Loading [a11y]/accessibility-menu.js
Araştırma Makalesi
BibTex RIS Kaynak Göster

Mikrokristalin Selülozun Su Bazlı Sondaj Sıvılarında Viskozlaştırıcı Katkı Maddesi Olarak Değerlendirilmesi

Yıl 2025, Cilt: 15 Sayı: 1, 272 - 288, 15.03.2025
https://doi.org/10.31466/kfbd.1538554

Öz

Sondaj operasyonlarında sondaj sıvısı için verimli bir akış geliştirmek oldukça önemlidir. Bu amaçla, kuyu içindeki akış özelliklerini düzenlemek için birçok organik ve inorganik katkı maddesi kullanılmaktadır. Ancak, kuyu planlamasında ekonomik, çevre dostu ve verimli katkı maddeleri kullanılmak istenmektedir. Bu nedenle son yıllarda yapılan çalışmalarda bu yeni maddeler araştırılmakta ve geliştirilmektedir. Bu çalışmada, yeni bir viskozite artırıcı katkı malzemesi olarak mikrokristalin selüloz (MCC) su bazlı sondaj sıvıları için değerlendirilmiştir. Karakterizasyonlar X-ışını kırınımı (XRD), flourier transform infrared spektroskopisi (FT-IR) yöntemleri ve dijital mikroskopi (DM) görüntüleri ile belirlenmiştir. Deneysel çalışmalarda, su bazlı sondaj çamurları farklı oranlarda MCC kullanılarak hazırlanmıştır. Reoloji testleri Görünür viskozite (AV), plastik viskozite (PV) ve kopma noktası (YP) ölçümleri yapılmıştır. Ayrıca tiksotropi hesaplamaları (STI ve TI) ve filtrasyon ölçümleri yapılmıştır. MCC eklenmiş numunelerin sonuçlarına göre, maksimum AV, PV ve YP sırasıyla 43 cP, 16 cP ve 54 lb/100ft2 olarak ölçülmüştür. Optimal STI ve TI değerleri sırasıyla 0.1 ve 0.915 olarak hesaplanmıştır. Minimum filtrat 11,9 ml olarak elde edilmiştir. Sonuçlar, MCC'nin su bazlı sondaj çamurları üzerinde etkili bir viskozlaştırıcı katkı maddesi olduğunu göstermiştir.

Kaynakça

  • Abdou, M. I., & El-Sayed Ahmed, H. (2011). Effect of particle size of bentonite on rheological behavior of the drilling mud. Petroleum science and technology, 29(21), 2220-2233.
  • Agwu, O. E., Akpabio, J. U., Ekpenyong, M. E., Inyang, U. G., Asuquo, D. E., Eyoh, I. J., & Adeoye, O. S. (2021). A comprehensive review of laboratory, field and modelling studies on drilling mud rheology in high temperature high pressure (HTHP) conditions. Journal of Natural Gas Science and Engineering, 94, 104046.
  • Akpan, E. U. (2024). Utilising Environmentally Friendly Polymers as Rheological Control and Fluid Loss Additives in Water-Based Drilling Muds. Geoenergy Science and Engineering, 213195.
  • Al-Hameedi, A. T. T., Alkinani, H. H., Dunn-Norman, S., Al-Alwani, M. A., Alshammari, A. F., Alkhamis, M. M., & Al-Bazzaz, W. H. (2020). Experimental investigation of environmentally friendly drilling fluid additives (mandarin peels powder) to substitute the conventional chemicals used in water-based drilling fluid. Journal of Petroleum Exploration and Production Technology, 10, 407-417.
  • Ali, J. A., Ahmed, R. N., Abdullah, A. D., Ali, N. H., Kalhury, A. M., Sabir, A. N., & Mohammadi, A. H. (2022). Development of a nanobiodegradable drilling fluid using Prosopis farcta plant and pomegranate peel powders with metal oxide nanoparticles. ACS omega, 7(35), 31327-31337.
  • Almahdawi, F. H., Al Hasani, M. N. H., & Jasim, H. S. (2018). Tragacanth Gum As Local Alternatives To Improve Viscosity And Filtration Control. Journal of Petroleum Research and Studies, 8(4), 1-15.
  • Al-Shargabi, M., Davoodi, S., Wood, D. A., Al-Musai, A., Rukavishnikov, V. S., & Minaev, K. M. (2022). Nanoparticle applications as beneficial oil and gas drilling fluid additives: A review. Journal of Molecular Liquids, 352, 118725.
  • Al-Shargabi, M., Davoodi, S., Wood, D. A., Al-Rubaii, M., Minaev, K. M., & Rukavishnikov, V. S. (2023). Hole-cleaning performance in non-vertical wellbores: A review of influences, models, drilling fluid types, and real-time applications. Geoenergy Science and Engineering, 212551.
  • American Petroleum Institute (API). (2017). 13B-1. Recommended Practice Standard for Field Testing Water-Based Drilling Fluids, USA.
  • Arinkoola, A. O., Jimoh, M. O., Salawudeen, T. O., & Daramola, M. O. (2022). Application of Irvingia gabonensis, Manihot esculenta and Artocarpus altilis as rheological modifier in water-based drilling fluid. Materials Today: Proceedings, 65, 2236-2244.
  • Awais, H., Nawab, Y., Amjad, A., Anjang, A., Akil, H. M., & Abidin, M. S. Z. (2021). Environmental benign natural fibre reinforced thermoplastic composites: A review. Composites Part C: Open Access, 4, 100082.
  • Bagum, M., Ahammad, J. M., Husain, T., & Hossain, M. E. (2022). An experimental study to develop an environmental friendly mud additive of drilling fluid using Aloe Vera. Journal of Petroleum Science and Engineering, 211, 110135.
  • Biwott, T. C., Kiprop, A. K., Akaranta, O., & Boniface, O. (2019). Terminalia mantaly leaves as a novel additive in water-based drilling MUD. International Journal of Chemical Studies, 7(6), 2173-2181.
  • Bleier, R. (1990). Selecting a drilling fluid. Journal of Petroleum technology, 42(07), 832-834.
  • Bloys, B., Davis, N., Smolen, B., Bailey, L., Houwen, O., Reid, P., & Montrouge, F. J. O. R. (1994). Designing and managing drilling fluid. Oilfield review, 6(2), 33-43.
  • Bureš, M. S., Maslov Bandić, L., & Vlahoviček-Kahlina, K. (2023). Determination of bioactive components in mandarin fruits: A review. Critical reviews in analytical chemistry, 53(7), 1489-1514.
  • Caenn, R., & Chillingar, G. V. (1996). Drilling fluids: State of the art. journal of petroleum science and engineering, 14(3-4), 221-230.
  • Chen, J., Ye, J., Song, T., Lu, Z., & Xiong, J. (2023). Flowability, binding and release property of “self-lubricating” microcrystalline cellulose. Industrial Crops and Products, 196, 116501.
  • Dairanieh, I. S., & Lahalih, S. M. (1988). Novel polymeric drilling mud viscosifiers. European polymer journal, 24(9), 831-835.
  • Dlama, T. T., Oluwagbemileke, A. S., & Monday, D. (2016). Comparative study of the quantitative phytochemical constituents and antibacterial activity of five tree species. European Journal of Advanced Research in Biological and Life Sciences 4(1).
  • Erge, O., Sakaoglu, K., Sonmez, A., Bagatir, G., Dogan, H. A., Ay, A., & Gucuyener, I. H. (2020). Overview and design principles of drilling fluids systems for geothermal Wells in Turkey. Geothermics, 88, 101897.
  • Gao, X., Zhong, H. Y., Zhang, X. B., Chen, A. L., Qiu, Z. S., & Huang, W. A. (2021). Application of sustainable basil seed as an eco-friendly multifunctional additive for water-based drilling fluids. Petroleum Science, 18(4), 1163-1181.
  • Guan, Z., Chen, T., & Liao, H. (2021). Theory and technology of drilling engineering (Vol. 789). Singapore: Springer.
  • Hoai, N. T., Van Hien, P., Vu, N. S. H., Son, D. L., Van Man, T., Tri, M. D., & Nam, N. D. (2019). An improved corrosion resistance of steel in hydrochloric acid solution using Hibiscus sabdariffa leaf extract. Chemical Papers, 73, 909-925.
  • Hossain, M. E., & Wajheeuddin, M. (2016). The use of grass as an environmentally friendly additive in water-based drilling fluids. Petroleum Science, 13, 292-303.
  • Ismail, A., Rashid, H. M. A., Gholami, R., & Raza, A. (2022). Characterization based machine learning modeling for the prediction of the rheological properties of water-based drilling mud: an experimental study on grass as an environmental friendly additive. Journal of Petroleum Exploration and Production Technology, 12(6), 1677-1695.
  • Jain, R., Mahto, V., & Mahto, T. K. (2014). Study of the effect of xanthan gum based graft copolymer on water based drilling fluid. Journal of macromolecular science, Part A, 51(12), 976-982.
  • Kasperek, R., Polski, A., Sobótka-Polska, K., & Poleszak, E. (2014). Influence of polymer type on the physical properties and the release study of papaverine hydrochloride from tablets. Polymers in Medicine, 44(1), 5-12.
  • Kelessidis, V. C., Poulakakis, E., & Chatzistamou, V. (2011). Use of Carbopol 980 and carboxymethyl cellulose polymers as rheology modifiers of sodium-bentonite water dispersions. Applied clay science, 54(1), 63-69.
  • Khan, M. A., Li, M. C., Lv, K., Sun, J., Liu, C., Liu, X., Shen, H., dai, L., & Lalji, S. M. (2024). Cellulose derivatives as environmentally-friendly additives in water-based drilling fluids: A review. Carbohydrate Polymers, 122355.
  • Khorasani, A. C., & Satvati, P. R. (2024). Reusable cellulose-based biosorbents for efficient iodine adsorption by economic microcrystalline cellulose production from walnut shell. International Journal of Biological Macromolecules, 256, 128432.
  • Kim, J., & Dornfeld, D. A. (2001). Cost estimation of drilling operations by a drilling burr control chart and Bayesian statistics. Journal of manufacturing systems, 20(2), 89-97.
  • Levis, S. R., & Deasy, P. B. (2001). Production and evaluation of size reduced grades of microcrystalline cellulose. International journal of pharmaceutics, 213(1-2), 13-24.
  • Liu, Z., Zhang, C., Li, Q., Davarpanah, A., & Metwally, A. S. M. (2022). Effectiveness of cellulose polyanionic-based polymers on the measurement of rheological properties of water-based drilling fluids in high-pressure high-temperature fractured shale reservoirs. Applied Water Science, 12(5), 85.
  • Mamukuyomi, J. (2021). Evaluation of the rheological and pH control performance of plantain peel-snail shell biocomposite additive in water based drilling fluid. Journal of Engineering and Technology, 15(1), 1-10.
  • Menezes, R. R., Marques, L. N., Campos, L. A., Ferreira, H. S., Santana, L. N. L., & Neves, G. A. (2010). Use of statistical design to study the influence of CMC on the rheological properties of bentonite dispersions for water-based drilling fluids. Applied Clay Science, 49(1-2), 13-20.
  • Okon, A. N., Udoh, F. D., & Bassey, P. G. (2014, August). Evaluation of rice husk as fluid loss control additive in water-based drilling mud. In SPE Nigeria Annual International Conference and Exhibition (pp. SPE-172379). SPE.
  • Okoro, E. E., Dosunmu, A., & Iyuke, S. E. (2018). Data on cost analysis of drilling mud displacement during drilling operation. Data in brief, 19, 535-541.
  • Orun, C. B., Akpabio, J. U., & Agwu, O. E. (2023). Drilling fluid design for depleted zone drilling: An integrated review of laboratory, field, modelling and cost studies. Geoenergy Science and Engineering, 226, 211706.
  • Oseh, J. O., Mohd, N. M., Gbadamosi, A. O., Agi, A., Blkoor, S. O., Ismail, I., & Igbafe, A. I. (2023). Polymer nanocomposites application in drilling fluids: A review. Geoenergy Science and Engineering, 222, 211416.
  • Ouaer, H., & Gareche, M. (2018). The rheological behaviour of a water-soluble polymer (HEC) used in drilling fluids. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40(8), 380.
  • Rathod, R. S. B., Sahoo, P., & Gupta, S. (2023). Effect of microcrystalline cellulose on rheology, hydration kinetics and early-age properties of Portland cement-based and alkali-activated slag-fly ash blend. Journal of Building Engineering, 76, 107218.
  • Saboori, R., Sabbaghi, S., Kalantariasl, A., & Mowla, D. (2018). Improvement in filtration properties of water-based drilling fluid by nanocarboxymethyl cellulose/polystyrene core–shell nanocomposite. Journal of Petroleum Exploration and Production Technology, 8, 445-454.
  • Sid, A. N. E. H., Kouini, B., Hazourli, A., Djafar, R., Gherraf, N., & Bououdina, M. (2022). The synergistic effect of algerian Na-bentonite/potato starch/grass powder on the enhancement of aged water-based drilling fluids. Arabian Journal for Science and Engineering, 47(9), 11721-11732.
  • Suaib, S., Yusof, M. A. B. M., & Ibrahim, M. A. (2022). Experimental study of solanum tuberosum waste as drilling fluid additives. Platform: A Journal of Engineering, 6(2), 23-35.
  • Sun, J. S., Wang, Z. L., Liu, J. P., Lv, K. H., Zhang, F., Shao, Z. H., ... & Zhang, X. F. (2022). Notoginsenoside as an environmentally friendly shale inhibitor in water-based drilling fluid. Petroleum Science, 19(2), 608-618.
  • Villada, Y., Gallardo, F., Erdmann, E., Casis, N., Olivares, L., & Estenoz, D. (2017). Functional characterization on colloidal suspensions containing xanthan gum (XGD) and polyanionic cellulose (PAC) used in drilling fluids for a shale formation. Applied Clay Science, 149, 59-66.
  • Vivas, C., & Salehi, S. (2021). Rheological investigation of effect of high temperature on geothermal drilling fluids additives and lost circulation materials. Geothermics, 96, 102219.
  • Wang, Y., Jiang, B., Lan, J., Xu, N., Sun, J., & Meng, L. (2020). Synthesis and properties of a high-performance environment-friendly micro–nano filtration reducer. RSC advances, 10(70), 43204-43212.
  • Wetterling, J., Mattsson, T., & Theliander, H. (2014). Effects of surface structure on the filtration properties of microcrystalline cellulose. Separation and Purification Technology, 136, 1-9.
  • Wordometer, 2025. Internet Resources: https://www.worldometers.info, Last Access Date: Feb., 27, 2025.
  • Zhu, W., Zheng, X., Shi, J., & Wang, Y. (2021). A high-temperature resistant colloid gas aphron drilling fluid system prepared by using a novel graft copolymer xanthan gum-AA/AM/AMPS. Journal of Petroleum Science and Engineering, 205, 108821.

Evaluation of Microcrystalline Cellulose as Viscosifier Agent in Water-Based Drilling Fluids

Yıl 2025, Cilt: 15 Sayı: 1, 272 - 288, 15.03.2025
https://doi.org/10.31466/kfbd.1538554

Öz

Developing an efficient flow for drilling fluid is important in drilling operations. For this purpose, a lot of organic and inorganic additive agents are used to regulate for flow properties in wellbore. However, cheaply, eco-friendly and efficiently agents are desired in well planning. Thus, new agents have been researching and developing in recent studies. In this study, a new viscosifier agent, which is microcrystalline cellulose (MCC), was evaluated for water-based drilling fluids (WBDFs). Characterizations were determined by X-ray diffraction (XRD) flourier transform infrared spectroscopy (FT-IR) methods and digital microscopy (DM) images. In the experiments, WBDFs were prepared by using different ratios of MCC. Rheology tests were performed by Apparent viscosity (AV), plastic viscosity (PV), yield point (YP) measurements. Thixotropy calculations (STI and TI) and filtration measurements were made. According to results of MCC added samples, maximum AV, PV and YP were measured as 43 cP, 16 cP and 54 lb/100ft2, respectively. The best STI and TI values were calculated as 0.1 and 0.915. Minimum filtrate was obtained as 11.9 ml. Results showed that MCC is effective viscosifier agent on WBDFs.

Kaynakça

  • Abdou, M. I., & El-Sayed Ahmed, H. (2011). Effect of particle size of bentonite on rheological behavior of the drilling mud. Petroleum science and technology, 29(21), 2220-2233.
  • Agwu, O. E., Akpabio, J. U., Ekpenyong, M. E., Inyang, U. G., Asuquo, D. E., Eyoh, I. J., & Adeoye, O. S. (2021). A comprehensive review of laboratory, field and modelling studies on drilling mud rheology in high temperature high pressure (HTHP) conditions. Journal of Natural Gas Science and Engineering, 94, 104046.
  • Akpan, E. U. (2024). Utilising Environmentally Friendly Polymers as Rheological Control and Fluid Loss Additives in Water-Based Drilling Muds. Geoenergy Science and Engineering, 213195.
  • Al-Hameedi, A. T. T., Alkinani, H. H., Dunn-Norman, S., Al-Alwani, M. A., Alshammari, A. F., Alkhamis, M. M., & Al-Bazzaz, W. H. (2020). Experimental investigation of environmentally friendly drilling fluid additives (mandarin peels powder) to substitute the conventional chemicals used in water-based drilling fluid. Journal of Petroleum Exploration and Production Technology, 10, 407-417.
  • Ali, J. A., Ahmed, R. N., Abdullah, A. D., Ali, N. H., Kalhury, A. M., Sabir, A. N., & Mohammadi, A. H. (2022). Development of a nanobiodegradable drilling fluid using Prosopis farcta plant and pomegranate peel powders with metal oxide nanoparticles. ACS omega, 7(35), 31327-31337.
  • Almahdawi, F. H., Al Hasani, M. N. H., & Jasim, H. S. (2018). Tragacanth Gum As Local Alternatives To Improve Viscosity And Filtration Control. Journal of Petroleum Research and Studies, 8(4), 1-15.
  • Al-Shargabi, M., Davoodi, S., Wood, D. A., Al-Musai, A., Rukavishnikov, V. S., & Minaev, K. M. (2022). Nanoparticle applications as beneficial oil and gas drilling fluid additives: A review. Journal of Molecular Liquids, 352, 118725.
  • Al-Shargabi, M., Davoodi, S., Wood, D. A., Al-Rubaii, M., Minaev, K. M., & Rukavishnikov, V. S. (2023). Hole-cleaning performance in non-vertical wellbores: A review of influences, models, drilling fluid types, and real-time applications. Geoenergy Science and Engineering, 212551.
  • American Petroleum Institute (API). (2017). 13B-1. Recommended Practice Standard for Field Testing Water-Based Drilling Fluids, USA.
  • Arinkoola, A. O., Jimoh, M. O., Salawudeen, T. O., & Daramola, M. O. (2022). Application of Irvingia gabonensis, Manihot esculenta and Artocarpus altilis as rheological modifier in water-based drilling fluid. Materials Today: Proceedings, 65, 2236-2244.
  • Awais, H., Nawab, Y., Amjad, A., Anjang, A., Akil, H. M., & Abidin, M. S. Z. (2021). Environmental benign natural fibre reinforced thermoplastic composites: A review. Composites Part C: Open Access, 4, 100082.
  • Bagum, M., Ahammad, J. M., Husain, T., & Hossain, M. E. (2022). An experimental study to develop an environmental friendly mud additive of drilling fluid using Aloe Vera. Journal of Petroleum Science and Engineering, 211, 110135.
  • Biwott, T. C., Kiprop, A. K., Akaranta, O., & Boniface, O. (2019). Terminalia mantaly leaves as a novel additive in water-based drilling MUD. International Journal of Chemical Studies, 7(6), 2173-2181.
  • Bleier, R. (1990). Selecting a drilling fluid. Journal of Petroleum technology, 42(07), 832-834.
  • Bloys, B., Davis, N., Smolen, B., Bailey, L., Houwen, O., Reid, P., & Montrouge, F. J. O. R. (1994). Designing and managing drilling fluid. Oilfield review, 6(2), 33-43.
  • Bureš, M. S., Maslov Bandić, L., & Vlahoviček-Kahlina, K. (2023). Determination of bioactive components in mandarin fruits: A review. Critical reviews in analytical chemistry, 53(7), 1489-1514.
  • Caenn, R., & Chillingar, G. V. (1996). Drilling fluids: State of the art. journal of petroleum science and engineering, 14(3-4), 221-230.
  • Chen, J., Ye, J., Song, T., Lu, Z., & Xiong, J. (2023). Flowability, binding and release property of “self-lubricating” microcrystalline cellulose. Industrial Crops and Products, 196, 116501.
  • Dairanieh, I. S., & Lahalih, S. M. (1988). Novel polymeric drilling mud viscosifiers. European polymer journal, 24(9), 831-835.
  • Dlama, T. T., Oluwagbemileke, A. S., & Monday, D. (2016). Comparative study of the quantitative phytochemical constituents and antibacterial activity of five tree species. European Journal of Advanced Research in Biological and Life Sciences 4(1).
  • Erge, O., Sakaoglu, K., Sonmez, A., Bagatir, G., Dogan, H. A., Ay, A., & Gucuyener, I. H. (2020). Overview and design principles of drilling fluids systems for geothermal Wells in Turkey. Geothermics, 88, 101897.
  • Gao, X., Zhong, H. Y., Zhang, X. B., Chen, A. L., Qiu, Z. S., & Huang, W. A. (2021). Application of sustainable basil seed as an eco-friendly multifunctional additive for water-based drilling fluids. Petroleum Science, 18(4), 1163-1181.
  • Guan, Z., Chen, T., & Liao, H. (2021). Theory and technology of drilling engineering (Vol. 789). Singapore: Springer.
  • Hoai, N. T., Van Hien, P., Vu, N. S. H., Son, D. L., Van Man, T., Tri, M. D., & Nam, N. D. (2019). An improved corrosion resistance of steel in hydrochloric acid solution using Hibiscus sabdariffa leaf extract. Chemical Papers, 73, 909-925.
  • Hossain, M. E., & Wajheeuddin, M. (2016). The use of grass as an environmentally friendly additive in water-based drilling fluids. Petroleum Science, 13, 292-303.
  • Ismail, A., Rashid, H. M. A., Gholami, R., & Raza, A. (2022). Characterization based machine learning modeling for the prediction of the rheological properties of water-based drilling mud: an experimental study on grass as an environmental friendly additive. Journal of Petroleum Exploration and Production Technology, 12(6), 1677-1695.
  • Jain, R., Mahto, V., & Mahto, T. K. (2014). Study of the effect of xanthan gum based graft copolymer on water based drilling fluid. Journal of macromolecular science, Part A, 51(12), 976-982.
  • Kasperek, R., Polski, A., Sobótka-Polska, K., & Poleszak, E. (2014). Influence of polymer type on the physical properties and the release study of papaverine hydrochloride from tablets. Polymers in Medicine, 44(1), 5-12.
  • Kelessidis, V. C., Poulakakis, E., & Chatzistamou, V. (2011). Use of Carbopol 980 and carboxymethyl cellulose polymers as rheology modifiers of sodium-bentonite water dispersions. Applied clay science, 54(1), 63-69.
  • Khan, M. A., Li, M. C., Lv, K., Sun, J., Liu, C., Liu, X., Shen, H., dai, L., & Lalji, S. M. (2024). Cellulose derivatives as environmentally-friendly additives in water-based drilling fluids: A review. Carbohydrate Polymers, 122355.
  • Khorasani, A. C., & Satvati, P. R. (2024). Reusable cellulose-based biosorbents for efficient iodine adsorption by economic microcrystalline cellulose production from walnut shell. International Journal of Biological Macromolecules, 256, 128432.
  • Kim, J., & Dornfeld, D. A. (2001). Cost estimation of drilling operations by a drilling burr control chart and Bayesian statistics. Journal of manufacturing systems, 20(2), 89-97.
  • Levis, S. R., & Deasy, P. B. (2001). Production and evaluation of size reduced grades of microcrystalline cellulose. International journal of pharmaceutics, 213(1-2), 13-24.
  • Liu, Z., Zhang, C., Li, Q., Davarpanah, A., & Metwally, A. S. M. (2022). Effectiveness of cellulose polyanionic-based polymers on the measurement of rheological properties of water-based drilling fluids in high-pressure high-temperature fractured shale reservoirs. Applied Water Science, 12(5), 85.
  • Mamukuyomi, J. (2021). Evaluation of the rheological and pH control performance of plantain peel-snail shell biocomposite additive in water based drilling fluid. Journal of Engineering and Technology, 15(1), 1-10.
  • Menezes, R. R., Marques, L. N., Campos, L. A., Ferreira, H. S., Santana, L. N. L., & Neves, G. A. (2010). Use of statistical design to study the influence of CMC on the rheological properties of bentonite dispersions for water-based drilling fluids. Applied Clay Science, 49(1-2), 13-20.
  • Okon, A. N., Udoh, F. D., & Bassey, P. G. (2014, August). Evaluation of rice husk as fluid loss control additive in water-based drilling mud. In SPE Nigeria Annual International Conference and Exhibition (pp. SPE-172379). SPE.
  • Okoro, E. E., Dosunmu, A., & Iyuke, S. E. (2018). Data on cost analysis of drilling mud displacement during drilling operation. Data in brief, 19, 535-541.
  • Orun, C. B., Akpabio, J. U., & Agwu, O. E. (2023). Drilling fluid design for depleted zone drilling: An integrated review of laboratory, field, modelling and cost studies. Geoenergy Science and Engineering, 226, 211706.
  • Oseh, J. O., Mohd, N. M., Gbadamosi, A. O., Agi, A., Blkoor, S. O., Ismail, I., & Igbafe, A. I. (2023). Polymer nanocomposites application in drilling fluids: A review. Geoenergy Science and Engineering, 222, 211416.
  • Ouaer, H., & Gareche, M. (2018). The rheological behaviour of a water-soluble polymer (HEC) used in drilling fluids. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40(8), 380.
  • Rathod, R. S. B., Sahoo, P., & Gupta, S. (2023). Effect of microcrystalline cellulose on rheology, hydration kinetics and early-age properties of Portland cement-based and alkali-activated slag-fly ash blend. Journal of Building Engineering, 76, 107218.
  • Saboori, R., Sabbaghi, S., Kalantariasl, A., & Mowla, D. (2018). Improvement in filtration properties of water-based drilling fluid by nanocarboxymethyl cellulose/polystyrene core–shell nanocomposite. Journal of Petroleum Exploration and Production Technology, 8, 445-454.
  • Sid, A. N. E. H., Kouini, B., Hazourli, A., Djafar, R., Gherraf, N., & Bououdina, M. (2022). The synergistic effect of algerian Na-bentonite/potato starch/grass powder on the enhancement of aged water-based drilling fluids. Arabian Journal for Science and Engineering, 47(9), 11721-11732.
  • Suaib, S., Yusof, M. A. B. M., & Ibrahim, M. A. (2022). Experimental study of solanum tuberosum waste as drilling fluid additives. Platform: A Journal of Engineering, 6(2), 23-35.
  • Sun, J. S., Wang, Z. L., Liu, J. P., Lv, K. H., Zhang, F., Shao, Z. H., ... & Zhang, X. F. (2022). Notoginsenoside as an environmentally friendly shale inhibitor in water-based drilling fluid. Petroleum Science, 19(2), 608-618.
  • Villada, Y., Gallardo, F., Erdmann, E., Casis, N., Olivares, L., & Estenoz, D. (2017). Functional characterization on colloidal suspensions containing xanthan gum (XGD) and polyanionic cellulose (PAC) used in drilling fluids for a shale formation. Applied Clay Science, 149, 59-66.
  • Vivas, C., & Salehi, S. (2021). Rheological investigation of effect of high temperature on geothermal drilling fluids additives and lost circulation materials. Geothermics, 96, 102219.
  • Wang, Y., Jiang, B., Lan, J., Xu, N., Sun, J., & Meng, L. (2020). Synthesis and properties of a high-performance environment-friendly micro–nano filtration reducer. RSC advances, 10(70), 43204-43212.
  • Wetterling, J., Mattsson, T., & Theliander, H. (2014). Effects of surface structure on the filtration properties of microcrystalline cellulose. Separation and Purification Technology, 136, 1-9.
  • Wordometer, 2025. Internet Resources: https://www.worldometers.info, Last Access Date: Feb., 27, 2025.
  • Zhu, W., Zheng, X., Shi, J., & Wang, Y. (2021). A high-temperature resistant colloid gas aphron drilling fluid system prepared by using a novel graft copolymer xanthan gum-AA/AM/AMPS. Journal of Petroleum Science and Engineering, 205, 108821.
Toplam 52 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Maden Mühendisliği (Diğer), Sondaj ve Kuyu tamamlama
Bölüm Makaleler
Yazarlar

Onur Eser Kök 0000-0002-7061-2921

Yayımlanma Tarihi 15 Mart 2025
Gönderilme Tarihi 25 Ağustos 2024
Kabul Tarihi 28 Şubat 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 15 Sayı: 1

Kaynak Göster

APA Kök, O. E. (2025). Evaluation of Microcrystalline Cellulose as Viscosifier Agent in Water-Based Drilling Fluids. Karadeniz Fen Bilimleri Dergisi, 15(1), 272-288. https://doi.org/10.31466/kfbd.1538554