Araştırma Makalesi
BibTex RIS Kaynak Göster

Effects of Atmospheric Attenuation on LIDAR Wavelength

Yıl 2025, Cilt: 15 Sayı: 1, 191 - 202, 15.03.2025
https://doi.org/10.31466/kfbd.1533366

Öz

In this paper, the effects of atmospheric attenuation parameters on the emission wavelength of LIDARs used in aviation and space studies have been investigated. In this context, simulations of attenuation factor (q), attenuation coefficient (β) and atmospheric attenuation (ηatm) changes have been performed for LIDAR wavelength variations in the range of 800 - 1600 nm, based on the LIDAR visibility standard used in atmospheric measurements and computations. In response to the change in wavelength between 800 nm and 1600 nm, the values of q, β, and ηatm have varied respectively in the ranges of 0.01874 - 0.13218 dB/km, 0.99278 - 0.86685 km-1, and 0.05084 - 0.07425 dB. On the other hand, the change of the atmospheric attenuation with wavelength has been computed as 2.925 × 10-5 dB(nm-1). Furthermore, equations giving the mathematical relationships between the attenuation factor, attenuation coefficient, and LIDAR wavelength for atmospheric attenuation have been derived using Beer-Lambert law. According to this information, it has been observed that as the wavelength increases, the attenuation factor and the atmospheric attenuation increase, while the attenuation coefficient decreases. In conclusion, this study emphasizes the critical importance of evaluating the effects of wavelength selection on atmospheric attenuation parameters in LIDARs and provides valuable information to the researchers in this field.

Destekleyen Kurum

TUSAŞ A.Ş. (TAI)

Teşekkür

This research paper has been carried out within the scope of the TAI project numbered 64cce8db5c864 and named LiDAR Applications in Aerospace.

Kaynakça

  • Allahverdi, K., Baykara, T., Hüseyinoğlu, F., and Seçgin, A. (2009). LIDAR. Türkiye Bilim ve Teknik Dergisi, 42(636), 72 – 75.
  • Anderson, E. S., Thompson, J. A., and Austin, R. E. (2005). LIDAR density and linear interpolator effects on elevation estimates. International Journal of Remote Sensing, 26(18), 3889 – 3900. https://doi.org/10.1080/01431160500181671
  • Blackburn, G.A. (2002). Remote sensing of forest pigments using airborne imaging spectrometer and LIDAR imagery. Remote Sensing of Environment, 82(2–3), 311–321. https://doi.org/10.1016/S0034-4257(02)00049-4
  • Collis, R. T. H. (1970). LIDAR. Applied Optics, 9(8), 1782 – 1788. https://doi.org/10.1364/AO.9.001782
  • Cracknell, Arthur P., Hayes, Ladson (2007). Introduction to Remote Sensing (2nd ed.). London: Taylor and Francis. ISBN 978-0-8493-9255-9. OCLC 70765252.
  • Dakin, P. J., Brown, R. (2017). Handbook of Optoelectronics: Concepts, Devices, and Techniques (Volume One). CRC Press. p. 678. ISBN 978-1-4822-4179-2.
  • Goodman, J.A., Purkis, S.J., Phinn, S.R. (Eds.). (2013). Coral Reef Remote Sensing – A Guide for Mapping, Monitoring and Management. pp. 115 – 143, Springer, Netherlands.
  • Heath, D.R. (1993). Telecommunications Engineer's Reference Book. Ch. 7, Optics and vision, p. 1 – 13. Butterworth-Heinemann, Elseiver, Oxford.
  • Höfle, B., and Rutzinger, M. (2011). Topographic airborne LiDAR in geomorphology: A technological perspective. Zeitschrift für Geomorphologie, Vol. 55, Suppl. 2, 1 – 29.
  • Islam, S. et al. (2022). Autonomous Driving Vehicle System Using LiDAR Sensor. In: Hemanth, D.J., Pelusi, D., Vuppalapati, C. (eds) Intelligent Data Communication Technologies and Internet of Things. Lecture Notes on Data Engineering and Communications Technologies, vol 101. Springer, Singapore. https://doi.org/10.1007/978-981-16-7610-9_25.
  • Jelalian, R. (1992). Laser Radar Systems. – Artech House, Boston, London, pp. 292.
  • McManamon, P. (2019). LIDAR Technology and Systems. SPIE Press, Bellingham, Washington. http://spie.org.
  • Ratcliffe, S., 2005. A digital signal processing technique for time¬-of¬f-light laser rangefinding. In Optical 3¬D Measurement Techniques VII, A. Grün / H. Kahmen (Eds.). Vol. 2, pp. 359 – 364.
  • Reshetyuk, Y. (2006). Calibration of terrestrial laser scanners for the purposes of geodetic engineering. 3rd IAG Symposium of Geodesy for Geotechnical and Structural Engineering and 12th FIG Symposium on Deformation Measurements (s. 1 – 10). Baden, Austria.
  • Reutebuch, S. E., Andersen, H. E., & McGaughey, R. J. (2005). Light detection and ranging (LIDAR): an emerging tool for multiple resource inventory. Journal of forestry, 103(6), 286 – 292.
  • Rueger, J.M. (1990). Electronic distance measurement, An Introduction. 3rd totally revised edition. Springer. p. 266.
  • Weichel, H. (1990). Laser beam propagation in the atmosphere. (Vol. 3). SPIE press.
  • Weitkamp, C (ed). (2006). LiDAR: Range-resolved optical remote sensing of the atmosphere. 102, Springer Science & Business. Springer series in optical sciences, ISSN 0342-4111; 102, ISBN 0-387-40075-3.
  • Wunderlich, T.A. (2003). Terrestrial Laser Scanners - an Important Step towards Construction Information. FIG Working Week. 13 – 17 April, Paris, France.
  • Yakar, İ., Çelik, M.Ö., Hamal, S.N.G., and Bilgi, S. (2021). Kültürel Mirasın Dokümantasyonu Çalışmalarında Farklı Yazılımların Karşılaştırılması: Dikilitaş (Theodosius Obeliski) Örneği. Geomatik, 6(3), p. 217-226. https://doi.org/10.29128/geomatik.761475.
  • Yan, W.Y., Shaker, A., El-Ashmawy, N. (2015). Urban land cover classification using airborne LiDAR data: A review. Remote Sensing of Environment, Vol. 158, 295 – 310, ISSN 0034-4257. https://doi.org/10.1016/j.rse.2014.11.001.
  • Yılmaz, H., and Yakar, M. (2016). LIDAR (Light Detection and Ranging) Tarama Sistemi. Yapı Teknolojileri Elektronik Dergisi, 2(2), 23 – 33.

Atmosferik Zayıflamanın LiDAR Dalgaboyu Üzerindeki Etkileri

Yıl 2025, Cilt: 15 Sayı: 1, 191 - 202, 15.03.2025
https://doi.org/10.31466/kfbd.1533366

Öz

Bu makalede, atmosferik zayıflama parametrelerinin, havacılık ve uzay çalışmalarında kullanılan LiDAR’ların ışıma dalgaboyu üzerindeki etkileri incelenmiştir. Bu kapsamda, atmosferik ölçüm ve hesaplamalarda kullanılan LiDAR görünürlük standardı esas alınarak, 800 – 1600 nm aralığındaki LiDAR dalgaboyu değişimleri için zayıflama faktörü (q), zayıflama katsayısı (β) ve atmosferik zayıflama (ηatm) değişimlerinin simülasyonları gerçekleştirilmiştir. Dalgaboyunun, 800 nm ile 1600 nm arasındaki değişimine karşılık, q, β, ve ηatm değerleri sırasıyla, 0.01874 – 0.13218 dB/km, 0.99278 – 0.86685 km-1 ve 0.05084 – 0.07425 dB aralığında değişmiştir. Diğer yandan, atmosferik zayıflamanın dalgaboyu ile değişimi, 2.925 × 10-5 dB.(nm-1) olarak hesaplanmıştır. Ayrıca, Beer-Lambert yasasından yararlanılarak zayıflama faktörü, zayıflama katsayısı ve atmosferik zayıflama için LiDAR dalgaboyu arasındaki matematiksel ilişkileri veren denklemler türetilmiştir. Bu bilgilere göre, dalgaboyu arttıkça zayıflama faktörü ve atmosferik zayıflama artış gösterirken, zayıflama katsayısında azalma olduğu görülmüştür. Sonuç olarak, bu çalışma, hava LiDAR'larda dalga boyu seçiminin atmosferik zayıflama parametreleri üzerindeki etkilerinin değerlendirilmesinde kritik önemi vurgulamakta ve bu alandaki araştırmacılara değerli bilgiler sunmaktadır.

Destekleyen Kurum

TUSAŞ A.Ş.

Teşekkür

Bu araştırma makalesi, 64cce8db5c864 numaralı ve Havacılıkta LiDAR Uygulamaları isimli TAI projesi kapsamında gerçekleştirilmiştir.

Kaynakça

  • Allahverdi, K., Baykara, T., Hüseyinoğlu, F., and Seçgin, A. (2009). LIDAR. Türkiye Bilim ve Teknik Dergisi, 42(636), 72 – 75.
  • Anderson, E. S., Thompson, J. A., and Austin, R. E. (2005). LIDAR density and linear interpolator effects on elevation estimates. International Journal of Remote Sensing, 26(18), 3889 – 3900. https://doi.org/10.1080/01431160500181671
  • Blackburn, G.A. (2002). Remote sensing of forest pigments using airborne imaging spectrometer and LIDAR imagery. Remote Sensing of Environment, 82(2–3), 311–321. https://doi.org/10.1016/S0034-4257(02)00049-4
  • Collis, R. T. H. (1970). LIDAR. Applied Optics, 9(8), 1782 – 1788. https://doi.org/10.1364/AO.9.001782
  • Cracknell, Arthur P., Hayes, Ladson (2007). Introduction to Remote Sensing (2nd ed.). London: Taylor and Francis. ISBN 978-0-8493-9255-9. OCLC 70765252.
  • Dakin, P. J., Brown, R. (2017). Handbook of Optoelectronics: Concepts, Devices, and Techniques (Volume One). CRC Press. p. 678. ISBN 978-1-4822-4179-2.
  • Goodman, J.A., Purkis, S.J., Phinn, S.R. (Eds.). (2013). Coral Reef Remote Sensing – A Guide for Mapping, Monitoring and Management. pp. 115 – 143, Springer, Netherlands.
  • Heath, D.R. (1993). Telecommunications Engineer's Reference Book. Ch. 7, Optics and vision, p. 1 – 13. Butterworth-Heinemann, Elseiver, Oxford.
  • Höfle, B., and Rutzinger, M. (2011). Topographic airborne LiDAR in geomorphology: A technological perspective. Zeitschrift für Geomorphologie, Vol. 55, Suppl. 2, 1 – 29.
  • Islam, S. et al. (2022). Autonomous Driving Vehicle System Using LiDAR Sensor. In: Hemanth, D.J., Pelusi, D., Vuppalapati, C. (eds) Intelligent Data Communication Technologies and Internet of Things. Lecture Notes on Data Engineering and Communications Technologies, vol 101. Springer, Singapore. https://doi.org/10.1007/978-981-16-7610-9_25.
  • Jelalian, R. (1992). Laser Radar Systems. – Artech House, Boston, London, pp. 292.
  • McManamon, P. (2019). LIDAR Technology and Systems. SPIE Press, Bellingham, Washington. http://spie.org.
  • Ratcliffe, S., 2005. A digital signal processing technique for time¬-of¬f-light laser rangefinding. In Optical 3¬D Measurement Techniques VII, A. Grün / H. Kahmen (Eds.). Vol. 2, pp. 359 – 364.
  • Reshetyuk, Y. (2006). Calibration of terrestrial laser scanners for the purposes of geodetic engineering. 3rd IAG Symposium of Geodesy for Geotechnical and Structural Engineering and 12th FIG Symposium on Deformation Measurements (s. 1 – 10). Baden, Austria.
  • Reutebuch, S. E., Andersen, H. E., & McGaughey, R. J. (2005). Light detection and ranging (LIDAR): an emerging tool for multiple resource inventory. Journal of forestry, 103(6), 286 – 292.
  • Rueger, J.M. (1990). Electronic distance measurement, An Introduction. 3rd totally revised edition. Springer. p. 266.
  • Weichel, H. (1990). Laser beam propagation in the atmosphere. (Vol. 3). SPIE press.
  • Weitkamp, C (ed). (2006). LiDAR: Range-resolved optical remote sensing of the atmosphere. 102, Springer Science & Business. Springer series in optical sciences, ISSN 0342-4111; 102, ISBN 0-387-40075-3.
  • Wunderlich, T.A. (2003). Terrestrial Laser Scanners - an Important Step towards Construction Information. FIG Working Week. 13 – 17 April, Paris, France.
  • Yakar, İ., Çelik, M.Ö., Hamal, S.N.G., and Bilgi, S. (2021). Kültürel Mirasın Dokümantasyonu Çalışmalarında Farklı Yazılımların Karşılaştırılması: Dikilitaş (Theodosius Obeliski) Örneği. Geomatik, 6(3), p. 217-226. https://doi.org/10.29128/geomatik.761475.
  • Yan, W.Y., Shaker, A., El-Ashmawy, N. (2015). Urban land cover classification using airborne LiDAR data: A review. Remote Sensing of Environment, Vol. 158, 295 – 310, ISSN 0034-4257. https://doi.org/10.1016/j.rse.2014.11.001.
  • Yılmaz, H., and Yakar, M. (2016). LIDAR (Light Detection and Ranging) Tarama Sistemi. Yapı Teknolojileri Elektronik Dergisi, 2(2), 23 – 33.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektronik Algılayıcılar, Elektronik Cihaz ve Sistem Performansı Değerlendirme, Test ve Simülasyon, Fotonik ve Elektro-Optik Cihazlar, Sensörler ve Sistemler (İletişim Hariç)
Bölüm Makaleler
Yazarlar

Abdurrahman Günday 0000-0002-3262-3494

Aydın Balabey 0009-0004-1951-9811

Canberk Utar 0009-0000-0788-453X

Muhammed Mert Yılmaz 0009-0009-4386-9631

Muhammed Demir 0009-0009-9792-7788

Taylan Sipahi 0000-0003-4730-1276

Yayımlanma Tarihi 15 Mart 2025
Gönderilme Tarihi 14 Ağustos 2024
Kabul Tarihi 10 Ocak 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 15 Sayı: 1

Kaynak Göster

APA Günday, A., Balabey, A., Utar, C., Yılmaz, M. M., vd. (2025). Effects of Atmospheric Attenuation on LIDAR Wavelength. Karadeniz Fen Bilimleri Dergisi, 15(1), 191-202. https://doi.org/10.31466/kfbd.1533366