Araştırma Makalesi
BibTex RIS Kaynak Göster

Türkiye’de Yabancılara Konut Satışının Mars Yöntemi ile Tahmin Edilmesi

Yıl 2025, Cilt: 15 Sayı: 1, 498 - 518, 15.03.2025
https://doi.org/10.31466/kfbd.1608248

Öz

Türkiye ekonomisinin itici güçlerinden biri olan inşaat sektöründe, 2012 yılında yapılan yasal düzenlemelerle yabancılara konut satışı mümkün hale gelmiştir. Bu satışlar, ülkeye önemli bir döviz girdisi sağlamakta ve inşaat sektörünün canlı kalmasına katkıda bulunmaktadır. Yabancılara konut satışlarını etkileyen faktörlerin belirlenmesi ve bu satışların tahmin edilmesi, hem sektör hem de ülke ekonomisi açısından oldukça önemlidir. Bu çalışma, Türkiye'de yabancılara yapılan konut satışlarını, ekonomik ve sektörel değişkenler kullanarak MARS (Çok Değişkenli Uyarlanabilir Regresyon Uzanımları) yöntemiyle tahmin etmeyi amaçlamaktadır. Çalışmanın sonuçları, MARS modelinin yüksek açıklayıcılık gücüne sahip olduğunu (Adjusted R-squared: 0.9736) ve gerçek değerler ile tahmin edilen değerler arasındaki Pearson korelasyon katsayısının 0.9906 olduğunu göstermektedir. Ayrıca, MARS modeli, geleneksel çok değişkenli regresyon modeline kıyasla tahmin performansını (MSE) %95 oranında iyileştirmiştir. Bu sonuç, modelin yabancılara konut satışlarını oldukça başarılı bir şekilde tahmin edebildiğini göstermektedir. Çalışma, MARS yönteminin karmaşık ilişkileri modellemede etkili bir araç olduğunu ve yabancılara konut satışının tahmini için uygun bir yöntem olduğunu ortaya koymuştur. Sonuç olarak elde edilen bilgiler, karar alıcılar ile sektör paydaşları açısından önemli veriler sunmaktadır.

Etik Beyan

Yapılan çalışmada araştırma ve yayın etiğine uyulmuştur.

Kaynakça

  • Adamowski, J., Chan, H. F., Prasher, S. O., & Sharda, V. N. (2012). Comparison of multivariate adaptive regression splines with coupled wavelet transform artificial neural networks for runoff forecasting in Himalayan micro-watersheds with limited data. Journal of hydroinformatics, 14(3), 731-744.
  • Al-Sudani, Z. A., Salih, S. Q., Sharafati, A., & Yaseen, Z. M. (2019). Development of multivariate adaptive regression spline integrated with differential evolution model for streamflow simulation. Journal of Hydrology, 573, 1–12. https://doi.org/10.1016/j.jhydrol.2019.03.004
  • Bağcı, B., & Çıtak, F. (2020). Forecasting Turkish stock market price with macroeconomic variables from the multivariate adaptive regression splines (MARS) model. Yaşar Üniversitesi E-Dergisi, 15(60), 759-771.
  • Baş, E., & Eğrioğlu E. (2023). "A new recurrent pi‐sigma artificial neural network inspired by exponential smoothing feedback mechanism," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 802-812, July
  • Bose, A., Hsu, C. H., Roy, S. S., Lee, K. C., Mohammadi-Ivatloo, B., & Abimannan, S. (2021). Forecasting stock price by hybrid model of cascading multivariate adaptive regression splines and deep neural network. Computers and Electrical Engineering, 95, 107405.
  • Butte, N. F., Wong, W. W., Adolph, A. L., Puyau, M. R., Vohra, F. A., & Zakeri, I. F. (2010). Validation of cross-sectional time series and multivariate adaptive regression splines models for the prediction of energy expenditure in children and adolescents using doubly labeled water. The Journal of nutrition, 140(8), 1516-1523.
  • Cheng, M. Y., & Cao, M. T. (2014). Accurately predicting building energy performance using evolutionary multivariate adaptive regression splines. Applied Soft Computing, 22, 178-188.
  • Çanga, D., Yavuz, E., & Efe, E. (2021). Prediction of Egg Weight Using MARS Data Mining Algorithm Through R. KSU J. Agric Nat 24 (1): 242-251, 2021. https://doi.org/10.18016/ksutarimdoga.vi.716880
  • De Gooijer, J. G., Ray, B. K., & Kräger, H. (1998). Forecasting exchange rates using TSMARS. Journal of International Money and Finance, 17(3), 513-534.
  • Friedman, J. H. (1991). Multivariate adaptive regression splines. The annals of statistics, 19(1), 1-67.
  • Friedman, J. H., & Roosen, C. B. (1995). An introduction to multivariate adaptive regression splines. Statistical methods in medical research, 4(3), 197-217.
  • Griffin, W. L., Fisher, N. I., Friedman, J. H., & Ryan, C. G. (1997). Statistical techniques for the classification of chromites in diamond exploration samples. Journal of Geochemical Exploration, 59(3), 233-249.
  • Kartal, M., Depren, S. K., & Depren, Ö. (2018). Türkiye’de döviz kurlarını etkileyen makroekonomik göstergelerin belirlenmesi: MARS yöntemi ile bir inceleme. MANAS Sosyal Araştırmalar Dergisi, 7(1), 209-229.
  • Kisi, O. (2015). Pan evaporation modeling using least square support vector machine, multivariate adaptive regression splines and M5 model tree. Journal of Hydrology, 528, 312-320.
  • Kuhn, M., & Johnson, K. (2013). Applied predictive modeling (Vol. 26, p. 13). New York: Springer.
  • Kuhnert, P. M., Do, K. A., & McClure, R. (2000). Combining non-parametric models with logistic regression: an application to motor vehicle injury data. Computational Statistics & Data Analysis, 34(3), 371-386.
  • Lee, T. S., & Chen, I. F. (2005). A two-stage hybrid credit scoring model using artificial neural networks and multivariate adaptive regression splines. Expert Systems with applications, 28(4), 743-752.
  • Lewis, P. A., & Stevens, J. G. (1991). Nonlinear modeling of time series using multivariate adaptive regression splines (MARS). Journal of the American Statistical Association, 86(416), 864-877.
  • Lu, R., Duan, T., Wang, M., Liu, H., Feng, S., Gong, X., ... & Ma, J. (2021). The application of multivariate adaptive regression splines in exploring the influencing factors and predicting the prevalence of HbA1c improvement. Annals of Palliative Medicine, 10(2), 1296–1303. https://doi.org/10.21037/apm-19-406
  • López, F., & Kholodilin, K. (2023). Putting MARS into space: Non-linearities and spatial effects in hedonic models. Papers in Regional Science, 102(4), 871–897. https://doi.org/10.1111/pirs.12738
  • Milborrow, S., Hastie, T., Tibshirani, R., Miller, A., & Lumley, T. (2017a). earth: Multivariate adaptive regression splines. R package version, 5(2).
  • Milborrow, S. (2017b). Notes on the earth package. Retrieved October, 31, 2017.
  • Nguyen-Cong, V. G. V. D., Van Dang, G., & Rode, B. M. (1996). Using multivariate adaptive regression splines to QSAR studies of dihydroartemisinin derivatives. European journal of medicinal chemistry, 31(10), 797-803.
  • Nisbet, R., Miner, G., & Yale, K. (2018). Handbook of Statistical Analysis and Data Mining Applications (2nd ed.). Academic Press. https://doi.org/10.1016/C2012-0-06451-4
  • Ohmann, C., Moustakis, V., Yang, Q., Lang, K., & Acute Abdominal Pain Study Group. (1996). Evaluation of automatic knowledge acquisition techniques in the diagnosis of acute abdominal pain. Artificial Intelligence in Medicine, 8(1), 23-36.
  • Samui, P. (2012). Slope stability analysis using multivariate adaptive regression spline. Metaheuristics in Water, Geotechnical and Transportation Engineering, 14, 327-342.
  • Sephton, P. (2001). Forecasting recessions: can we do better on MARS. Federal Reserve Bank of St. Louis Review, 83(March/April 2001).
  • Sharda, V. N., Patel, R. M., Prasher, S. O., Ojasvi, P. R., & Prakash, C. (2006). Modeling runoff from middle Himalayan watersheds employing artificial intelligence techniques. Agricultural water management, 83(3), 233-242.
  • Sharda, V. N., Prasher, S. O., Patel, R. M., Ojasvi, P. R., & Prakash, C. (2008). Performance of Multivariate Adaptive Regression Splines (MARS) in predicting runoff in mid-Himalayan micro-watersheds with limited data/Performances de régressions par splines multiples et adaptives (MARS) pour la prévision d'écoulement au sein de micro-bassins versants Himalayens d'altitudes intermédiaires avec peu de données. Hydrological sciences journal, 53(6), 1165-1175.
  • Stoklosa, J., & Warton, D. I. (2018). A generalized estimating equation approach to multivariate adaptive regression splines. Journal of Computational and Graphical Statistics, 27(1), 245-253.
  • URL-1:https://intes.org.tr/dergi/insaat-sanayi-dergisi-175-ocak-subat-mart-nisan/, (Erişim Tarihi: 8 Mart 2024).
  • URL-2: https://www.istmer.com/regresyon-analizi-ve-mars-yontemi/, (Erişim Tarihi: 05 Eylül 2023).
  • URL-3: https://data.tuik.gov.tr/, (Erişim Tarihi: 18 Şubat 2024).
  • URL-4: https://tr.investing.com/currencies/usd-try-historical-data, (Erişim Tarihi: 21 Mart 2024).

Predicting of House Sales to Foreigners with Mars Method in Türkiye

Yıl 2025, Cilt: 15 Sayı: 1, 498 - 518, 15.03.2025
https://doi.org/10.31466/kfbd.1608248

Öz

In the construction sector, which is one of the driving forces of the Turkish economy, it has become possible to sell housing to foreigners with the legal regulations made in 2012. These sales provide a significant foreign currency inflow to the country and contribute to the vitality of the construction sector. Determining the factors affecting housing sales to foreigners and estimating these sales is very important for both the sector and the country's economy. This study aims to estimate housing sales to foreigners in Turkey by MARS (Multivariate Adaptive Regression Extensions) method using economic and sectoral variables. The results of the study show that the MARS model has a high explanatory power (Adjusted R-squared: 0.9736) and that the Pearson correlation coefficient between the actual values and the predicted values is 0.9906. Furthermore, the MARS model improved predictive performance (MSE) by 95% compared to the traditional multivariate regression model. This result shows that the model can predict housing sales to foreigners quite successfully. The study revealed that the MARS method is an effective tool in modeling complex relationships and is a suitable method for estimating housing sales to foreigners. As a result, the information obtained provides important data for decision makers and sector stakeholders.

Kaynakça

  • Adamowski, J., Chan, H. F., Prasher, S. O., & Sharda, V. N. (2012). Comparison of multivariate adaptive regression splines with coupled wavelet transform artificial neural networks for runoff forecasting in Himalayan micro-watersheds with limited data. Journal of hydroinformatics, 14(3), 731-744.
  • Al-Sudani, Z. A., Salih, S. Q., Sharafati, A., & Yaseen, Z. M. (2019). Development of multivariate adaptive regression spline integrated with differential evolution model for streamflow simulation. Journal of Hydrology, 573, 1–12. https://doi.org/10.1016/j.jhydrol.2019.03.004
  • Bağcı, B., & Çıtak, F. (2020). Forecasting Turkish stock market price with macroeconomic variables from the multivariate adaptive regression splines (MARS) model. Yaşar Üniversitesi E-Dergisi, 15(60), 759-771.
  • Baş, E., & Eğrioğlu E. (2023). "A new recurrent pi‐sigma artificial neural network inspired by exponential smoothing feedback mechanism," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 802-812, July
  • Bose, A., Hsu, C. H., Roy, S. S., Lee, K. C., Mohammadi-Ivatloo, B., & Abimannan, S. (2021). Forecasting stock price by hybrid model of cascading multivariate adaptive regression splines and deep neural network. Computers and Electrical Engineering, 95, 107405.
  • Butte, N. F., Wong, W. W., Adolph, A. L., Puyau, M. R., Vohra, F. A., & Zakeri, I. F. (2010). Validation of cross-sectional time series and multivariate adaptive regression splines models for the prediction of energy expenditure in children and adolescents using doubly labeled water. The Journal of nutrition, 140(8), 1516-1523.
  • Cheng, M. Y., & Cao, M. T. (2014). Accurately predicting building energy performance using evolutionary multivariate adaptive regression splines. Applied Soft Computing, 22, 178-188.
  • Çanga, D., Yavuz, E., & Efe, E. (2021). Prediction of Egg Weight Using MARS Data Mining Algorithm Through R. KSU J. Agric Nat 24 (1): 242-251, 2021. https://doi.org/10.18016/ksutarimdoga.vi.716880
  • De Gooijer, J. G., Ray, B. K., & Kräger, H. (1998). Forecasting exchange rates using TSMARS. Journal of International Money and Finance, 17(3), 513-534.
  • Friedman, J. H. (1991). Multivariate adaptive regression splines. The annals of statistics, 19(1), 1-67.
  • Friedman, J. H., & Roosen, C. B. (1995). An introduction to multivariate adaptive regression splines. Statistical methods in medical research, 4(3), 197-217.
  • Griffin, W. L., Fisher, N. I., Friedman, J. H., & Ryan, C. G. (1997). Statistical techniques for the classification of chromites in diamond exploration samples. Journal of Geochemical Exploration, 59(3), 233-249.
  • Kartal, M., Depren, S. K., & Depren, Ö. (2018). Türkiye’de döviz kurlarını etkileyen makroekonomik göstergelerin belirlenmesi: MARS yöntemi ile bir inceleme. MANAS Sosyal Araştırmalar Dergisi, 7(1), 209-229.
  • Kisi, O. (2015). Pan evaporation modeling using least square support vector machine, multivariate adaptive regression splines and M5 model tree. Journal of Hydrology, 528, 312-320.
  • Kuhn, M., & Johnson, K. (2013). Applied predictive modeling (Vol. 26, p. 13). New York: Springer.
  • Kuhnert, P. M., Do, K. A., & McClure, R. (2000). Combining non-parametric models with logistic regression: an application to motor vehicle injury data. Computational Statistics & Data Analysis, 34(3), 371-386.
  • Lee, T. S., & Chen, I. F. (2005). A two-stage hybrid credit scoring model using artificial neural networks and multivariate adaptive regression splines. Expert Systems with applications, 28(4), 743-752.
  • Lewis, P. A., & Stevens, J. G. (1991). Nonlinear modeling of time series using multivariate adaptive regression splines (MARS). Journal of the American Statistical Association, 86(416), 864-877.
  • Lu, R., Duan, T., Wang, M., Liu, H., Feng, S., Gong, X., ... & Ma, J. (2021). The application of multivariate adaptive regression splines in exploring the influencing factors and predicting the prevalence of HbA1c improvement. Annals of Palliative Medicine, 10(2), 1296–1303. https://doi.org/10.21037/apm-19-406
  • López, F., & Kholodilin, K. (2023). Putting MARS into space: Non-linearities and spatial effects in hedonic models. Papers in Regional Science, 102(4), 871–897. https://doi.org/10.1111/pirs.12738
  • Milborrow, S., Hastie, T., Tibshirani, R., Miller, A., & Lumley, T. (2017a). earth: Multivariate adaptive regression splines. R package version, 5(2).
  • Milborrow, S. (2017b). Notes on the earth package. Retrieved October, 31, 2017.
  • Nguyen-Cong, V. G. V. D., Van Dang, G., & Rode, B. M. (1996). Using multivariate adaptive regression splines to QSAR studies of dihydroartemisinin derivatives. European journal of medicinal chemistry, 31(10), 797-803.
  • Nisbet, R., Miner, G., & Yale, K. (2018). Handbook of Statistical Analysis and Data Mining Applications (2nd ed.). Academic Press. https://doi.org/10.1016/C2012-0-06451-4
  • Ohmann, C., Moustakis, V., Yang, Q., Lang, K., & Acute Abdominal Pain Study Group. (1996). Evaluation of automatic knowledge acquisition techniques in the diagnosis of acute abdominal pain. Artificial Intelligence in Medicine, 8(1), 23-36.
  • Samui, P. (2012). Slope stability analysis using multivariate adaptive regression spline. Metaheuristics in Water, Geotechnical and Transportation Engineering, 14, 327-342.
  • Sephton, P. (2001). Forecasting recessions: can we do better on MARS. Federal Reserve Bank of St. Louis Review, 83(March/April 2001).
  • Sharda, V. N., Patel, R. M., Prasher, S. O., Ojasvi, P. R., & Prakash, C. (2006). Modeling runoff from middle Himalayan watersheds employing artificial intelligence techniques. Agricultural water management, 83(3), 233-242.
  • Sharda, V. N., Prasher, S. O., Patel, R. M., Ojasvi, P. R., & Prakash, C. (2008). Performance of Multivariate Adaptive Regression Splines (MARS) in predicting runoff in mid-Himalayan micro-watersheds with limited data/Performances de régressions par splines multiples et adaptives (MARS) pour la prévision d'écoulement au sein de micro-bassins versants Himalayens d'altitudes intermédiaires avec peu de données. Hydrological sciences journal, 53(6), 1165-1175.
  • Stoklosa, J., & Warton, D. I. (2018). A generalized estimating equation approach to multivariate adaptive regression splines. Journal of Computational and Graphical Statistics, 27(1), 245-253.
  • URL-1:https://intes.org.tr/dergi/insaat-sanayi-dergisi-175-ocak-subat-mart-nisan/, (Erişim Tarihi: 8 Mart 2024).
  • URL-2: https://www.istmer.com/regresyon-analizi-ve-mars-yontemi/, (Erişim Tarihi: 05 Eylül 2023).
  • URL-3: https://data.tuik.gov.tr/, (Erişim Tarihi: 18 Şubat 2024).
  • URL-4: https://tr.investing.com/currencies/usd-try-historical-data, (Erişim Tarihi: 21 Mart 2024).
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yazılım Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Ufuk Akyol 0000-0001-7043-4726

Murat Gül 0000-0001-9950-699X

Yayımlanma Tarihi 15 Mart 2025
Gönderilme Tarihi 27 Aralık 2024
Kabul Tarihi 2 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 15 Sayı: 1

Kaynak Göster

APA Akyol, U., & Gül, M. (2025). Türkiye’de Yabancılara Konut Satışının Mars Yöntemi ile Tahmin Edilmesi. Karadeniz Fen Bilimleri Dergisi, 15(1), 498-518. https://doi.org/10.31466/kfbd.1608248