Araştırma Makalesi
BibTex RIS Kaynak Göster

Katı-Hal PVC-Membran Benzidamin-Seçici Potansiyometrik Mikrosensör

Yıl 2025, Cilt: 15 Sayı: 1, 419 - 433, 15.03.2025
https://doi.org/10.31466/kfbd.1581761

Öz

Bu çalışmada, benzidamin-tetrafenilborat (BNZ-TFB) iyon çifti kullanılarak tümüyle katı-hal tipi polivinilklorür (PVC) membran potansiyometrik mikrosensör geliştirilmiştir. Mikrosensörün membran yapısında iyonofor olarak benzidamin-tetrafenilborat iyon çifti kullanılmıştır. Benzidamin (BNZ) seçici mikrosensörün potansiyometrik performans özellikleri araştırılmıştır. Geliştirilen sensörün tayin limiti 6,2×10-6 mol.L-1, cevap süresi oldukça kısa (≤10 s), kullanım ömrü ~7 hafta, eğim değerinin 58,1±0,6 mV (R2: 0,9998), doğrusal çalışma aralığı 1×10-5−1×10-2 mol.L-1 olduğu belirlenmiştir. Mikrosensörün 4,0-7,0 pH aralığında optimum performansa sahip olduğu belirlenmiştir. Mikrosensör, farmasötik ilaç numunelerinde benzdiaminin potansiyometrik tayininde başarıyla kullanılmıştır. Elde edilen sonuçlar istatistiksel olarak UV-Vis spektroskopi yöntemiyle karşılaştırılmıştır. Elde edilen potansiyometrik sonuçların UV-Vis spektroskopi yöntemiyle elde edilen sonuçlarla %95 güven seviyesinde uyum içerisinde olduğu belirlenmiştir.

Kaynakça

  • Agarwal A., Nath S. S., Goswami D., Gupta D., Dhiraaj S., Singh P. K. (2006). An evaluation of the efficacy of aspirin and benzydamine hydrochloride gargle for attenuating postoperative sore throat: a prospective, randomized, singleblind study. Anesthesia and Analgesia, 103(4):1001–3.
  • Baldock G. A., Brodie R. R., Chasseaud L. F., Taylor T., Walmsley L. M., Catanese B. (1991). Pharmacokinetics of benzydamine after intravenous, oral, and topical doses to human subjects Biopharmaceutics drug disposition, 12(7):481-492.
  • Bassuoni Y. F., Elzanfaly E. S., Essam H. A. M., Zaazaa H. E. (2017). Ion Selective Electrode Approach for In-line Determination of Benzydamine Hydrochloride in Different Matrices of Pharmaceutical Industry. Analytical & Bioanalytical Electrochemistry, 9(1):65-79.
  • Bühlmann P.; Pretsch E., Bakker E., (1988). Carrier-Based Ion-Selective Electrodes and Bulk Optodes. 2. İonophores for Potentiometric and Optical Sensors. Chemical Reviews. 98(4): 1593-1688.
  • Carlucci G., Iuliani P., Federico L. D. (2010). Simultaneous Determination of Benzydamine Hydrochloride and Five Impurities in an Oral Collutory as a Pharmaceutical Formulation by High-Performance Liquid Chromatography. Journal of Chromatographic Science, 48(10):854–859.
  • Chemistry Buck R. P., Lindner E., (1994). IUPAC Analytical Division, Commission on Electroanalytical Chemistry, Recommendations for Nomenclature of Ion-selective Electrodes. Pure and Applied Chemistry, 66: 2527-2536.
  • Chornyi V., Georgiyants V. (2019). Development and validation of the method for simultaneous determination of benzydamine hydrochloride and methylparaben in benzydamine dosage form by GC. Scripta Scientifica Pharmaceutica, 6(1):37-44.
  • Çoldur F., Boz H., Önder A., (2015). Bütünüyle Katı Hal PVC Membran İzoniazid-Seçici Potansiyometrik Sensör, Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9(1): 29-39.
  • Dreassi E., Ceramelli G., Corti P., Massacesi M.ve Perruccio P. L. (1995). Quantitative Fourier transform near-infrared spectroscopy in the quality control of solid pharmaceutical formulations. Analyst, 9(120):2361-2365.
  • Dybko A. (2001). Errors in Chemical Sensor Measurements. Sensors, (1), 29-37.
  • El-Didamony A. M. (2008). Spectrophotometric determination of benzydamine HCl, levamisole HCl and mebeverine HCl through ion-pair complex formation with methyl orange. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 69(3): 770–775.
  • Griswold D. E, Hillegass L. M, Breton J. J., Esser K. M., Adams J. L. (1993). Differentiation in vivo of classical non‑steroidal anti‑inflammatory drugs from cytokine suppressive anti‑inflammatory drugs and other pharmacological classes using mouse tumour necrosis factor alpha production. Drugs under experimental and clinical research, 19(6):243–8.
  • Isildak I.; Yolcu M.; Isildak O., Demirel N., Topal G., Hosgoren H. (2004). All-solid-state PVC membrane Ag+-selective electrodes based on diaza-18-crown-6 compounds, Microchimica Acta, 144(1): 177-181.
  • Jesus D. S., Couto C. M. C. M., Araújo A. N., Montenegro M. C. B. S. M.. (2003). Amperometric biosensor based on monoamine oxidase (MAO) immobilized in sol-gel film for benzydamine determination in pharmaceuticals. Journal of Pharmaceutical and Biomedical Analysis, 33(5):983-90.
  • Karavana S. Y., Güneri P., Ertan G. (2009). Benzydamine hydrochloride buccalbioadhe‑ sive gels designed for oral ulcers: preparation, rheological, textural, mucoad‑ hesive and release properties. Pharmaceutical Development and Technology, 14(6):623–31.
  • Khalil M. M., Issa Y. M., Korany M. A. (2017). Novel Modiied Carbon Paste Sensors for Determinaion of Benzydamine Hydrochloride in Pharmaceuical Formulaions and Biological Fluids. Scholars Reports, 2(1).
  • Kulapina E. G., Barinova O. V., (1997). Structure of Chemical Compounds, Methods of Analysis and Process Control. Pharmaceutical Chemistry Journal, 31(12): 667–672.
  • Landry R. G., Turnbull R. S., Howley T. (1988). Effectiveness of benzydamine HCl in the treatment of periodontal post‑surgical patients. Research and Clinical Forums, 10(8):105–11.
  • Li W., Su X., Zhang H., Nıe L., Yao S. (1998). Determination of Benzydamine Hydrochloride in Serum and Urine by Using a Benzydamine Ion-Selective Piezoelectric Sensor. Analytical Sciences, 14(5):955-960.
  • Lisciani R., Barcellona P. S., Silvestrini B. (1968). Researches on the topical activity of benzydamine. European Journal of Pharmacology, 3(2):157–62.
  • Mostafa S. M., Farghali A. A., Khalil M. M. (2021). Novel Zn-Fe LDH/MWCNTs and Graphene/MWCNTs Nanocomposites Based Potentiometric Sensors for Benzydamine Determination in Biological Fluids and Real Water Samples. Electroanalysis, 33, 1194–1204.
  • Nassory N. S., Maki S. A., Ali M. A. (2007). Preparation and Characterization of an a PVC Matrix Membrane. Turkish Journal of Chemistry, 31(1): 75-82.
  • Nishitani A., Tsukamoto Y., Kanda S., Imai K. (1991). Determination of the fluorescent drugs dipyridamole and benzydamine in rat plasma by liquid chromatography with peroxyoxalate chemiluminescence detection. Analytica Chimica Acta, 251(1–2):247-253.
  • Quane P. A., Graham G. G., Ziegler J. B. (1998). Pharmacology of benzydamine. InflammoPharmacology, 6(2): 95-107.
  • Simard‑Savoie S., Forest D. (1978) Topical anaesthetic activity of benzydamine. Current Therapeutic Research, 23:734–45.
  • Sugiarto A., Kapuangan C., Tantri A. R., Chrisnata V. (2020). Effectivity of Benzydamine Hydrochloride Gargle to Reduce Propofol Consumption in Endoscopic Retrograde Cholangiopancreatography Procedure: a Randomized Controlled Trial. BMC Anesthesiology, 20: 123.
  • Tang X., Wang P., Buchter G. (2018). İon-Selective Electrodes for Detection of Lead (II) in Drinking Water: A Mini-Review. Environments, 5, 95.
  • Topcu C., Aydin S., Atasoy B. H., Yilmaz R. R., Coldur F., Cağlar B. (2024). Highly selective and sensitive potentiometric determination of favipiravir in COVID-19 antiviral drug formulations. Microchemical Journal, 205, 111390.

Solid-State PVC-Membrane Benzydamine-Selective Potentiometric Microsensor

Yıl 2025, Cilt: 15 Sayı: 1, 419 - 433, 15.03.2025
https://doi.org/10.31466/kfbd.1581761

Öz

In this study, an all-solid-state type polyvinylchloride (PVC) membrane potentiometric microsensor was developed using benzydamine-tetraphenylborate (BNZ-TFB) ion-pair. Benzydamine-tetraphenylborate ion pair was used as an ionophore in the membrane structure of the microsensor. The potentiometric performance properties of benzydamine (BNZ) selective microsensor were investigated. The developed microsensor was determined to have a detection limit of 6.2×10-6 mol.L-1, a very short response time (≤10 s), a lifetime of ~7 weeks, a slope value of 58.1±0.6 mV (R2: 0.9998), and a linear operating range of 1×10-5−1×10-2 mol.L-1. It was determined that the microsensor had optimum performance in the pH range of 4.0-7.0. The microsensor successfully performed the potentiometric determination of benzdiamine in pharmaceutical drug samples. The results were compared statistically with the UV-Vis spectroscopy method. It was determined that the potentiometric results obtained were in agreement with the results obtained with the UV-Vis spectroscopy method at a confidence level of 95%.

Kaynakça

  • Agarwal A., Nath S. S., Goswami D., Gupta D., Dhiraaj S., Singh P. K. (2006). An evaluation of the efficacy of aspirin and benzydamine hydrochloride gargle for attenuating postoperative sore throat: a prospective, randomized, singleblind study. Anesthesia and Analgesia, 103(4):1001–3.
  • Baldock G. A., Brodie R. R., Chasseaud L. F., Taylor T., Walmsley L. M., Catanese B. (1991). Pharmacokinetics of benzydamine after intravenous, oral, and topical doses to human subjects Biopharmaceutics drug disposition, 12(7):481-492.
  • Bassuoni Y. F., Elzanfaly E. S., Essam H. A. M., Zaazaa H. E. (2017). Ion Selective Electrode Approach for In-line Determination of Benzydamine Hydrochloride in Different Matrices of Pharmaceutical Industry. Analytical & Bioanalytical Electrochemistry, 9(1):65-79.
  • Bühlmann P.; Pretsch E., Bakker E., (1988). Carrier-Based Ion-Selective Electrodes and Bulk Optodes. 2. İonophores for Potentiometric and Optical Sensors. Chemical Reviews. 98(4): 1593-1688.
  • Carlucci G., Iuliani P., Federico L. D. (2010). Simultaneous Determination of Benzydamine Hydrochloride and Five Impurities in an Oral Collutory as a Pharmaceutical Formulation by High-Performance Liquid Chromatography. Journal of Chromatographic Science, 48(10):854–859.
  • Chemistry Buck R. P., Lindner E., (1994). IUPAC Analytical Division, Commission on Electroanalytical Chemistry, Recommendations for Nomenclature of Ion-selective Electrodes. Pure and Applied Chemistry, 66: 2527-2536.
  • Chornyi V., Georgiyants V. (2019). Development and validation of the method for simultaneous determination of benzydamine hydrochloride and methylparaben in benzydamine dosage form by GC. Scripta Scientifica Pharmaceutica, 6(1):37-44.
  • Çoldur F., Boz H., Önder A., (2015). Bütünüyle Katı Hal PVC Membran İzoniazid-Seçici Potansiyometrik Sensör, Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9(1): 29-39.
  • Dreassi E., Ceramelli G., Corti P., Massacesi M.ve Perruccio P. L. (1995). Quantitative Fourier transform near-infrared spectroscopy in the quality control of solid pharmaceutical formulations. Analyst, 9(120):2361-2365.
  • Dybko A. (2001). Errors in Chemical Sensor Measurements. Sensors, (1), 29-37.
  • El-Didamony A. M. (2008). Spectrophotometric determination of benzydamine HCl, levamisole HCl and mebeverine HCl through ion-pair complex formation with methyl orange. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 69(3): 770–775.
  • Griswold D. E, Hillegass L. M, Breton J. J., Esser K. M., Adams J. L. (1993). Differentiation in vivo of classical non‑steroidal anti‑inflammatory drugs from cytokine suppressive anti‑inflammatory drugs and other pharmacological classes using mouse tumour necrosis factor alpha production. Drugs under experimental and clinical research, 19(6):243–8.
  • Isildak I.; Yolcu M.; Isildak O., Demirel N., Topal G., Hosgoren H. (2004). All-solid-state PVC membrane Ag+-selective electrodes based on diaza-18-crown-6 compounds, Microchimica Acta, 144(1): 177-181.
  • Jesus D. S., Couto C. M. C. M., Araújo A. N., Montenegro M. C. B. S. M.. (2003). Amperometric biosensor based on monoamine oxidase (MAO) immobilized in sol-gel film for benzydamine determination in pharmaceuticals. Journal of Pharmaceutical and Biomedical Analysis, 33(5):983-90.
  • Karavana S. Y., Güneri P., Ertan G. (2009). Benzydamine hydrochloride buccalbioadhe‑ sive gels designed for oral ulcers: preparation, rheological, textural, mucoad‑ hesive and release properties. Pharmaceutical Development and Technology, 14(6):623–31.
  • Khalil M. M., Issa Y. M., Korany M. A. (2017). Novel Modiied Carbon Paste Sensors for Determinaion of Benzydamine Hydrochloride in Pharmaceuical Formulaions and Biological Fluids. Scholars Reports, 2(1).
  • Kulapina E. G., Barinova O. V., (1997). Structure of Chemical Compounds, Methods of Analysis and Process Control. Pharmaceutical Chemistry Journal, 31(12): 667–672.
  • Landry R. G., Turnbull R. S., Howley T. (1988). Effectiveness of benzydamine HCl in the treatment of periodontal post‑surgical patients. Research and Clinical Forums, 10(8):105–11.
  • Li W., Su X., Zhang H., Nıe L., Yao S. (1998). Determination of Benzydamine Hydrochloride in Serum and Urine by Using a Benzydamine Ion-Selective Piezoelectric Sensor. Analytical Sciences, 14(5):955-960.
  • Lisciani R., Barcellona P. S., Silvestrini B. (1968). Researches on the topical activity of benzydamine. European Journal of Pharmacology, 3(2):157–62.
  • Mostafa S. M., Farghali A. A., Khalil M. M. (2021). Novel Zn-Fe LDH/MWCNTs and Graphene/MWCNTs Nanocomposites Based Potentiometric Sensors for Benzydamine Determination in Biological Fluids and Real Water Samples. Electroanalysis, 33, 1194–1204.
  • Nassory N. S., Maki S. A., Ali M. A. (2007). Preparation and Characterization of an a PVC Matrix Membrane. Turkish Journal of Chemistry, 31(1): 75-82.
  • Nishitani A., Tsukamoto Y., Kanda S., Imai K. (1991). Determination of the fluorescent drugs dipyridamole and benzydamine in rat plasma by liquid chromatography with peroxyoxalate chemiluminescence detection. Analytica Chimica Acta, 251(1–2):247-253.
  • Quane P. A., Graham G. G., Ziegler J. B. (1998). Pharmacology of benzydamine. InflammoPharmacology, 6(2): 95-107.
  • Simard‑Savoie S., Forest D. (1978) Topical anaesthetic activity of benzydamine. Current Therapeutic Research, 23:734–45.
  • Sugiarto A., Kapuangan C., Tantri A. R., Chrisnata V. (2020). Effectivity of Benzydamine Hydrochloride Gargle to Reduce Propofol Consumption in Endoscopic Retrograde Cholangiopancreatography Procedure: a Randomized Controlled Trial. BMC Anesthesiology, 20: 123.
  • Tang X., Wang P., Buchter G. (2018). İon-Selective Electrodes for Detection of Lead (II) in Drinking Water: A Mini-Review. Environments, 5, 95.
  • Topcu C., Aydin S., Atasoy B. H., Yilmaz R. R., Coldur F., Cağlar B. (2024). Highly selective and sensitive potentiometric determination of favipiravir in COVID-19 antiviral drug formulations. Microchemical Journal, 205, 111390.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Elektrokimya
Bölüm Makaleler
Yazarlar

Nurşen Dere 0000-0001-7964-7445

Yayımlanma Tarihi 15 Mart 2025
Gönderilme Tarihi 8 Kasım 2024
Kabul Tarihi 5 Şubat 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 15 Sayı: 1

Kaynak Göster

APA Dere, N. (2025). Katı-Hal PVC-Membran Benzidamin-Seçici Potansiyometrik Mikrosensör. Karadeniz Fen Bilimleri Dergisi, 15(1), 419-433. https://doi.org/10.31466/kfbd.1581761