Araştırma Makalesi
BibTex RIS Kaynak Göster

Decision-Making Method That Prioritizes User Ranking by Using Intuitionistic Fuzzy Soft Set

Yıl 2025, Cilt: 15 Sayı: 2, 764 - 786, 15.06.2025
https://doi.org/10.31466/kfbd.1618462

Öz

Decision-making holds significant importance in real life applications. To manage uncertainties in practical applications, soft sets, fuzzy sets and fuzzy soft sets are commonly used nowadays. Also, the effectiveness of intuitionistic fuzzy soft sets has been highlighted in numerous studies. In daily life, considering users priorities in decisions always affects the decision, for this reason, user priority ranking is important in a decision-making algorithm. This study aims to address decision-making problems by using fuzzy soft set (FSS) and intuitionistic fuzzy soft set (IFSS) frameworks. A key distinction of this work is its consideration of user priority rankings, which are integrated into the decision-making algorithms. This paper introduces two algorithms for decision-making: first one based on fuzzy soft sets and the second one based on intuitionistic fuzzy soft sets. Both approaches enable a user to select an object from a group of multi-attribute objects by considering priority ranking of the user for the attributes, thereby identifying the most suitable choice.

Kaynakça

  • Adithta, U., Sunil, J.J., and Baiju, T., (2024) Circular Intuitionistic Fuzzy Soft Set Theoretic Approach to Decision Making Problems. IEEE Access, 12, 144818- 144836. 10.1109/ACCESS.2024.3472215.
  • Atanassov, K., (1986). Intuitionistic fuzzy sets. Fuzzy Sets Syst., 20, 87-96. 

  • Chen H. and Liu Y., (2024). Group Decision-Making Method with Incomplete Intuitionistic Fuzzy Soft Information for Medical Diagnosis Model. Mathematics 2024, 12(12), 1823; https://doi.org/10.3390/math12121823
  • Dalkılıç, O., (2021) (α,β)-cut and inverse (α,β)-cuts in bipolar fuzzy soft sets. Commun. Fa. Sci. Univ. Ank. Ser. A1 Math. Stat. 70, 582-599. DOI: 10.31801/cfsuasmas.770623.
  • Dalkılıç, O., (2022) On topological structures of virtual fuzzy parametrized fuzzy soft sets. Complex & Intelligent System, 8, 337-348. https://doi.org/10.1007/s40747-021-00378-x
  • Dalkılıç, O. and Demirtaş, N. (2022) Decision analysis review on the concept of class for bipolar soft set theory. Computational and Applied Mathematics 41. https://doi.org/10.1007/s40314-022-01922-2.
  • Dalkılıç, O. and Demirtaş, N., (2023) Novel hybrid soft set theories focusing on desicion makiers by considering the factors affecting the parameters. Journal of Experimental and Theoretical Artificial Intelligence. https://doi.org/10.1080/0952813X.2023.2259913.
  • Dalkılıç, O. and Cangul, I.N., (2024) Determining interactions between objects from different universes: (inverse) object interaction set for binay soft set. Soft Computing 28, 12869-12877. https://doi.org/10.1007/s00500-024-10318-9.
  • Das S. and Kar S., (2014). Group decision making in medical system: an intuitionistic fuzzy soft set approach. Appl Soft Comput 24, 196–211. https://doi.org/10.1016/j.asoc.2014.06.050.
  • Demirtaş, N., Dalkılıç, O., Riaz, M. and Al-Quran, A., (2024) Mathematical analysis o parameters belonging to the universe in the soft set theory with new distance measures. Journal of Intelligent and Fuzzy Systems 46, 3975-3985. 10.3233/JIFS-234481.
  • Demirtaş, N. and Dalkılıç, O. (2024) Bipolar fuzzy soft set thepry applied to medical diagnosis. Tur. J. Math. Comput. Sci. 16(2), 314-324. DOI : 10.47000/tjmcs.1254943.
  • Feng F., Young Bae Jun, Xiaoyan Liu and Lifeng Li, (2010). An Adjustable approach to fuzzy soft set based decision making. Journal of Computational and Applied Mathematics, 234, 10-20.
  • Hu J., Pan L., Yang Y. and Chen H., (2019), A group medical diagnosis model based on intuitionistic fuzzy soft sets. Appiedl Soft Computing Journal, 77, 453–466. 

  • Imran, R. and Ullah, K., (2025), Circular Intuitionistic Fuzzy EDAS Approach: A new Paradigm for Decision-Making in the Automotive Industry Sector. Spectrum of Engineering and Management Sciences, 3-1, 76-92. https://doi.org/10.31181/sems31202537i.
  • Jiang Y., Tang Y. and Chen Q., (2011). An adjustable approach to intuitionistic fuzzy soft sets based decision making. Appl Math Model 35(2), 824–836. https://doi.org/10.1016/j.apm.2010.07.038
  • Khameneh A.Z., Kılıçman A. and Salleh A.R., (2018). Application of a preference relationship in decision- making based on intuitionistic fuzzy soft sets. J Intell Fuzzy Syst, 34(1), 123–139. 
10.3233/JIFS-17089
  • Maji, P. K., Biswas R. and Roy A.R., (2001). Fuzzy soft sets, J. Fuzzy Math., 9(3), 589-602. 

  • Maji, P.K., Roy A.R. and Biswas, R., (2004). On intuitionistic fuzzy soft sets. J. Fuzzy Math., 12, 669–683. 

  • Masmali, I., Ahmad, A., Azeem, M., Koam, A.N.A. and Alharbi, R. (2024). TOPSIS Method Based on Intuitionistic Fuzzy Soft Set and Its Application to Diagnosis of Ovarian Cancer. International Journal of Computational Intelligence Systems, 17-161. https://doi.org/10.1007/s44196-024-00537-1
  • Memiş, S., Erduran, F. Ş., Aydoğan, H., (2025). Adaptive machine learning approaches utilizing soft decision-making cia intuitionistic fuzzy parametrized intuitionistic fuzzy soft matices. PeerJ Compu. Sci. 11:e2703. 10.7717/peerj-cs.2703.
  • Molodtsov, D., (1999). Soft Set Theory-First Results, Comput. Math. Appl., 37, 19-31.
  • Polat, N., Yaylalı Umul, G., Tanay, B., (2019). A Method for Decision Making Problems by using Graph Representation of Soft Set Relations. Intelligent Automation and Soft Computing. 25(2), 305-311. https://doi.org/10.31209/2018.100000006
  • Saqlain, M. and Saeed M., (2024). From Ambiguity to Clarity: Unraveling the Power of Similarity Measures in Multi-Polar Interval-Valued Intuitionistic Fuzzy Soft Sets. Decision Making Advances, 2 -1, 48-59. https://doi.org/10.31181/dma21202421
  • Stojanovic, N., Lakovic, M. and Djurovic, L. (2025). Decision-making algorithm based on the energy of interval- valued hesitant fuzzy soft sets. Neural Computing and Applications. https://doi.org/10.1007/s00521-025-11107-7.
  • Xui, Y., Suni, Y. and Li, D. (2010), Intuitionistic Fuzzy soft set. 2010 2nd International Workshop on Intelligent Systems and Applications, 22-23 May 2010. China, 10.1109/IWISA.2010.5473444
  • Yang Y.W. and Qian, T., 2013. Decision-making approach with entropy weight based on intuitionistic fuzzy soft set, Ann. Fuzzy Math. Inform., 6 (2), 415-424. 

  • Yaylalı Umul, G., Polat, N., Tanay, B., (2021). A Soft Interval Based Decision Making Method and Its Computer Application. Foundations of Computing and Decision Sciences. 46, 273-296. 10.2478/fcds-2021-0018.
  • Yaylalı Umul, G., (2025). A multi-attribute group decision-making algorithm based on soft intervals that considers the priority rankings of group members on attributes of objects, along with some applications. AIMS Mathematics, 10(3), 4709-4746. 10.3934/math.2025217.
  • Zadeh, L.A., (1965). Fuzzy Sets, Information and Contrrol, 8, 338-353. 

  • Zhao, H., Ma, W. and Sun, B., (2017). A novel decision-making approach based on intuitionistic fuzzy soft sets. Int. J. Mach. Learn. & Cyber., 8, 1107–1117. 10.1007/s13042-015-0481-z

Sezgisel Bulanık Esnek Küme Kullanarak Kullanıcı Sıralamasını Önceliklendiren Karar Verme Yöntemi

Yıl 2025, Cilt: 15 Sayı: 2, 764 - 786, 15.06.2025
https://doi.org/10.31466/kfbd.1618462

Öz

Karar verme, gerçek yaşam uygulamalarında önemli bir yere sahiptir. Pratik uygulamalarda belirsizlikleri yönetmek için günümüzde esnek kümeler, bulanık kümeler ve bulanık esnek kümeler yaygın olarak kullanılmaktadır. Ayrıca sezgisel bulanık esnek kümelerin etkinliği çok sayıda çalışmada vurgulanmıştır. Günlük yaşamda, kararlarda kullanıcıların önceliklerini dikkate almak her zaman kararı etkiler, bu nedenle bir karar verme algoritmasında kullanıcı öncelik sıralaması önemli bir yere sahiptir. Bu çalışma, bulanık esnek küme (FSS) ve sezgisel bulanık esnek küme (IFSS) çerçevelerini kullanarak karar verme problemlerini ele almayı amaçlamaktadır. Bu çalışmanın temel farkı, karar verme algoritmalarına entegre edilen kullanıcı öncelik sıralamalarını dikkate almasıdır. Bu makale karar verme için iki algoritma tanıtmaktadır: birincisi bulanık esnek kümelere dayalı ve ikincisi sezgisel bulanık esnek kümelere dayalıdır. Her iki yaklaşım da kullanıcının nitelikler için öncelik sıralamasını dikkate alarak çok nitelikli nesnelerden oluşan bir gruptan bir nesne seçmesini ve böylece en uygun seçeneği belirlemesini sağlar.

Kaynakça

  • Adithta, U., Sunil, J.J., and Baiju, T., (2024) Circular Intuitionistic Fuzzy Soft Set Theoretic Approach to Decision Making Problems. IEEE Access, 12, 144818- 144836. 10.1109/ACCESS.2024.3472215.
  • Atanassov, K., (1986). Intuitionistic fuzzy sets. Fuzzy Sets Syst., 20, 87-96. 

  • Chen H. and Liu Y., (2024). Group Decision-Making Method with Incomplete Intuitionistic Fuzzy Soft Information for Medical Diagnosis Model. Mathematics 2024, 12(12), 1823; https://doi.org/10.3390/math12121823
  • Dalkılıç, O., (2021) (α,β)-cut and inverse (α,β)-cuts in bipolar fuzzy soft sets. Commun. Fa. Sci. Univ. Ank. Ser. A1 Math. Stat. 70, 582-599. DOI: 10.31801/cfsuasmas.770623.
  • Dalkılıç, O., (2022) On topological structures of virtual fuzzy parametrized fuzzy soft sets. Complex & Intelligent System, 8, 337-348. https://doi.org/10.1007/s40747-021-00378-x
  • Dalkılıç, O. and Demirtaş, N. (2022) Decision analysis review on the concept of class for bipolar soft set theory. Computational and Applied Mathematics 41. https://doi.org/10.1007/s40314-022-01922-2.
  • Dalkılıç, O. and Demirtaş, N., (2023) Novel hybrid soft set theories focusing on desicion makiers by considering the factors affecting the parameters. Journal of Experimental and Theoretical Artificial Intelligence. https://doi.org/10.1080/0952813X.2023.2259913.
  • Dalkılıç, O. and Cangul, I.N., (2024) Determining interactions between objects from different universes: (inverse) object interaction set for binay soft set. Soft Computing 28, 12869-12877. https://doi.org/10.1007/s00500-024-10318-9.
  • Das S. and Kar S., (2014). Group decision making in medical system: an intuitionistic fuzzy soft set approach. Appl Soft Comput 24, 196–211. https://doi.org/10.1016/j.asoc.2014.06.050.
  • Demirtaş, N., Dalkılıç, O., Riaz, M. and Al-Quran, A., (2024) Mathematical analysis o parameters belonging to the universe in the soft set theory with new distance measures. Journal of Intelligent and Fuzzy Systems 46, 3975-3985. 10.3233/JIFS-234481.
  • Demirtaş, N. and Dalkılıç, O. (2024) Bipolar fuzzy soft set thepry applied to medical diagnosis. Tur. J. Math. Comput. Sci. 16(2), 314-324. DOI : 10.47000/tjmcs.1254943.
  • Feng F., Young Bae Jun, Xiaoyan Liu and Lifeng Li, (2010). An Adjustable approach to fuzzy soft set based decision making. Journal of Computational and Applied Mathematics, 234, 10-20.
  • Hu J., Pan L., Yang Y. and Chen H., (2019), A group medical diagnosis model based on intuitionistic fuzzy soft sets. Appiedl Soft Computing Journal, 77, 453–466. 

  • Imran, R. and Ullah, K., (2025), Circular Intuitionistic Fuzzy EDAS Approach: A new Paradigm for Decision-Making in the Automotive Industry Sector. Spectrum of Engineering and Management Sciences, 3-1, 76-92. https://doi.org/10.31181/sems31202537i.
  • Jiang Y., Tang Y. and Chen Q., (2011). An adjustable approach to intuitionistic fuzzy soft sets based decision making. Appl Math Model 35(2), 824–836. https://doi.org/10.1016/j.apm.2010.07.038
  • Khameneh A.Z., Kılıçman A. and Salleh A.R., (2018). Application of a preference relationship in decision- making based on intuitionistic fuzzy soft sets. J Intell Fuzzy Syst, 34(1), 123–139. 
10.3233/JIFS-17089
  • Maji, P. K., Biswas R. and Roy A.R., (2001). Fuzzy soft sets, J. Fuzzy Math., 9(3), 589-602. 

  • Maji, P.K., Roy A.R. and Biswas, R., (2004). On intuitionistic fuzzy soft sets. J. Fuzzy Math., 12, 669–683. 

  • Masmali, I., Ahmad, A., Azeem, M., Koam, A.N.A. and Alharbi, R. (2024). TOPSIS Method Based on Intuitionistic Fuzzy Soft Set and Its Application to Diagnosis of Ovarian Cancer. International Journal of Computational Intelligence Systems, 17-161. https://doi.org/10.1007/s44196-024-00537-1
  • Memiş, S., Erduran, F. Ş., Aydoğan, H., (2025). Adaptive machine learning approaches utilizing soft decision-making cia intuitionistic fuzzy parametrized intuitionistic fuzzy soft matices. PeerJ Compu. Sci. 11:e2703. 10.7717/peerj-cs.2703.
  • Molodtsov, D., (1999). Soft Set Theory-First Results, Comput. Math. Appl., 37, 19-31.
  • Polat, N., Yaylalı Umul, G., Tanay, B., (2019). A Method for Decision Making Problems by using Graph Representation of Soft Set Relations. Intelligent Automation and Soft Computing. 25(2), 305-311. https://doi.org/10.31209/2018.100000006
  • Saqlain, M. and Saeed M., (2024). From Ambiguity to Clarity: Unraveling the Power of Similarity Measures in Multi-Polar Interval-Valued Intuitionistic Fuzzy Soft Sets. Decision Making Advances, 2 -1, 48-59. https://doi.org/10.31181/dma21202421
  • Stojanovic, N., Lakovic, M. and Djurovic, L. (2025). Decision-making algorithm based on the energy of interval- valued hesitant fuzzy soft sets. Neural Computing and Applications. https://doi.org/10.1007/s00521-025-11107-7.
  • Xui, Y., Suni, Y. and Li, D. (2010), Intuitionistic Fuzzy soft set. 2010 2nd International Workshop on Intelligent Systems and Applications, 22-23 May 2010. China, 10.1109/IWISA.2010.5473444
  • Yang Y.W. and Qian, T., 2013. Decision-making approach with entropy weight based on intuitionistic fuzzy soft set, Ann. Fuzzy Math. Inform., 6 (2), 415-424. 

  • Yaylalı Umul, G., Polat, N., Tanay, B., (2021). A Soft Interval Based Decision Making Method and Its Computer Application. Foundations of Computing and Decision Sciences. 46, 273-296. 10.2478/fcds-2021-0018.
  • Yaylalı Umul, G., (2025). A multi-attribute group decision-making algorithm based on soft intervals that considers the priority rankings of group members on attributes of objects, along with some applications. AIMS Mathematics, 10(3), 4709-4746. 10.3934/math.2025217.
  • Zadeh, L.A., (1965). Fuzzy Sets, Information and Contrrol, 8, 338-353. 

  • Zhao, H., Ma, W. and Sun, B., (2017). A novel decision-making approach based on intuitionistic fuzzy soft sets. Int. J. Mach. Learn. & Cyber., 8, 1107–1117. 10.1007/s13042-015-0481-z
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yazılım Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Gözde Yaylalı Umul 0000-0001-8191-2674

Yayımlanma Tarihi 15 Haziran 2025
Gönderilme Tarihi 12 Ocak 2025
Kabul Tarihi 8 Nisan 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 15 Sayı: 2

Kaynak Göster

APA Yaylalı Umul, G. (2025). Decision-Making Method That Prioritizes User Ranking by Using Intuitionistic Fuzzy Soft Set. Karadeniz Fen Bilimleri Dergisi, 15(2), 764-786. https://doi.org/10.31466/kfbd.1618462