Araştırma Makalesi
BibTex RIS Kaynak Göster

Effect of Torrefaction on Hazelnut Shell Combustion Kinetics and Thermodynamic Parameters

Yıl 2025, Cilt: 15 Sayı: 3, 1220 - 1239, 15.09.2025
https://doi.org/10.31466/kfbd.1655502

Öz

In this study, the effect of torrefaction on the combustion kinetics and thermodynamic parameters of hazelnut shell (HS) waste was investigated using thermogravimetric analysis (TGA). The combustion behavior of raw and torrefied hazelnut shells at 473 K was examined at heating rates of 10, 20, and 30 K/min, and activation energies were calculated using Kissinger-Akahira-Sunose (KAS), Starink, and Friedman methods. The combustion characteristic index indicated that torrefaction improves the combustion performance of HS waste. Kinetic analysis revealed that the torrefied sample exhibited lower activation energy compared to the raw sample (KAS method: HS = 232 kJ/mol, HS-473 = 195 kJ/mol). In thermodynamic analysis, a decrease was observed in both enthalpy (ΔH) and Gibbs free energy (ΔG), indicating that torrefaction enables combustion with lower energy input. The results demonstrate that torrefaction has the potential to enhance fuel efficiency in biomass energy applications.

Kaynakça

  • Akkaya Sayğılı, G., & Sayğılı, H. (2025). Hydrothermal co-carbonization of hazelnut and pistachio shells to hydrochar as potential energy source: Synergistic effects of process parameters on hydrochar characteristics. Biomass and Bioenergy, 193, 107606. https://doi.org/10.1016/j.biombioe.2025.107606
  • AYDEMİR, B., & YILGIN, M. (2022). Fındık Kabuğunun Torrefaksiyon ve Yanma davranışının İncelenmesi. Karadeniz Fen Bilimleri Dergisi, 12(1), 51–65. https://doi.org/10.31466/kfbd.974829
  • Barzegar, R., Yozgatligil, A., Olgun, H., & Atimtay, A. T. (2020). TGA and kinetic study of different torrefaction conditions of wood biomass under air and oxy-fuel combustion atmospheres. Journal of the Energy Institute, 93(3), 889–898. https://doi.org/10.1016/j.joei.2019.08.001
  • Bhushan, D., Hooda, S., Chitransh, S., & Mondal, P. (2024). Insights into catalytic co-pyrolysis of spent coffee grounds and high density polyethylene (HDPE) using acid mine drainage (AMD) treated sludge based catalyst: Analysis of kinetics, mechanism and thermodynamic properties. Sustainable Chemistry for Climate Action, 5, 100051. https://doi.org/10.1016/J.SCCA.2024.100051
  • Castells, B., Amez, I., Medic, L., & García-Torrent, J. (2021). Torrefaction influence on combustion kinetics of Malaysian oil palm wastes. Fuel Processing Technology, 218, 106843. https://doi.org/10.1016/j.fuproc.2021.106843
  • Castells, B., Paredes, R., León, D., & Amez, I. (2025). Kinetic and thermodynamic insights into sewage sludge torrefaction: Energetic optimization and safety considerations. Energy Nexus, 17, 100377. https://doi.org/10.1016/j.nexus.2025.100377
  • Chaturvedi, V., & Verma, P. (2013). An overview of key pretreatment processes employed for bioconversion of lignocellulosic biomass into biofuels and value added products. In 3 Biotech (Vol. 3, Issue 5, pp. 415–431). Springer Verlag. https://doi.org/10.1007/s13205-013-0167-8
  • Chen, C., Qu, B., Wang, W., Wang, W., Ji, G., & Li, A. (2021). Rice husk and rice straw torrefaction: Properties and pyrolysis kinetics of raw and torrefied biomass. Environmental Technology and Innovation, 24, 101872. https://doi.org/10.1016/j.eti.2021.101872
  • Demirbas, A. (2004). Combustion characteristics of different biomass fuels. In Progress in Energy and Combustion Science (Vol. 30, Issue 2, pp. 219–230). Pergamon. https://doi.org/10.1016/j.pecs.2003.10.004
  • Galloni, M., & Di Marcoberardino, G. (2024). Biogas Upgrading Technology: Conventional Processes and Emerging Solutions Analysis. In Energies (Vol. 17, Issue 12). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/en17122907
  • Guo, S., Deng, X., Liu, L., Ge, L., & Lisak, G. (2024). Comprehensive analysis of combustion behavior, kinetics, and gas emissions of fungus bran biofuel through torrefaction pretreatment and polypropylene addition. Fuel, 364, 131014. https://doi.org/10.1016/j.fuel.2024.131014
  • Haykiri-Acma, H., Yaman, S., & Kucukbayrak, S. (2017). Effects of torrefaction on lignin-rich biomass (hazelnut shell): Structural variations. Journal of Renewable and Sustainable Energy, 9(6). https://doi.org/10.1063/1.4997824
  • Ma, J., Feng, S., Zhang, Z., Wang, Z., Kong, W., Yuan, P., Shen, B., & Mu, L. (2022). Effect of torrefaction pretreatment on the combustion characteristics of the biodried products derived from municipal organic wastes. Energy, 239, 122358. https://doi.org/10.1016/j.energy.2021.122358
  • Majamo, S. L., & Amibo, T. A. (2024). Modeling and optimization of chemical-treated torrefaction of wheat straw to improve energy density by response surface methodology. Biomass Conversion and Biorefinery, 14(17), 21213–21227. https://doi.org/10.1007/s13399-023-04192-y
  • Manouchehrinejad, M., Yue, Y., de Morais, R. A. L., Souza, L. M. O., Singh, H., & Mani, S. (2018). Densification of Thermally Treated Energy Cane and Napier Grass. Bioenergy Research, 11(3), 538–550. https://doi.org/10.1007/s12155-018-9921-4
  • Mishra, R. K., & Mohanty, K. (2018). Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis. Bioresource Technology, 251, 63–74. https://doi.org/10.1016/j.biortech.2017.12.029
  • Ong, H. C., Yu, K. L., Chen, W. H., Pillejera, M. K., Bi, X., Tran, K. Q., Pétrissans, A., & Pétrissans, M. (2021). Variation of lignocellulosic biomass structure from torrefaction: A critical review. Renewable and Sustainable Energy Reviews, 152, 111698. https://doi.org/10.1016/j.rser.2021.111698
  • Pambudi, S., Saechua, W., & Jongyingcharoen, J. S. (2024). A thermogravimetric assessment of eco-friendly biochar from oxidative torrefaction of spent coffee grounds: Combustion behavior, kinetic parameters, and potential emissions. Environmental Technology and Innovation, 33, 103472. https://doi.org/10.1016/j.eti.2023.103472
  • Parmar, P., Mukherjee, S., Kumar Singh, V., & Meikap, B. C. (2024). Thermo-kinetic analysis of sugarcane bagasse as a sustainable energy resource evaluation. Thermal Science and Engineering Progress, 54, 102836. https://doi.org/10.1016/j.tsep.2024.102836
  • Pasangulapati, V., Ramachandriya, K. D., Kumar, A., Wilkins, M. R., Jones, C. L., & Huhnke, R. L. (2012). Effects of cellulose, hemicellulose and lignin on thermochemical conversion characteristics of the selected biomass. Bioresource Technology, 114, 663–669. https://doi.org/10.1016/j.biortech.2012.03.036
  • Posom, J., & Maraphum, K. (2024). Fast prediction of the combustion properties of biomass pellets using hyperspectral imaging. Biomass and Bioenergy, 183, 107134. https://doi.org/10.1016/j.biombioe.2024.107134
  • Qin, S., Chen, C., He, L., Li, B., Peng, G., & Ma, X. (2024). Co-combustion characteristics, interaction and kinetic analysis of multiple coal and eucalyptus. Industrial Crops and Products, 222, 119980. https://doi.org/10.1016/j.indcrop.2024.119980
  • Riaz, S., Oluwoye, I., & Al-Abdeli, Y. M. (2022). Oxidative torrefaction of densified woody biomass: Performance, combustion kinetics and thermodynamics. Renewable Energy, 199, 908–918. https://doi.org/10.1016/j.renene.2022.09.023
  • Söyler, N., & Ceylan, S. (2021). Thermokinetic analysis and product characterization of waste tire-hazelnut shell co-pyrolysis: TG-FTIR and fixed bed reactor study. Journal of Environmental Chemical Engineering, 9(5), 106165. https://doi.org/10.1016/j.jece.2021.106165
  • Sun, Y., Tong, S., Li, X., Hu, Z., Sun, M., Guo, L., Liu, H., Hu, H., Luo, G., & Yao, H. (2022). Gas-pressurized torrefaction of biomass wastes: Self-promoted deoxygenation of rice straw at low temperature. Fuel, 308. https://doi.org/10.1016/j.fuel.2021.122029
  • Tejaswini, M. S. S. R., & Pathak, P. (2023). Co-combustion of multilayered plastic waste blend with biomass: Thermokinetics and synergistic effect. Fuel, 337, 127168. https://doi.org/10.1016/j.fuel.2022.127168
  • Vyazovkin, S., Burnham, A. K., Criado, J. M., Pérez-Maqueda, L. A., Popescu, C., & Sbirrazzuoli, N. (2011). ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. In Thermochimica Acta (Vol. 520, Issues 1–2, pp. 1–19). Elsevier B.V. https://doi.org/10.1016/j.tca.2011.03.034
  • Vyazovkin, S., Chrissafis, K., Di Lorenzo, M. L., Koga, N., Pijolat, M., Roduit, B., Sbirrazzuoli, N., & Suñol, J. J. (2014). ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochimica Acta, 590, 1–23. https://doi.org/10.1016/j.tca.2014.05.036
  • Xu, X., Pan, R., & Chen, R. (2021). Combustion Characteristics, Kinetics, and Thermodynamics of Pine Wood Through Thermogravimetric Analysis. Applied Biochemistry and Biotechnology, 193(5), 1427–1446. https://doi.org/10.1007/s12010-020-03480-x
  • Xue, J., Chellappa, T., Ceylan, S., & Goldfarb, J. L. (2018). Enhancing biomass + coal Co-firing scenarios via biomass torrefaction and carbonization: Case study of avocado pit biomass and Illinois No. 6 coal. Renewable Energy, 122, 152–162. https://doi.org/10.1016/j.renene.2018.01.066
  • Yang, Y., Qu, X., Huang, G., Ren, S., Dong, L., Sun, T., Liu, P., Li, Y., Lei, T., & Cai, J. (2023). Insight into lignocellulosic biomass torrefaction kinetics with case study of pinewood sawdust torrefaction. Renewable Energy, 215, 118941. https://doi.org/10.1016/j.renene.2023.118941
  • Zhang, W., Zhang, Y., Wu, H., Yang, X., Qiao, P., Li, J., Chen, Z., & Wang, Y. (2025). Investigation on the pyrolysis behaviors and kinetics of walnut shell lignocellulosic biomass with additives. Chinese Journal of Chemical Engineering. https://doi.org/10.1016/J.CJCHE.2024.10.037

Torefikasyonun Fındık Kabuğunun Yanma Kinetiği ve Termodinamik Parametreleri Üzerine Etkisi

Yıl 2025, Cilt: 15 Sayı: 3, 1220 - 1239, 15.09.2025
https://doi.org/10.31466/kfbd.1655502

Öz

Bu çalışmada, torefikasyon işleminin fındık kabuğu (FK) atıklarının yanma kinetiği ve termodinamik parametreleri üzerindeki etkisi termogravimetrik analiz (TGA) yöntemi ile incelenmiştir. Ham ve 473 K’de torefiye edilmiş fındık kabuklarının yanma davranışları 10, 20 ve 30 K/dk ısıtma hızlarında çalışılmış ve Kissinger-Akahira-Sunose (KAS), Starink ve Friedman yöntemleriyle aktivasyon enerjileri hesaplanmıştır. Yanma karakteristik indeksi, torefikasyonun FK atığının yanma süreçlerini daha verimli hale getirdiğini göstermiştir. Kinetik analiz sonucunda torefiye edilmiş numunenin aktivasyon enerjisinin daha düşük olduğu belirlenmiştir (KAS için; FK: 232 kJ/mol, FK-473: 195 kJ/mol). Termodinamik analizde ise entalpi (ΔH) ve Gibbs serbest enerjisi (ΔG) değerlerinde düşüş gözlemlenmiş ve torefikasyonun FK atığının daha düşük enerji ile yanmasını sağladığı belirlenmiştir. Sonuçlar, torefikasyonun biyokütle enerjisi uygulamalarında yakıt verimliliğini artırma potansiyeline sahip olduğunu göstermektedir.

Kaynakça

  • Akkaya Sayğılı, G., & Sayğılı, H. (2025). Hydrothermal co-carbonization of hazelnut and pistachio shells to hydrochar as potential energy source: Synergistic effects of process parameters on hydrochar characteristics. Biomass and Bioenergy, 193, 107606. https://doi.org/10.1016/j.biombioe.2025.107606
  • AYDEMİR, B., & YILGIN, M. (2022). Fındık Kabuğunun Torrefaksiyon ve Yanma davranışının İncelenmesi. Karadeniz Fen Bilimleri Dergisi, 12(1), 51–65. https://doi.org/10.31466/kfbd.974829
  • Barzegar, R., Yozgatligil, A., Olgun, H., & Atimtay, A. T. (2020). TGA and kinetic study of different torrefaction conditions of wood biomass under air and oxy-fuel combustion atmospheres. Journal of the Energy Institute, 93(3), 889–898. https://doi.org/10.1016/j.joei.2019.08.001
  • Bhushan, D., Hooda, S., Chitransh, S., & Mondal, P. (2024). Insights into catalytic co-pyrolysis of spent coffee grounds and high density polyethylene (HDPE) using acid mine drainage (AMD) treated sludge based catalyst: Analysis of kinetics, mechanism and thermodynamic properties. Sustainable Chemistry for Climate Action, 5, 100051. https://doi.org/10.1016/J.SCCA.2024.100051
  • Castells, B., Amez, I., Medic, L., & García-Torrent, J. (2021). Torrefaction influence on combustion kinetics of Malaysian oil palm wastes. Fuel Processing Technology, 218, 106843. https://doi.org/10.1016/j.fuproc.2021.106843
  • Castells, B., Paredes, R., León, D., & Amez, I. (2025). Kinetic and thermodynamic insights into sewage sludge torrefaction: Energetic optimization and safety considerations. Energy Nexus, 17, 100377. https://doi.org/10.1016/j.nexus.2025.100377
  • Chaturvedi, V., & Verma, P. (2013). An overview of key pretreatment processes employed for bioconversion of lignocellulosic biomass into biofuels and value added products. In 3 Biotech (Vol. 3, Issue 5, pp. 415–431). Springer Verlag. https://doi.org/10.1007/s13205-013-0167-8
  • Chen, C., Qu, B., Wang, W., Wang, W., Ji, G., & Li, A. (2021). Rice husk and rice straw torrefaction: Properties and pyrolysis kinetics of raw and torrefied biomass. Environmental Technology and Innovation, 24, 101872. https://doi.org/10.1016/j.eti.2021.101872
  • Demirbas, A. (2004). Combustion characteristics of different biomass fuels. In Progress in Energy and Combustion Science (Vol. 30, Issue 2, pp. 219–230). Pergamon. https://doi.org/10.1016/j.pecs.2003.10.004
  • Galloni, M., & Di Marcoberardino, G. (2024). Biogas Upgrading Technology: Conventional Processes and Emerging Solutions Analysis. In Energies (Vol. 17, Issue 12). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/en17122907
  • Guo, S., Deng, X., Liu, L., Ge, L., & Lisak, G. (2024). Comprehensive analysis of combustion behavior, kinetics, and gas emissions of fungus bran biofuel through torrefaction pretreatment and polypropylene addition. Fuel, 364, 131014. https://doi.org/10.1016/j.fuel.2024.131014
  • Haykiri-Acma, H., Yaman, S., & Kucukbayrak, S. (2017). Effects of torrefaction on lignin-rich biomass (hazelnut shell): Structural variations. Journal of Renewable and Sustainable Energy, 9(6). https://doi.org/10.1063/1.4997824
  • Ma, J., Feng, S., Zhang, Z., Wang, Z., Kong, W., Yuan, P., Shen, B., & Mu, L. (2022). Effect of torrefaction pretreatment on the combustion characteristics of the biodried products derived from municipal organic wastes. Energy, 239, 122358. https://doi.org/10.1016/j.energy.2021.122358
  • Majamo, S. L., & Amibo, T. A. (2024). Modeling and optimization of chemical-treated torrefaction of wheat straw to improve energy density by response surface methodology. Biomass Conversion and Biorefinery, 14(17), 21213–21227. https://doi.org/10.1007/s13399-023-04192-y
  • Manouchehrinejad, M., Yue, Y., de Morais, R. A. L., Souza, L. M. O., Singh, H., & Mani, S. (2018). Densification of Thermally Treated Energy Cane and Napier Grass. Bioenergy Research, 11(3), 538–550. https://doi.org/10.1007/s12155-018-9921-4
  • Mishra, R. K., & Mohanty, K. (2018). Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis. Bioresource Technology, 251, 63–74. https://doi.org/10.1016/j.biortech.2017.12.029
  • Ong, H. C., Yu, K. L., Chen, W. H., Pillejera, M. K., Bi, X., Tran, K. Q., Pétrissans, A., & Pétrissans, M. (2021). Variation of lignocellulosic biomass structure from torrefaction: A critical review. Renewable and Sustainable Energy Reviews, 152, 111698. https://doi.org/10.1016/j.rser.2021.111698
  • Pambudi, S., Saechua, W., & Jongyingcharoen, J. S. (2024). A thermogravimetric assessment of eco-friendly biochar from oxidative torrefaction of spent coffee grounds: Combustion behavior, kinetic parameters, and potential emissions. Environmental Technology and Innovation, 33, 103472. https://doi.org/10.1016/j.eti.2023.103472
  • Parmar, P., Mukherjee, S., Kumar Singh, V., & Meikap, B. C. (2024). Thermo-kinetic analysis of sugarcane bagasse as a sustainable energy resource evaluation. Thermal Science and Engineering Progress, 54, 102836. https://doi.org/10.1016/j.tsep.2024.102836
  • Pasangulapati, V., Ramachandriya, K. D., Kumar, A., Wilkins, M. R., Jones, C. L., & Huhnke, R. L. (2012). Effects of cellulose, hemicellulose and lignin on thermochemical conversion characteristics of the selected biomass. Bioresource Technology, 114, 663–669. https://doi.org/10.1016/j.biortech.2012.03.036
  • Posom, J., & Maraphum, K. (2024). Fast prediction of the combustion properties of biomass pellets using hyperspectral imaging. Biomass and Bioenergy, 183, 107134. https://doi.org/10.1016/j.biombioe.2024.107134
  • Qin, S., Chen, C., He, L., Li, B., Peng, G., & Ma, X. (2024). Co-combustion characteristics, interaction and kinetic analysis of multiple coal and eucalyptus. Industrial Crops and Products, 222, 119980. https://doi.org/10.1016/j.indcrop.2024.119980
  • Riaz, S., Oluwoye, I., & Al-Abdeli, Y. M. (2022). Oxidative torrefaction of densified woody biomass: Performance, combustion kinetics and thermodynamics. Renewable Energy, 199, 908–918. https://doi.org/10.1016/j.renene.2022.09.023
  • Söyler, N., & Ceylan, S. (2021). Thermokinetic analysis and product characterization of waste tire-hazelnut shell co-pyrolysis: TG-FTIR and fixed bed reactor study. Journal of Environmental Chemical Engineering, 9(5), 106165. https://doi.org/10.1016/j.jece.2021.106165
  • Sun, Y., Tong, S., Li, X., Hu, Z., Sun, M., Guo, L., Liu, H., Hu, H., Luo, G., & Yao, H. (2022). Gas-pressurized torrefaction of biomass wastes: Self-promoted deoxygenation of rice straw at low temperature. Fuel, 308. https://doi.org/10.1016/j.fuel.2021.122029
  • Tejaswini, M. S. S. R., & Pathak, P. (2023). Co-combustion of multilayered plastic waste blend with biomass: Thermokinetics and synergistic effect. Fuel, 337, 127168. https://doi.org/10.1016/j.fuel.2022.127168
  • Vyazovkin, S., Burnham, A. K., Criado, J. M., Pérez-Maqueda, L. A., Popescu, C., & Sbirrazzuoli, N. (2011). ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. In Thermochimica Acta (Vol. 520, Issues 1–2, pp. 1–19). Elsevier B.V. https://doi.org/10.1016/j.tca.2011.03.034
  • Vyazovkin, S., Chrissafis, K., Di Lorenzo, M. L., Koga, N., Pijolat, M., Roduit, B., Sbirrazzuoli, N., & Suñol, J. J. (2014). ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochimica Acta, 590, 1–23. https://doi.org/10.1016/j.tca.2014.05.036
  • Xu, X., Pan, R., & Chen, R. (2021). Combustion Characteristics, Kinetics, and Thermodynamics of Pine Wood Through Thermogravimetric Analysis. Applied Biochemistry and Biotechnology, 193(5), 1427–1446. https://doi.org/10.1007/s12010-020-03480-x
  • Xue, J., Chellappa, T., Ceylan, S., & Goldfarb, J. L. (2018). Enhancing biomass + coal Co-firing scenarios via biomass torrefaction and carbonization: Case study of avocado pit biomass and Illinois No. 6 coal. Renewable Energy, 122, 152–162. https://doi.org/10.1016/j.renene.2018.01.066
  • Yang, Y., Qu, X., Huang, G., Ren, S., Dong, L., Sun, T., Liu, P., Li, Y., Lei, T., & Cai, J. (2023). Insight into lignocellulosic biomass torrefaction kinetics with case study of pinewood sawdust torrefaction. Renewable Energy, 215, 118941. https://doi.org/10.1016/j.renene.2023.118941
  • Zhang, W., Zhang, Y., Wu, H., Yang, X., Qiao, P., Li, J., Chen, Z., & Wang, Y. (2025). Investigation on the pyrolysis behaviors and kinetics of walnut shell lignocellulosic biomass with additives. Chinese Journal of Chemical Engineering. https://doi.org/10.1016/J.CJCHE.2024.10.037
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Enerji ve Yakmada Kimyasal ve Termal Süreçler
Bölüm Makaleler
Yazarlar

Gülce Çakman 0000-0002-3202-3202

Yayımlanma Tarihi 15 Eylül 2025
Gönderilme Tarihi 14 Mart 2025
Kabul Tarihi 29 Ağustos 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 15 Sayı: 3

Kaynak Göster

APA Çakman, G. (2025). Torefikasyonun Fındık Kabuğunun Yanma Kinetiği ve Termodinamik Parametreleri Üzerine Etkisi. Karadeniz Fen Bilimleri Dergisi, 15(3), 1220-1239. https://doi.org/10.31466/kfbd.1655502