bitkisinin (Typha latifolia) modifiye edilerek sulu çözeltiden Kristal Viyole giderimi için verimli bir adsorbent olarak değerlendirilebilirliği araştırılmıştır. Modifikasyon ajanı olarak SDS (sodyum dodesil sülfonat) kullanılmıştır. Adsorbentin pHpzc (sıfır yük noktası) değeri belirlenmiştir. Çalışmalarda 0,5-2 g/L aralığında değişen miktarlarda adsorbent dozajı, 5-20 mg/L aralığında boya konsantrasyonu, 5-8 aralığında pH değeri ve 0-360 dk aralığında temas süresi gibi temel işletme parametreleri araştırılmıştır. Optimum parametreler; pH 8, adsorbent dozajı:0,5 g/L, adsorpsiyon süresi: 240 dakika olarak belirlenmiştir. Çalışma kapsamında 3 farklı İzoterm (Langmuir, Freundlich ve Temkin) modelin doğrusal ve doğrusal olmayan model verileri karşılaştırılmıştır. Temkin izoterm modeli adsorpsiyon sürecini hem doğrusal hem de doğrusal olmayan model denklemleriyle en küçük hata fonksiyonlarını üreterek en iyi şekilde açıklamıştır. Ayrıca, boyalı atıksu için en uyumlu izoterm modele dayalı tek aşamalı bir reaktör sistemi de sunulmuştur. Kinetik model verileri sözde ikinci derece kinetik model çalışma sonuçlarıyla uyumlu bulunmuştur. Yüzey aktif maddeyle modifiye edilerek hazırlanan adsorbentin boyalı atıksuların arıtımında başarılı bir performans sergileyeceği sonucuna varılmıştır.

Kaynakça

  • Amri, A. E., Bensalah, J., Essaadaoui, Y., Lebkiri, I., Abbou, B., Zarrouk, A., & Lebkiri, A. (2022). Elaboration, characterization and performance evaluation of a new environmentally friendly adsorbent material based on the reed filter (Typha Latifolia): Kinetic and thermodynamic studies and application in the adsorption of Cd (II) ion. Chemical Data Collections, 39, 100849.
  • Asad, S., Amoozegar, M. A., Pourbabaee, A., Sarbolouki, M. N., & Dastgheib, S. M. M. (2007). Decolorization of textile azo dyes by newly isolated halophilic and halotolerant bacteria. Bioresource technology, 98(11), 2082-2088.
  • Ayuba, A. M., & Sani, M. (2022). Removal of Eriochrome Black T dye from aqueous solution using base activated typha grass (Typha latifolia) as an adsorbent. Bayero Journal of Pure and Applied Sciences, 15(1), 95-104.
  • Bhad, R. M., Das, A., & Kodape, S. M. (2022). Ozonation of procion blue reactive dye and its kinetics study. Pollution, 8(2), 529-541.
  • Bingül, Z. (2022). Determination of affecting parameters on removal of methylene blue dyestuff from aqueous solutions using natural clay: Isotherm, kinetic, and thermodynamic studies. Journal of Molecular Structure, 1250, 131729.
  • Chen, C. C., Liao, H. J., Cheng, C. Y., Yen, C. Y., & Chung, Y. C. (2007). Biodegradation of crystal violet by Pseudomonas putida. Biotechnology letters, 29, 391-396.
  • Cheruiyot, G. K., Wanyonyi, W. C., Kiplimo, J. J., & Maina, E. N. (2019). Adsorption of toxic crystal violet dye using coffee husks: Equilibrium, kinetics and thermodynamics study. Scientific African, 5, e00116.
  • Chowdhury, S., & Das, P. (2011). Linear and nonlinear regression analyses for binary sorption kinetics of methylene blue and safranin onto pretreated rice husk. Bioremediation journal, 15(2), 99-108.
  • Dordio, A. V., Belo, M., Teixeira, D. M., Carvalho, A. P., Dias, C. M. B., Picó, Y., & Pinto, A. P. (2011). Evaluation of carbamazepine uptake and metabolization by Typha spp., a plant with potential use in phytotreatment. Bioresource technology, 102(17), 7827-7834.
  • Duraipandian, J., Rengasamy, T., & Vadivelu, S. (2017). Experimental and modeling studies for the removal of crystal violet dye from aqueous solutions using eco-friendly Gracilaria corticata seaweed activated carbon/Zn/Alginate Polymeric composite beads. Journal of polymers and the environment, 25, 1062-1071.
  • Dutta, S., Gupta, B., Srivastava, S. K., & Gupta, A. K. (2021). Recent advances on the removal of dyes from wastewater using various adsorbents: A critical review. Materials Advances, 2(14), 4497-4531.
  • El Amri, A., Bensalah, J., Idrissi, A., Lamya, K., Ouass, A., Bouzakraoui, S., ... & Lebkiri, A. (2022). Adsorption of a cationic dye (Methylene blue) by Typha Latifolia: Equilibrium, kinetic, thermodynamic and DFT calculations. Chemical Data Collections, 38, 100834.
  • El Amri, A., Kadiri, L., Hsissou, R., Lebkiri, A., Wardighi, Z., & Lebkiri, A. (2023). Investigation of Typha Latifolia (TL) as potential biosorbent for removal of the methyl orange anionic dye in the aqueous solution. Kinetic and DFT approaches. Journal of Molecular Structure, , 1272, 134098.
  • Freundlich HMF (1906) Over the adsorption in solution. J Phys chem 57: 385-471.
  • Ganguly, P., Sarkhel, R., & Das, P. (2020). Synthesis of pyrolyzed biochar and its application for dye removal: Batch, kinetic and isotherm with linear and non-linear mathematical analysis. Surfaces and Interfaces, 20, 100616.
  • Gümüş D., 2022 Organik Atiklardan Üretilen Kompozit Bir Modifiye Biyokömür Kullanilarak Sulu Çözeltiden Safranin T Giderimi, KSÜ Mühendislik Bilimleri Dergisi, 25(3), 2022, Araştırma Makalesi.
  • Gümüş, D., Yumak, T., & Gümüş, F. (2021). Removal of Cefdinir from Water Using Waste Material‐Derived Activated Biochar as a Rapid, Effective, and Sustainable Adsorbent. CLEAN–Soil, Air, Water, 49(7), 2000420.
  • Gümüş, D., & Gümüş, F. (2019). The use of a wetland plant as a new biosorbent for treatment of water contaminated with heavy metals: Nonlinear analyses, modification, competitive effects. Environmental technology & innovation, 16, 100483.
  • Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochemistry 34(5): 451-465.
  • Homagai, P. L., Poudel, R., Poudel, S., & Bhattarai, A. (2022). Adsorption and removal of crystal violet dye from aqueous solution by modified rice husk. Heliyon, 8(4).
  • Ismail, G. A., & Sakai, H. (2022). Review on effect of different type of dyes on advanced oxidation processes (AOPs) for textile color removal. Chemosphere, 291, 132906.
  • Lagergren SK (1898) About the theory of so-called adsorption of soluble substances. Sven. Vetenskapsakad. Handingarl 24: 1-39.
  • Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society 1918 40 (9), 1361-1403. https://doi.org/10.1021/ja02242a004
  • Marco-Brown, J. L., Guz, L., Olivelli, M. S., Schampera, B., Sánchez, R. T., Curutchet, G., & Candal, R. (2018). New insights on crystal violet dye adsorption on montmorillonite: Kinetics and surface complexes studies. Chemical Engineering Journal, 333, 495-504.
  • Moradihamedani, P. (2022). Recent advances in dye removal from wastewater by membrane technology: a review. Polymer Bulletin, 79(4), 2603-2631.
  • Okpara, O. G., Ogbeide, O. M., Ike, O. C., Menechukwu, K. C., & Ejike, E. C. (2021). Optimum isotherm by linear and nonlinear regression methods for lead (II) ions adsorption from aqueous solutions using synthesized coconut shell–activated carbon (SCSAC). Toxin Reviews, 40(4), 901-914.
  • Putri, K. N. A., Keereerak, A., & Chinpa, W. (2020). Novel cellulose-based biosorbent from lemongrass leaf combined with cellulose acetate for adsorption of crystal violet. International journal of biological macromolecules, 156, 762-772.
  • Reddy, D. D., Ghosh, R. K., Bindu, J. P., Mahadevaswamy, M., & Murthy, T. G. K. (2017). Removal of methylene blue from aqueous system using tobacco stems biomass: Kinetics, mechanism and single‐stage adsorber design. Environmental Progress & Sustainable Energy, 36(4), 1005-1012.
  • Sabna, V., Thampi, S. G., & Chandrakaran, S. (2016). Adsorption of crystal violet onto functionalised multi-walled carbon nanotubes: equilibrium and kinetic studies. Ecotoxicology and Environmental Safety, 134, 390-397.
  • Sarma, G. K., Gupta, S. S., & Bhattacharyya, K. G. (2016). RETRACTED: Adsorption of Crystal violet on raw and acid-treated montmorillonite, K10, in aqueous suspension.
  • Sewu, D. D., Lee, D. S., Woo, S. H., & Kalderis, D. (2021). Decolorization of triarylmethane dyes, malachite green, and crystal violet, by sewage sludge biochar: Isotherm, kinetics, and adsorption mechanism comparison. Korean Journal of Chemical Engineering, 38, 531-539.
  • Singh, A., Kumar, S., & Panghal, V. (2021). Adsorption of chromium (Cr6+) on dead biomass of Salvinia molesta (Kariba weed) and Typha latifolia (broadleaf cattail): isotherm, kinetic, and thermodynamic study. Applied Water Science, 11(9), 149.
  • Shirsath, S. R., Patil, A. P., Bhanvase, B. A., & Sonawane, S. H. (2015). Ultrasonically prepared poly (acrylamide)-kaolin composite hydrogel for removal of crystal violet dye from wastewater. Journal of Environmental Chemical Engineering, 3(2), 1152-1162.
  • Song, J., Zhang, R., Li, K., Li, B., & Tang, C. (2015). Adsorption of copper and zinc on activated carbon prepared from Typha latifolia L. CLEAN–Soil, Air, Water, 43(1), 79-85.
  • Sultana, S., Islam, K., Hasan, M. A., Khan, H. J., Khan, M. A. R., Deb, A., ... & Rahman, M. W. (2022). Adsorption of crystal violet dye by coconut husk powder: isotherm, kinetics and thermodynamics perspectives. Environmental Nanotechnology, Monitoring & Management, 17, 100651.
  • Şentürk, İ. (2024). Sentezlenen metal oksit nanokompozit yardimiyla sucul çözeltilerden reaktif azo boya giderimi. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 27(2), 523-538.
  • Temel, F. A. (2024). Everzol Yellow 3RS Boyar Maddesinin Gidya Üzerine Adsorpsiyonu: Kinetik ve İzoterm Çalışmaları. Karadeniz Fen Bilimleri Dergisi, 14(1), 194-210.
  • Temkin MI (1941) Adsorption equilibrium and the kinetics of processes on nonhomogeneous surfaces and in the interaction between adsorbed molecules. Zhurnal Fiziche- skoi Khimii 15: 296-332.
  • Tkaczyk, A., Mitrowska, K., & Posyniak, A. (2020). Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: A review. Science of the total environment, 717, 137222.
  • Tran, T. H., Le, A. H., Pham, T. H., Nguyen, D. T., Chang, S. W., Chung, W. J., & Nguyen, D. D. (2020). Adsorption isotherms and kinetic modeling of methylene blue dye onto a carbonaceous hydrochar adsorbent derived from coffee husk waste. Science of the Total Environment, 725, 138325.

Removal of Crystal Violet Dye from Aqueous Solution by a Modified Adsorbent; Optimum Isotherm with Linear and Nonlinear Model Equations, Kinetic and Design

Yıl 2024, Cilt: 14 Sayı: 4, 2227 - 2243, 15.12.2024
https://doi.org/10.31466/kfbd.1548851

Öz

Dyes are widely used in many industries worldwide. Wastewater contaminated with dyes is an important source of pollution that poses a threat to both water resources and living life. Therefore, dyed wastewater must be treated before being discharged into the environment. Adsorption technology is one of the systems used effectively in the removal of dyes. The efficiency and cost of the system are closely related to the adsorbent used. In this study, an aquatic plant (Typha latifolia), abundantly found in ditches, swamps and wetlands, was modified and its evaluation as an efficient adsorbent for the removal of Crystal Violet from aqueous solution was investigated. SDS (sodium dodecyl sulfonate) was used as modification agent. The pHpzc (zero charge point) value of the adsorbent was determined. Basic operating parameters such as adsorbent dosage in the range of 0.5-2 g/L, dye concentration in the range of 5-20 mg/L, pH value in the range of 5-8 and contact time in the range of 0-360 min were investigated. The optimum parameters were determined as pH 8, adsorbent dosage: 0.5 g/L, adsorption time: 240 minutes. Linear and nonlinear model data of 3 different Isotherm (Langmuir, Freundlich and Temkin) models were compared. Temkin isotherm model explained the adsorption process in the best way by producing the smallest error functions with both linear and nonlinear model equations. A one-stage reactor system based on the best-fit isotherm model for dyed wastewater is also presented. The kinetic model data were in good agreement with the results of the pseudo-second-order model. It is concluded that the adsorbent prepared by modifying with surfactant will perform successfully in the treatment of dyed wastewater.

Kaynakça

  • Amri, A. E., Bensalah, J., Essaadaoui, Y., Lebkiri, I., Abbou, B., Zarrouk, A., & Lebkiri, A. (2022). Elaboration, characterization and performance evaluation of a new environmentally friendly adsorbent material based on the reed filter (Typha Latifolia): Kinetic and thermodynamic studies and application in the adsorption of Cd (II) ion. Chemical Data Collections, 39, 100849.
  • Asad, S., Amoozegar, M. A., Pourbabaee, A., Sarbolouki, M. N., & Dastgheib, S. M. M. (2007). Decolorization of textile azo dyes by newly isolated halophilic and halotolerant bacteria. Bioresource technology, 98(11), 2082-2088.
  • Ayuba, A. M., & Sani, M. (2022). Removal of Eriochrome Black T dye from aqueous solution using base activated typha grass (Typha latifolia) as an adsorbent. Bayero Journal of Pure and Applied Sciences, 15(1), 95-104.
  • Bhad, R. M., Das, A., & Kodape, S. M. (2022). Ozonation of procion blue reactive dye and its kinetics study. Pollution, 8(2), 529-541.
  • Bingül, Z. (2022). Determination of affecting parameters on removal of methylene blue dyestuff from aqueous solutions using natural clay: Isotherm, kinetic, and thermodynamic studies. Journal of Molecular Structure, 1250, 131729.
  • Chen, C. C., Liao, H. J., Cheng, C. Y., Yen, C. Y., & Chung, Y. C. (2007). Biodegradation of crystal violet by Pseudomonas putida. Biotechnology letters, 29, 391-396.
  • Cheruiyot, G. K., Wanyonyi, W. C., Kiplimo, J. J., & Maina, E. N. (2019). Adsorption of toxic crystal violet dye using coffee husks: Equilibrium, kinetics and thermodynamics study. Scientific African, 5, e00116.
  • Chowdhury, S., & Das, P. (2011). Linear and nonlinear regression analyses for binary sorption kinetics of methylene blue and safranin onto pretreated rice husk. Bioremediation journal, 15(2), 99-108.
  • Dordio, A. V., Belo, M., Teixeira, D. M., Carvalho, A. P., Dias, C. M. B., Picó, Y., & Pinto, A. P. (2011). Evaluation of carbamazepine uptake and metabolization by Typha spp., a plant with potential use in phytotreatment. Bioresource technology, 102(17), 7827-7834.
  • Duraipandian, J., Rengasamy, T., & Vadivelu, S. (2017). Experimental and modeling studies for the removal of crystal violet dye from aqueous solutions using eco-friendly Gracilaria corticata seaweed activated carbon/Zn/Alginate Polymeric composite beads. Journal of polymers and the environment, 25, 1062-1071.
  • Dutta, S., Gupta, B., Srivastava, S. K., & Gupta, A. K. (2021). Recent advances on the removal of dyes from wastewater using various adsorbents: A critical review. Materials Advances, 2(14), 4497-4531.
  • El Amri, A., Bensalah, J., Idrissi, A., Lamya, K., Ouass, A., Bouzakraoui, S., ... & Lebkiri, A. (2022). Adsorption of a cationic dye (Methylene blue) by Typha Latifolia: Equilibrium, kinetic, thermodynamic and DFT calculations. Chemical Data Collections, 38, 100834.
  • El Amri, A., Kadiri, L., Hsissou, R., Lebkiri, A., Wardighi, Z., & Lebkiri, A. (2023). Investigation of Typha Latifolia (TL) as potential biosorbent for removal of the methyl orange anionic dye in the aqueous solution. Kinetic and DFT approaches. Journal of Molecular Structure, , 1272, 134098.
  • Freundlich HMF (1906) Over the adsorption in solution. J Phys chem 57: 385-471.
  • Ganguly, P., Sarkhel, R., & Das, P. (2020). Synthesis of pyrolyzed biochar and its application for dye removal: Batch, kinetic and isotherm with linear and non-linear mathematical analysis. Surfaces and Interfaces, 20, 100616.
  • Gümüş D., 2022 Organik Atiklardan Üretilen Kompozit Bir Modifiye Biyokömür Kullanilarak Sulu Çözeltiden Safranin T Giderimi, KSÜ Mühendislik Bilimleri Dergisi, 25(3), 2022, Araştırma Makalesi.
  • Gümüş, D., Yumak, T., & Gümüş, F. (2021). Removal of Cefdinir from Water Using Waste Material‐Derived Activated Biochar as a Rapid, Effective, and Sustainable Adsorbent. CLEAN–Soil, Air, Water, 49(7), 2000420.
  • Gümüş, D., & Gümüş, F. (2019). The use of a wetland plant as a new biosorbent for treatment of water contaminated with heavy metals: Nonlinear analyses, modification, competitive effects. Environmental technology & innovation, 16, 100483.
  • Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochemistry 34(5): 451-465.
  • Homagai, P. L., Poudel, R., Poudel, S., & Bhattarai, A. (2022). Adsorption and removal of crystal violet dye from aqueous solution by modified rice husk. Heliyon, 8(4).
  • Ismail, G. A., & Sakai, H. (2022). Review on effect of different type of dyes on advanced oxidation processes (AOPs) for textile color removal. Chemosphere, 291, 132906.
  • Lagergren SK (1898) About the theory of so-called adsorption of soluble substances. Sven. Vetenskapsakad. Handingarl 24: 1-39.
  • Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society 1918 40 (9), 1361-1403. https://doi.org/10.1021/ja02242a004
  • Marco-Brown, J. L., Guz, L., Olivelli, M. S., Schampera, B., Sánchez, R. T., Curutchet, G., & Candal, R. (2018). New insights on crystal violet dye adsorption on montmorillonite: Kinetics and surface complexes studies. Chemical Engineering Journal, 333, 495-504.
  • Moradihamedani, P. (2022). Recent advances in dye removal from wastewater by membrane technology: a review. Polymer Bulletin, 79(4), 2603-2631.
  • Okpara, O. G., Ogbeide, O. M., Ike, O. C., Menechukwu, K. C., & Ejike, E. C. (2021). Optimum isotherm by linear and nonlinear regression methods for lead (II) ions adsorption from aqueous solutions using synthesized coconut shell–activated carbon (SCSAC). Toxin Reviews, 40(4), 901-914.
  • Putri, K. N. A., Keereerak, A., & Chinpa, W. (2020). Novel cellulose-based biosorbent from lemongrass leaf combined with cellulose acetate for adsorption of crystal violet. International journal of biological macromolecules, 156, 762-772.
  • Reddy, D. D., Ghosh, R. K., Bindu, J. P., Mahadevaswamy, M., & Murthy, T. G. K. (2017). Removal of methylene blue from aqueous system using tobacco stems biomass: Kinetics, mechanism and single‐stage adsorber design. Environmental Progress & Sustainable Energy, 36(4), 1005-1012.
  • Sabna, V., Thampi, S. G., & Chandrakaran, S. (2016). Adsorption of crystal violet onto functionalised multi-walled carbon nanotubes: equilibrium and kinetic studies. Ecotoxicology and Environmental Safety, 134, 390-397.
  • Sarma, G. K., Gupta, S. S., & Bhattacharyya, K. G. (2016). RETRACTED: Adsorption of Crystal violet on raw and acid-treated montmorillonite, K10, in aqueous suspension.
  • Sewu, D. D., Lee, D. S., Woo, S. H., & Kalderis, D. (2021). Decolorization of triarylmethane dyes, malachite green, and crystal violet, by sewage sludge biochar: Isotherm, kinetics, and adsorption mechanism comparison. Korean Journal of Chemical Engineering, 38, 531-539.
  • Singh, A., Kumar, S., & Panghal, V. (2021). Adsorption of chromium (Cr6+) on dead biomass of Salvinia molesta (Kariba weed) and Typha latifolia (broadleaf cattail): isotherm, kinetic, and thermodynamic study. Applied Water Science, 11(9), 149.
  • Shirsath, S. R., Patil, A. P., Bhanvase, B. A., & Sonawane, S. H. (2015). Ultrasonically prepared poly (acrylamide)-kaolin composite hydrogel for removal of crystal violet dye from wastewater. Journal of Environmental Chemical Engineering, 3(2), 1152-1162.
  • Song, J., Zhang, R., Li, K., Li, B., & Tang, C. (2015). Adsorption of copper and zinc on activated carbon prepared from Typha latifolia L. CLEAN–Soil, Air, Water, 43(1), 79-85.
  • Sultana, S., Islam, K., Hasan, M. A., Khan, H. J., Khan, M. A. R., Deb, A., ... & Rahman, M. W. (2022). Adsorption of crystal violet dye by coconut husk powder: isotherm, kinetics and thermodynamics perspectives. Environmental Nanotechnology, Monitoring & Management, 17, 100651.
  • Şentürk, İ. (2024). Sentezlenen metal oksit nanokompozit yardimiyla sucul çözeltilerden reaktif azo boya giderimi. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 27(2), 523-538.
  • Temel, F. A. (2024). Everzol Yellow 3RS Boyar Maddesinin Gidya Üzerine Adsorpsiyonu: Kinetik ve İzoterm Çalışmaları. Karadeniz Fen Bilimleri Dergisi, 14(1), 194-210.
  • Temkin MI (1941) Adsorption equilibrium and the kinetics of processes on nonhomogeneous surfaces and in the interaction between adsorbed molecules. Zhurnal Fiziche- skoi Khimii 15: 296-332.
  • Tkaczyk, A., Mitrowska, K., & Posyniak, A. (2020). Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: A review. Science of the total environment, 717, 137222.
  • Tran, T. H., Le, A. H., Pham, T. H., Nguyen, D. T., Chang, S. W., Chung, W. J., & Nguyen, D. D. (2020). Adsorption isotherms and kinetic modeling of methylene blue dye onto a carbonaceous hydrochar adsorbent derived from coffee husk waste. Science of the Total Environment, 725, 138325.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Çevre Kirliliği ve Önlenmesi
Bölüm Makaleler
Yazarlar

Dilek Gümüş 0000-0001-7665-3057

Fatih Gümüş 0000-0002-4660-7591

Yayımlanma Tarihi 15 Aralık 2024
Gönderilme Tarihi 12 Eylül 2024
Kabul Tarihi 22 Kasım 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 14 Sayı: 4

Kaynak Göster

APA Gümüş, D., & Gümüş, F. (2024). Typha latifolia ile Sulu Çözeltiden Kristal Viyole Boyasının Adsorpsiyonu; Doğrusal ve Doğrusal Olmayan İzoterm, Kinetik ve Dizayn. Karadeniz Fen Bilimleri Dergisi, 14(4), 2227-2243. https://doi.org/10.31466/kfbd.1548851