Derleme
BibTex RIS Kaynak Göster

Kimyasal Savaş Ajanları: Özellikleri, Etkileri ve Dekontaminasyon Stratejileri

Yıl 2024, , 253 - 278, 01.11.2024
https://doi.org/10.17134/khosbd.1360330

Öz

Kimyasal savaş ajanları (KSA'lar), insanları etkisiz hale getirmek, yaralamak ve öldürmek, gıda kaynaklarını kirletmek ve yok etmek, kaos ve paniğe neden olmak için kullanılan tüm kimyasalları kapsar. KSA'lar askeri ve sivil personeli koruyucu giysiler giymeye ve koruyucu ekipman kullanmaya zorlayarak ekonomik ve stratejik açıdan önemli hedefleri sekteye uğratmakta ve hareket kabiliyetlerini azaltmaktadır. KSA'lar çok eski zamanlardan beri kullanılmaktadır ancak en yoğun kullanımı I. Dünya Savaşı sırasında olmuştur. O zamandan bu yana KSA'lar hem savaşlarda hem de terör eylemlerinde kullanılmaya devam etmiştir. Kimyasal Silahlar Konvansiyonu'na (29 Nisan 1997) göre, KSA'ların savaş alanında kullanımı yasaktır, ancak bu ajanların endüstriyel kullanımı tamamen yasaklanamaz. Bu nedenle KSA'lar her zaman ve her durumda panik yaratırlar. KSA'lar sinir ajanları, yakıcı ajanlar, boğucu ajanlar, kapasite bozucu ajanlar, isyan kontrol ajanları ve sistemik ajanlar olarak sınıflandırılır. Bu ajanların mekanizmaları birbirinden farklıdır; sinir ajanları asetilkolinesteraz enzimini (AChE) inhibe ederken, yakıcı ajanlar oksidatif stres yaratarak etki gösterir. Sonuç olarak bu derleme kapsamında KSA'ların sınıflandırılması ve bunların dekontaminasyonunda kullanılan maddeler ele alınmıştır.

Destekleyen Kurum

Selçuk Üniversitesi BAP Koordinatörlüğü

Proje Numarası

22212033

Kaynakça

  • [1] T. Loveridge, "The Road Past Monchy: Fighting the First World War at Arras, 1914– 1918." Indiana University Press, 2024.Publication.
  • [2] A. Zieliński, "[First chemical mass attack in history of wars, Bolimów, January 31, 1915]," (in pol), Przegl. Epidemiol., vol. 64, no. 3, pp. 449-53, 2010. Pierwszy masowy atak chemiczny historii wojen Bolimów, 31 stycznia 1915 R.
  • [3] J. Leeke, "The Gas and Flame Men." U of Nebraska Press, 2024.Publication. [4] W. S. Zapotoczny, "The Use of Poison Gas in World War I and the Effect on Society," ed, 2007.
  • [5] T. C. Nicholson-Roberts, "Phosgene use in World War 1 and early evaluations of pathophysiology," J. R. Army Med. Corps, vol. 165, no. 3, pp. 183-187, 2019, doi: 10.1136/jramc-2018-001072.
  • [6] H. Salem, A. L. Ternay Jr, and J. K. Smart, "Brief history and use of chemical warfare agents in warfare and terrorism," in Chemical warfare agents: CRC Press, 2019, pp. 3-15. [7] J. A. Johnson and R. MacLeod, "The war the victors lost: the dilemmas of chemical disarmament, 1919–1926," in Frontline and factory: Comparative perspectives on the chemical industry at war, 1914–1924: Springer, 2006, pp. 221-245. [8] N. H. Johnson, J. C. Larsen, and E. C. Meek, "Historical perspective of chemical warfare agents," in Handbook of toxicology of chemical warfare agents: Elsevier, 2020, pp. 17- 26. [9] V. Pitschmann, "Overall view of chemical and biochemical weapons," Toxins (Basel), vol. 6, no. 6, pp. 1761-1784, 2014. [10] J. Patocka and R. Jelinkova, "Atropine and atropine-like substances usable in warfare," Mil. Med. Sci. Lett, vol. 86, no. 2, pp. 58-69, 2017. [11] R. Eardley-Pryor, "The Paradoxes of Tear Gas in the Vietnam Era," Toxic Airs: Body, Place, Planet in Historical Perspective, p. 50, 2014. [12] R. B. Cope, "Acute cyanide toxicity and its treatment: the body is dead and may be red but does not stay red for long," in Handbook of Toxicology of Chemical Warfare Agents: Elsevier, 2020, pp. 373-388. [13] D. D. Palkki and L. Rubin, "Saddam Hussein’s role in the gassing of Halabja," The Nonproliferation Review, vol. 28, no. 1-3, pp. 115-129, 2021. [14] A. E. Smithson, "The Chemical Weapons Convention," Multilateralism and US Foreign Policy: Ambivalent Engagement, pp. 247-266, 2002. [15] F. Nguyen and A. K. Shetty, "Gulf War illness with or without post-traumatic stress disorder: differential symptoms and immune responses," Military Medical Research, vol. 11, no. 1, p. 5, 2024. [16] I. Reader, "Religious violence in contemporary Japan: The case of Aum Shinrikyo." Routledge, 2013.Publication. [17] M. Girdhar, "Syria chemical attack," Fire Engineer, vol. 42, no. 2, pp. 17-19, 2017. [18] R. Goldman and G. C. Gaviola, "Methyl isocyanate—Bhopal, India, 1984," in History of Modern Clinical Toxicology: Elsevier, 2022, pp. 85-96. [19] M. Czub et al., "Acute aquatic toxicity of arsenic-based chemical warfare agents to Daphnia magna," Aquat. Toxicol., vol. 230, p. 105693, 2021. [20] T. C. Marrs, "Toxicology of organophosphate nerve agents," Chemical warfare agents: toxicology and treatment, vol. 2, 2007.
  • [21] S. Chauhan et al., "Chemical warfare agents," Environmental Toxicology and Pharmacology, vol. 26, no. 2, pp. 113-122, 2008/09/01/ 2008, doi: https://doi.org/10.1016/j.etap.2008.03.003. [22] N. H. Barakat et al., "Chemical synthesis of two series of nerve agent model compounds and their stereoselective interaction with human acetylcholinesterase and human butyrylcholinesterase," Chem. Res. Toxicol., vol. 22, no. 10, pp. 1669-1679, 2009. [23] C. H. Gunderson, C. R. Lehmann, F. R. Sidell, and B. Jabbari, "Nerve agents: a review," Neurology, vol. 42, no. 5, pp. 946-946, 1992. [24] N. Munro, "Toxicity of the organophosphate chemical warfare agents GA, GB, and VX: implications for public protection," Environ. Health Perspect., vol. 102, no. 1, pp. 18- 37, 1994. [25] P. Erkekoğlu and B. Koçer-Gümüşel, "Kimyasal savaş ajanları: tarihçeleri, toksisiteleri, saptanmaları ve hazırlıklı olma," Hacettepe University Journal of the Faculty of Pharmacy, vol. 38, no. 1, pp. 24-38, 2018. [26] G. S. Sirin, Y. Zhou, L. Lior-Hoffmann, S. Wang, and Y. Zhang, "Aging mechanism of soman inhibited acetylcholinesterase," The journal of physical chemistry B, vol. 116, no. 40, pp. 12199-12207, 2012. [27] O. Yagmuroglu and B. Subasi, "Nerve agents: chemıcal structures, effect mechanısms and detectıon methods," Open Access J Sci, vol. 4, no. 2, pp. 47-50, 2020. [28] S. Costanzi, J.-H. Machado, and M. Mitchell, "Nerve Agents: What They Are, How They Work, How to Counter Them," ACS Chem. Neurosci., vol. 9, no. 5, pp. 873-885, 2018/05/16 2018, doi: 10.1021/acschemneuro.8b00148. [29] K. Ganesan, S. K. Raza, and R. Vijayaraghavan, "Chemical warfare agents," Journal of Pharmacy and Bioallied Sciences, vol. 2, no. 3, pp. 166-178, 2010, doi: 10.4103/0975- 7406.68498. [30] B. A. Golomb, "Acetylcholinesterase inhibitors and Gulf War illnesses," (in eng), Proc. Natl. Acad. Sci. U. S. A., vol. 105, no. 11, pp. 4295-300, Mar 18 2008, doi: 10.1073/pnas.0711986105. [31] H. Rice, S. J. Whitfield, S. J. Fairhall, I. R. Scott, G. B. Steventon, and J. E. H. Tattersall, "Efficacy of the oxime HI-6 dimethanesulphonate in the treatment of guineapigs exposed to the nerve agents GB and GD," Toxicol. Lett., vol. 391, pp. 26-31, 2024/01/01/ 2024, doi: https://doi.org/10.1016/j.toxlet.2023.11.007. [32] F. Gölitz, J. Herbert, F. Worek, and T. Wille, "AChE reactivation in precision-cut lung slices following organophosphorus compound poisoning," Toxicol. Lett., vol. 392, pp. 75-83, 2024/02/01/ 2024, doi: https://doi.org/10.1016/j.toxlet.2023.12.014. [33] M. Noga, A. Michalska, and K. Jurowski, "Review of Possible Therapies in Treatment of Novichoks Poisoning and HAZMAT/CBRNE Approaches: State of the Art," Journal of Clinical Medicine, vol. 12, no. 6, p. 2221, 2023. [Online]. Available: https://www.mdpi.com/2077- 0383/12/6/2221. [34] M. B. Abou-Donia, B. Siracuse, N. Gupta, and A. Sobel Sokol, "Sarin (GB, Oisopropyl methylphosphonofluoridate) neurotoxicity: critical review," Crit. Rev. Toxicol., vol. 46, no. 10, pp. 845-875, 2016. [35] M. Moshiri, E. Darchini-Maragheh, and M. Balali-Mood, "Advances in toxicology and medical treatment of chemical warfare nerve agents," DARU Journal of Pharmaceutical Sciences, vol. 20, pp. 1-24, 2012. [36] B. Boskovic, "The treatment of Soman poisoning and its perspectives," Fundam Appl
  • Toxicol, vol. 1, no. 2, pp. 203-13, Mar-Apr 1981, doi: 10.1016/s0272-0590(81)80059-0.[37] M. Balali-Mood and H. Saber, "Recent advances in the treatment of organophosphorous poisonings," Iranian journal of medical sciences, vol. 37, no. 2, p. 74, 2012. [38] M. I. Solano et al., "Quantification of nerve agent VX-butyrylcholinesterase adduct biomarker from an accidental exposure," J. Anal. Toxicol., vol. 32, no. 1, pp. 68-72, 2008. [39] M. Taşkın and K. Baş, "Investigation of Exercise Addiction Levels of Firefighter," Turkish Journal of Sport and Exercise, vol. 26, no. 2, pp. 152-159, 2024. [40] K. Kehe and L. Szinicz, "Medical aspects of sulphur mustard poisoning," Toxicology, vol. 214, no. 3, pp. 198-209, 2005. [41] M. P. Shakarjian et al., "Mechanisms mediating the vesicant actions of sulfur mustard after cutaneous exposure," Toxicol. Sci., vol. 114, no. 1, pp. 5-19, 2010. [42] A. C. Carr, C. L. Hawkins, S. R. Thomas, R. Stocker, and B. Frei, "Relative reactivities ofN-chloramines and hypochlorous acid with human plasma constituents," Free Radical Biology and Medicine, vol. 30, no. 5, pp. 526- 536, 2001. [43] S. Pant, R. Vijayaraghavan, G. Kannan, and K. Ganesan, "Sulphur mustard induced oxidative stress and its prevention by sodium 2, 3-dimercapto propane sulphonic acid (DMPS) in mice," Biomedical and environmental sciences: BES, vol. 13, no. 3, pp. 225-232, 2000. [44] L. Virág, "Structure and function of poly (ADP-ribose) polymerase-1: role in oxidative stress-related pathologies," Curr. Vasc. Pharmacol., vol. 3, no. 3, pp. 209-214, 2005. [45] J. J. Haddad, "Redox and oxidantmediated regulation of apoptosis signaling pathways: immuno-pharmaco-redox conception of oxidative siege versus cell death commitment," Int. Immunopharmacol., vol. 4, no. 4, pp. 475- 493, 2004.
  • [46] S. Mouret et al., "Topical efficacy of dimercapto-chelating agents against lewisiteinduced skin lesions in SKH-1 hairless mice," Toxicology and Applied Pharmacology, vol. 272, no. 2, pp. 291-298, 2013/10/15/ 2013, doi: https://doi.org/10.1016/j.taap.2013.06.012. [47] I. Giuliani, E. Boivieux-Ulrich, O. Houcine, C. Guennou, and F. Marano, "Toxic effects of mechlorethamine on mammalian respiratory mucociliary epithelium in primary culture," Cell biology and toxicology, vol. 10, pp. 231-246, 1994.
  • [48] K. Kehe, F. Balszuweit, J. Emmler, H. Kreppel, M. Jochum, and H. Thiermann, "Sulfur mustard research—strategies for the development of improved medical therapy," Eplasty, vol. 8, 2008.
  • [49] B. J. Lukey, J. A. Romano Jr, and H. Salem, "Chemical warfare agents: biomedical and psychological effects, medical countermeasures, and emergency response." CRC Press, 2019.Publication.
  • [50] P. McNutt et al., "Pathogenesis of acute and delayed corneal lesions after ocular exposure to sulfur mustard vapor," Cornea, vol. 31, no. 3, pp. 280-290, 2012.
  • [51] C. Pohl et al., "Acute morphological and toxicological effects in a human bronchial coculture model after sulfur mustard exposure," Toxicol. Sci., vol. 112, no. 2, pp. 482-489, 2009.
  • [52] M. E. Byrnes, D. A. King, and P. M. Tierno Jr, "Nuclear, chemical, and biological terrorism: Emergency response and public protection." CRC Press, 2003.Publication. [53] G. S. More, A. B. Thomas, S. S. Chitlange, R. K. Nanda, and R. L. Gajbhiye, "Nitrogen mustards as alkylating agents: a review on chemistry, mechanism of action and current USFDA status of drugs," Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), vol. 19, no. 9, pp. 1080-1102, 2019.
  • [54] Y. Chen, Y. Jia, W. Song, and L. Zhang, "Therapeutic potential of nitrogen mustard based hybrid molecules," Front. Pharmacol., vol. 9, p. 1453, 2018.
  • [55] C. Li et al., "Molecular mechanism underlying pathogenesis of lewisite-induced cutaneous blistering and inflammation: chemical chaperones as potential novel antidotes," The American journal of pathology, vol. 186, no. 10, pp. 2637-2649, 2016. [56] R. K. Srivastava et al., "Cutaneous exposure to lewisite causes acute kidney injury by invoking DNA damage and autophagic response," American Journal of PhysiologyRenal Physiology, vol. 314, no. 6, pp. F1166- F1176, 2018.
  • [57] A. A. Lazarus and A. Devereaux, "Potential agents of chemical warfare: Worstcase scenario protection and decontamination methods," Postgrad. Med., vol. 112, no. 5, pp. 133-140, 2002.
  • [58] S. Luo, H. Trübel, C. Wang, and J. Pauluhn, "Phosgene-and chlorine-induced acute lung injury in rats: comparison of cardiopulmonary function and biomarkers in exhaled breath," Toxicology, vol. 326, pp. 109- 118, 2014.
  • [59] M. Mane, R. Balaskar, S. Gavade, P. Pabrekar, and D. Mane, "An efficient and greener protocol towards synthesis of unsymmetrical N, N′-biphenyl urea," Arabian Journal of Chemistry, vol. 6, no. 4, pp. 423-427, 2013.
  • [60] T. Zellner and F. Eyer, "Choking agents and chlorine gas–history, pathophysiology, clinical effects and treatment," Toxicol. Lett., vol. 320, pp. 73-79, 2020. [61] G. Leonardos, D. Kendall, and N. Barnard, "Odor threshold determination of 53 odorant chemicals," Journal of Environmental Conservation Engineering, vol. 3, no. 8, pp. 579- 585, 1974.
  • [62] J. J. Collins et al., "Results from the US industry-wide phosgene surveillance: the Diller Registry," Journal of occupational and environmental medicine, vol. 53, no. 3, pp. 239- 244, 2011.
  • [63] J. Borak and W. F. Diller, "Phosgene exposure: mechanisms of injury and treatment strategies," Journal of occupational and environmental medicine, vol. 43, no. 2, pp. 110- 119, 2001. [64] W. Diller, "Pathogenesis of phosgene poisoning," Toxicology and industrial health, vol. 1, no. 2, pp. 7-15, 1985.
  • [65] C. Grainge and P. Rice, "Management of phosgene-induced acute lung injury," Clin. Toxicol., vol. 48, no. 6, pp. 497-508, 2010.
  • [66] L. S. Hardison, E. Wright, and A. F. Pizon, "Phosgene exposure: a case of accidental industrial exposure," J. Med. Toxicol., vol. 10, pp. 51-56, 2014. [67] E. TM and S. RJ, "Effect Of Turbidity On Chlorination Efficiency And Bacterial Persistence in Drinking Water," 1981.
  • [68] B. Deshwal and H.-K. Lee, "Kinetics and mechanism of chloride based chlorine dioxide generation process from acidic sodium chlorate," J. Hazard. Mater., vol. 108, no. 3, pp. 173-182, 2004.
  • [69] C. W. White and J. G. Martin, "Chlorine gas inhalation: human clinical evidence of toxicity and experience in animal models," Proc. Am. Thorac. Soc., vol. 7, no. 4, pp. 257-263, 2010.
  • [70] D. C. Richter, "Chemical soldiers: British gas warfare in World War I." University Press of Kansas, 1992.Publication. [71] K. E. Jackson, "Chloropicrin," Chem. Rev., vol. 14, no. 2, pp. 251-286, 1934.
  • [72] L. Condie, F. B. Daniel, G. R. Olson, and M. Robinson, "Ten and ninety-day toxicity studies of chloropicrin in Sprague-Dawley rats," Drug and chemical toxicology, vol. 17, no. 2, pp. 125-137, 1994.
  • [73] L. J. Schep, R. J. Slaughter, and D. I. McBride, "Riot control agents: the tear gases CN, CS and OC—a medical review," BMJ Military Health, vol. 161, no. 2, pp. 94-99, 2015.
  • [74] P. G. Blain, "Tear gases and irritant incapacitants: 1-chloroacetophenone, 2- chlorobenzylidene malononitrile and dibenz [b, f]-1, 4-oxazepine," Toxicol. Rev., vol. 22, pp. 103-110, 2003.
  • [75] J. P. Sanford, "Medical aspects of riot control (harassing) agents," Annu. Rev. Med., vol. 27, no. 1, pp. 421-429, 1976. [76] S. Cucinell et al., "Biochemical interactions and metabolic fate of riot control agents," in Federation proceedings, 1971, vol. 30, no. 1, pp. 86-91.
  • [77] E. J. Olajos and H. Salem, "Riot control agents: pharmacology, toxicology, biochemistry and chemistry," Journal of Applied Toxicology: An International Journal, vol. 21, no. 5, pp. 355- 391, 2001. [78] J. F. Mackworth, "The inhibition of thiol enzymes by lachrymators," Biochem. J., vol. 42, no. 1, p. 82, 1948.
  • [79] E. Rietveld, L. Delbressine, T. Waegemaekers, and F. Seutter-Berlage, "2- Chlorobenzylmercapturic acid, a metabolite of the riot control agent 2-chlorobenzylidene malononitrile (CS) in the rat," Arch. Toxicol., vol. 54, pp. 139-144, 1983.
  • [80] C. Rothenberg, S. Achanta, E. R. Svendsen, and S. E. Jordt, "Tear gas: an epidemiological and mechanistic reassessment," Ann. N. Y. Acad. Sci., vol. 1378, no. 1, pp. 96- 107, 2016. [81] B. Ballantyne, "The acute mammalian toxicology of dibenz (b, f)-1, 4-oxazepine," Toxicology, vol. 8, no. 3, pp. 347-379, 1977.
  • [82] M. French et al., "The fate of dibenz [b, f]-1, 4-oxazepine (CR) in the rat, rhesus monkey and guinea-pig. Part I. Metabolism in vivo," Xenobiotica, vol. 13, no. 6, pp. 345-359, 1983. [83] R. C. Gupta, "Handbook of toxicology of chemical warfare agents." Academic Press, 2015.Publication.
  • [84] M. Crowley and M. Dando, "The use of incapacitating chemical agent weapons in law enforcement," The International Journal of Human Rights, vol. 19, no. 4, pp. 465-487, 2015. [85] R. J. Mathews, "Central nervous systemacting chemicals and the chemical weapons convention: a former scientific adviser’s perspective," Pure Appl. Chem., vol. 90, no. 10, pp. 1559-1575, 2018.
  • [86] M. J. Roy, "Physician’s guide to terrorist attack." Springer Science & Business Media, 2003.Publication.
  • [87] R. J. Lefkowitz, "Historical review: a brief history and personal retrospective of seventransmembrane receptors," Trends Pharmacol. Sci., vol. 25, no. 8, pp. 413-422, 2004.
  • [88] R. C. Jović and Š. Zupanc, "Inhibition of stimulated cerebral respiration in vitro and oxygen consumption in vivo in rats treated by cholinolytic drugs," Biochem. Pharmacol., vol. 22, no. 10, pp. 1189-1194, 1973.
  • [89] W.-F. Liu, N.-W. Hu, T.-F. Chien, and J. M. Beaton, "Effects of 3-quinuclidinyl benzilate on fixed-ratio responding and open field behavior in the rat," Psychopharmacology, vol. 80, pp. 10- 13, 1983.
  • [90] K. Krebs-Thomson, M. P. Paulus, and M. A. Geyer, "Effects of hallucinogens on locomotor and investigatory activity and patterns: influence of 5-HT2A and 5-HT2C receptors," Neuropsychopharmacology, vol. 18, no. 5, pp. 339-351, 1998.
  • [91] S. Giacomelli, M. Palmery, L. Romanelli, C. Y. Cheng, and B. Silvestrini, "Lysergic acid diethylamide (LSD) is a partial agonist of D2 dopaminergic receptors and it potentiates dopamine-mediatedprolactin secretion in lactotrophs in vitro," Life Sci., vol. 63, no. 3, pp. 215-222, 1998.
  • [92] C. D. Nichols and E. Sanders-Bush, "A single dose of lysergic acid diethylamide influences gene expression patterns within the mammalian brain," Neuropsychopharmacology, vol. 26, no. 5, pp. 634-642, 2002.
  • [93] T. Cummings, "The treatment of cyanide poisoning," Occup. Med., vol. 54, no. 2, pp. 82-85, 2004.
  • [94] M. Ansell and F. Lewis, "A review of cyanide concentrations found in human organs. A survey of literature concerning cyanide metabolism,'normal', non-fatal, and fatal body cyanide levels," J.Forensic Med., vol. 17, no. 4, pp. 148-155, 1970.
  • [95] K. Abraham, T. Buhrke, and A. Lampen, "Bioavailability of cyanide after consumption of a single meal of foods containing high levels of cyanogenic glycosides: a crossover study in humans," Arch.Toxicol., vol. 90, pp. 559-574, 2016.
  • [96] D. Donato, O. Nichols, H. Possingham, M. Moore, P. Ricci, and B. Noller, "A critical review of the effects of gold cyanide-bearing tailings solutions on wildlife," Environ. Int., vol. 33, no. 7, pp. 974-984, 2007.
  • [97] E. Jaszczak, Ż. Polkowska, S. Narkowicz, and J. Namieśnik, "Cyanides in the environment—analysis—problems and challenges," Environmental Science andPollution Research, vol. 24, pp. 15929 15948, 2017.
  • [98] S. Gaskin, L. Thredgold, D. Pisaniello, M. Logan, and C. Baxter, "Is the skin an important exposure route for workers during cyanogen fumigation?," Pest Manage. Sci., vol. 76, no. 4, pp. 1443-1447, 2020.
  • [99] D. Pakulska and S. Czerczak, "Hazardous effects of arsine: a short review," International Journal of Occupational Medicine and Environmental Health, vol. 19, no. 1, pp. 36-44, 2006.
  • [100] L. T. Rael, F. Ayala-Fierro, R. Bar-Or, D. E. Carter, and D. S. Barber, "Interaction of arsine with hemoglobin in arsine-induced hemolysis," Toxicol. Sci., vol. 90, no. 1, pp. 142-148, 2006.
  • [101] T. Mahato, G. Prasad, B. Singh, J. Acharya, A. Srivastava, and R. Vijayaraghavan, "Nanocrystalline zinc oxide for the decontamination of sarin," J. Hazard. Mater., vol. 165, no. 1-3, pp. 928-932, 2009.
  • [102] S. Karakurt and K. Baş, "Kimyasal, Biyolojik, Radyolojik ve Nükleer (KBRN) Olayları İçin Dekontaminasyon Solüsyonları ve Teknikleri," Savunma Bilimleri Dergisi, vol. 20, no. 1, pp. 29-48, 2024.
  • [103] G. Amitai, H. Murata, J. D. Andersen, R. R. Koepsel, and A. J. Russell, "Decontamination of chemical and biological warfare agents with a single multi-functional material," Biomaterials, vol. 31, no. 15, pp. 4417-4425, 2010.
  • [104] V. Kumar, R. Goel, R. Chawla, M. Silambarasan, and R. K. Sharma, "Chemical, biological, radiological, and nuclear decontamination: Recent trends and future perspective," Journal of PharmacyAnd Bioallied Sciences, vol. 2, no. 3, pp. 220-238, 2010
Toplam 54 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular İnorganik Kimya (Diğer), Silah Sistemleri
Bölüm Makaleler
Yazarlar

Serdar Karakurt 0000-0002-4449-6103

İrem Mukaddes Bilgiseven 0000-0002-3162-8381

Proje Numarası 22212033
Yayımlanma Tarihi 1 Kasım 2024
Gönderilme Tarihi 14 Eylül 2023
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

IEEE S. Karakurt ve İ. M. Bilgiseven, “Kimyasal Savaş Ajanları: Özellikleri, Etkileri ve Dekontaminasyon Stratejileri”, Savunma Bilimleri Dergisi, c. 20, sy. 2, ss. 253–278, 2024, doi: 10.17134/khosbd.1360330.