Pestisit Tespiti için Sensör Optimizasyonlu Bir Elektronik Burun: Kirazlarda Diazinon'un YSA ve Genetik Algoritma Tabanlı Sınıflandırılması
Yıl 2025,
Cilt: 15 Sayı: 3, 1252 - 1263, 15.09.2025
Cemaleddin Şimşek
,
Ahmet Yılmaz
Öz
Tarım, insan yaşamını sürdürmek için vazgeçilmez olan besin kaynaklarını sağlamak açısından hayati öneme sahiptir. Artan nüfusun taleplerini karşılamak ve yüksek verimli tarım elde etmek amacıyla, zirai pestisit kullanımı yaygın bir uygulama haline gelmiştir. Çeşitli pestisitler tarımsal verimliliği artırabilse de, çalışmalar bunların insan sağlığı üzerinde çeşitli etkilere sahip olabileceğini göstermiştir. Bu nedenle, bu maddelerin tespiti ve insan sağlığı üzerindeki etkilerinin en aza indirilmesi kritik öneme sahiptir. Bu çalışma, kirazlardaki Diazinon pestisit kalıntılarını tespit etmek için bir elektronik burun, yapay sinir ağları (YSA) ve genetik algoritmalar (GA) kullanarak etkili bir sınıflandırma yöntemi sunmaktadır. Piyasada kolayca bulunabilen 11 gaz sensörü kullanılarak bir elektronik burun sistemi geliştirilmiştir. Farklı seviyelerde pestisit kontaminasyonu olan ve olmayan kiraz örneklerinden elde edilen veriler, bir YSA sınıflandırıcısı ile sensör tepkilerini analiz etmek için kullanılmıştır. Ardından, gereken sensör sayısını en aza indirmek için GA kullanılmıştır. Sonuçlar, yalnızca 3 sensör kullanılarak bile %100'e varan sınıflandırma doğruluğunun elde edilebileceğini göstermektedir. Bu çalışma, zirai pestisit kalıntılarının tespiti için maliyet etkin ve yüksek doğruluklu bir yöntem sunarak mevcut literatüre önemli bir katkı sağlamaktadır.
Kaynakça
-
Aktar, W., et al. (2009). Impact of pesticides use in agriculture: Their benefits and hazards. Interdisciplinary Toxicology, 2(1), 1-12.
-
Baietto, M., & Wilson, A. D. (2015). Electronic-nose applications for fruit identification, ripeness and quality grading. Sensors, 15(1), 899-931. http://dx.doi.org/10.3390/s150100899
-
Biondi, E., et al. (2014). Electronic nose and electronic tongue for the detection of plant diseases: Review. Plant Disease, 98(9), 1044-1053. https://doi.org/10.1094/PDIS-01-14-0033-FE
-
Carvalho, F. P. (2017). Pesticides, environment, and food safety. Food and Energy Security, 6(2), 48-60. https://doi.org/10.1002/fes3.109
-
Concina, I., et al. (2012). Early detection of microbial contamination in processed tomatoes by electronic nose. Food Control, 23(2), 406-413. https://doi.org/10.1016/j.foodcont.2011.07.032
-
Damalas, C. A., & Eleftherohorinos, I. G. (2011). Pesticide exposure, safety issues, and risk assessment indicators. International Journal of Environmental Research and Public Health, 8(5), 1402-1419. https://doi.org/10.3390/ijerph8051402
-
FAO. (2021). The State of Food and Agriculture 2021. Food and Agriculture Organization of the United Nations.
-
Ghasemi-Varnamkhasti, M., et al. (2011). Electronic nose as a non-destructive tool to characterize peach cultivars and to monitor their ripening stage during shelf-life. Postharvest Biology and Technology, 59(3), 245-251. https://doi.org/10.1016/j.postharvbio.2010.10.014
-
Godfray, H. C. J., et al. (2010). Food security: The challenge of feeding 9 billion people. Science, 327(5967), 812-818. https://doi.org/10.1126/science.1185383
-
Haddi, Z., et al. (2014). A portable electronic nose system for the identification of cannabis-based drugs. Sensors and Actuators B: Chemical, 190, 280-291. https://doi.org/10.1016/j.snb.2013.09.084
-
Hassoun, M. H. (1995). Fundamentals of artificial neural networks. MIT press.
-
Holland, J. H. (1992). Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT press.
-
Katoch, S., Chauhan, S. S., & Kumar, V. (2021). A review on genetic algorithm: past, present, and future. Multimedia tools and applications, 80, 8091-8126. https://doi.org/10.1007/s11042-020-10139-y
-
Kiani, S., et al. (2016). A portable electronic nose as an expert system for aroma-based classification of saffron. Chemometrics and Intelligent Laboratory Systems, 156, 148-156. https://doi.org/10.1016/j.chemolab.2016.06.009
-
Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
-
Li, C., et al. (2019). Detection of pesticide residues on fruit surfaces using an electronic nose system with chemometric methods. Food Control, 96, 16-24. https://doi.org/10.1016/j.foodcont.2018.09.018
-
Loutfi, A., et al. (2015). Electronic noses for food quality: A review. Journal of Food Engineering, 144, 103-111. https://doi.org/10.1016/j.jfoodeng.2014.08.024
-
Mahmood, I., et al. (2016). Effects of pesticides on environment. Plant, Soil and Microbes, 1, 253-269.
-
Nicolopoulou-Stamati, P., et al. (2016). Chemical pesticides and human health: The urgent need for a new concept in agriculture. Frontiers in Public Health, 4, 148. https://doi.org/10.3389/fpubh.2016.00148
-
Oerke, E. C. (2006). Crop losses to pests. Journal of Agricultural Science, 144(1), 31-43. https://doi.org/10.1017/S002185960500571X
-
Pathange, L. P., et al. (2006). Non-destructive evaluation of apple maturity using an electronic nose system. Journal of Food Engineering, 77(4), 1018-1023. https://doi.org/10.1016/j.jfoodeng.2005.08.026
-
Peris, M., & Escuder-Gilabert, L. (2009). A 21st century technique for food control: Electronic noses. Analytica Chimica Acta, 638(1), 1-15. https://doi.org/10.1016/j.aca.2009.02.018
-
Popp, J., et al. (2013). Pesticide productivity and food security. Agronomy for Sustainable Development, 33(1), 243-255. https://doi.org/10.1007/s13593-012-0092-x
-
Pretty, J., et al. (2011). Sustainable intensification in African agriculture. International Journal of Agricultural Sustainability, 9(1), 5-24. https://doi.org/10.3763/ijas.2010.0515
-
Röck, F., et al. (2008). Electronic nose: Current status and future trends. Chemical Reviews, 108(2), 705-725. https://doi.org/10.1021/cr068117q
-
Sankaran, S., et al. (2010). A review of advanced techniques for detecting plant diseases. Computers and Electronics in Agriculture, 72(1), 1-13. https://doi.org/10.1016/j.compag.2010.02.003
-
Sharma, A., et al. (2019). Worldwide pesticide usage and its impacts on ecosystem. SN Applied Sciences, 1(11), 1446. https://doi.org/10.1007/s42452-019-1485-1
-
TOZLU, B. H. (2024). Electronic Detection of Pesticide Residue on Cherry Fruits. International Journal of Computational and Experimental Science and Engineering, 10(3). https://doi.org/10.22399/ijcesen.401
-
Wijaya, D. R., et al. (2017). Low-cost electronic nose for classification of beef and pork using Naïve Bayes method. Modern Applied Science, 11(8), 35-46. https://doi.org/10.5539/mas.v11n8p35
-
Wilson, A. D., & Baietto, M. (2009). Applications and advances in electronic-nose technologies. Sensors, 9(7), 5099-5148. http://dx.doi.org/10.3390/s90705099
-
Yegnanarayana, B. (2009). Artificial neural networks. PHI Learning Pvt. Ltd.
-
Zhang, W., et al. (2018). Global pesticide use: Profile, trend, cost/benefit and more. Science of the Total Environment, 616-617, 1056-1065. https://doi.org/10.1016/j.scitotenv.2017.10.193
A Sensor-Optimized Electronic Nose for Pesticide Detection: ANN and Genetic Algorithm-Based Classification of Diazinon in Cherries
Yıl 2025,
Cilt: 15 Sayı: 3, 1252 - 1263, 15.09.2025
Cemaleddin Şimşek
,
Ahmet Yılmaz
Öz
Agriculture is vital for providing the indispensable food sources that sustain human life. To meet the demands of a growing population and achieve high-yield farming, the use of agricultural pesticides has become a widespread practice. While various pesticides can increase agricultural productivity, studies have shown they can also have diverse effects on human health. Therefore, the detection of these substances and the minimization of their impact on human health are crucial. This study introduces an effective classification method for detecting Diazinon pesticide residues in cherries using an electronic nose, artificial neural networks (ANN), and genetic algorithms (GA). An electronic nose system was developed using 11 commercially available gas sensors. Data obtained from cherry samples with varying levels of pesticide contamination, as well as pesticide-free samples, were used to analyze sensor responses with an ANN classifier. GA was then employed to minimize the number of sensors required. The results demonstrate that classification accuracy reaching 100% can be achieved using as few as 3 sensors. This study offers a cost-effective and highly accurate method for detecting agricultural pesticide residues, making a significant contribution to the existing literature.
Kaynakça
-
Aktar, W., et al. (2009). Impact of pesticides use in agriculture: Their benefits and hazards. Interdisciplinary Toxicology, 2(1), 1-12.
-
Baietto, M., & Wilson, A. D. (2015). Electronic-nose applications for fruit identification, ripeness and quality grading. Sensors, 15(1), 899-931. http://dx.doi.org/10.3390/s150100899
-
Biondi, E., et al. (2014). Electronic nose and electronic tongue for the detection of plant diseases: Review. Plant Disease, 98(9), 1044-1053. https://doi.org/10.1094/PDIS-01-14-0033-FE
-
Carvalho, F. P. (2017). Pesticides, environment, and food safety. Food and Energy Security, 6(2), 48-60. https://doi.org/10.1002/fes3.109
-
Concina, I., et al. (2012). Early detection of microbial contamination in processed tomatoes by electronic nose. Food Control, 23(2), 406-413. https://doi.org/10.1016/j.foodcont.2011.07.032
-
Damalas, C. A., & Eleftherohorinos, I. G. (2011). Pesticide exposure, safety issues, and risk assessment indicators. International Journal of Environmental Research and Public Health, 8(5), 1402-1419. https://doi.org/10.3390/ijerph8051402
-
FAO. (2021). The State of Food and Agriculture 2021. Food and Agriculture Organization of the United Nations.
-
Ghasemi-Varnamkhasti, M., et al. (2011). Electronic nose as a non-destructive tool to characterize peach cultivars and to monitor their ripening stage during shelf-life. Postharvest Biology and Technology, 59(3), 245-251. https://doi.org/10.1016/j.postharvbio.2010.10.014
-
Godfray, H. C. J., et al. (2010). Food security: The challenge of feeding 9 billion people. Science, 327(5967), 812-818. https://doi.org/10.1126/science.1185383
-
Haddi, Z., et al. (2014). A portable electronic nose system for the identification of cannabis-based drugs. Sensors and Actuators B: Chemical, 190, 280-291. https://doi.org/10.1016/j.snb.2013.09.084
-
Hassoun, M. H. (1995). Fundamentals of artificial neural networks. MIT press.
-
Holland, J. H. (1992). Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT press.
-
Katoch, S., Chauhan, S. S., & Kumar, V. (2021). A review on genetic algorithm: past, present, and future. Multimedia tools and applications, 80, 8091-8126. https://doi.org/10.1007/s11042-020-10139-y
-
Kiani, S., et al. (2016). A portable electronic nose as an expert system for aroma-based classification of saffron. Chemometrics and Intelligent Laboratory Systems, 156, 148-156. https://doi.org/10.1016/j.chemolab.2016.06.009
-
Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
-
Li, C., et al. (2019). Detection of pesticide residues on fruit surfaces using an electronic nose system with chemometric methods. Food Control, 96, 16-24. https://doi.org/10.1016/j.foodcont.2018.09.018
-
Loutfi, A., et al. (2015). Electronic noses for food quality: A review. Journal of Food Engineering, 144, 103-111. https://doi.org/10.1016/j.jfoodeng.2014.08.024
-
Mahmood, I., et al. (2016). Effects of pesticides on environment. Plant, Soil and Microbes, 1, 253-269.
-
Nicolopoulou-Stamati, P., et al. (2016). Chemical pesticides and human health: The urgent need for a new concept in agriculture. Frontiers in Public Health, 4, 148. https://doi.org/10.3389/fpubh.2016.00148
-
Oerke, E. C. (2006). Crop losses to pests. Journal of Agricultural Science, 144(1), 31-43. https://doi.org/10.1017/S002185960500571X
-
Pathange, L. P., et al. (2006). Non-destructive evaluation of apple maturity using an electronic nose system. Journal of Food Engineering, 77(4), 1018-1023. https://doi.org/10.1016/j.jfoodeng.2005.08.026
-
Peris, M., & Escuder-Gilabert, L. (2009). A 21st century technique for food control: Electronic noses. Analytica Chimica Acta, 638(1), 1-15. https://doi.org/10.1016/j.aca.2009.02.018
-
Popp, J., et al. (2013). Pesticide productivity and food security. Agronomy for Sustainable Development, 33(1), 243-255. https://doi.org/10.1007/s13593-012-0092-x
-
Pretty, J., et al. (2011). Sustainable intensification in African agriculture. International Journal of Agricultural Sustainability, 9(1), 5-24. https://doi.org/10.3763/ijas.2010.0515
-
Röck, F., et al. (2008). Electronic nose: Current status and future trends. Chemical Reviews, 108(2), 705-725. https://doi.org/10.1021/cr068117q
-
Sankaran, S., et al. (2010). A review of advanced techniques for detecting plant diseases. Computers and Electronics in Agriculture, 72(1), 1-13. https://doi.org/10.1016/j.compag.2010.02.003
-
Sharma, A., et al. (2019). Worldwide pesticide usage and its impacts on ecosystem. SN Applied Sciences, 1(11), 1446. https://doi.org/10.1007/s42452-019-1485-1
-
TOZLU, B. H. (2024). Electronic Detection of Pesticide Residue on Cherry Fruits. International Journal of Computational and Experimental Science and Engineering, 10(3). https://doi.org/10.22399/ijcesen.401
-
Wijaya, D. R., et al. (2017). Low-cost electronic nose for classification of beef and pork using Naïve Bayes method. Modern Applied Science, 11(8), 35-46. https://doi.org/10.5539/mas.v11n8p35
-
Wilson, A. D., & Baietto, M. (2009). Applications and advances in electronic-nose technologies. Sensors, 9(7), 5099-5148. http://dx.doi.org/10.3390/s90705099
-
Yegnanarayana, B. (2009). Artificial neural networks. PHI Learning Pvt. Ltd.
-
Zhang, W., et al. (2018). Global pesticide use: Profile, trend, cost/benefit and more. Science of the Total Environment, 616-617, 1056-1065. https://doi.org/10.1016/j.scitotenv.2017.10.193