Derleme
BibTex RIS Kaynak Göster

Sinyal Ötesi Savunma, Kolluk ve Askeri Teknolojilerinde 5G ve Sonrası Veri Kapasitesinin Getireceği Gelecek Perspektifi

Yıl 2026, Sayı: ERKEN GÖRÜNÜM, 1 - 1
https://doi.org/10.17134/khosbd.1724917

Öz

Bu çalışma, beşinci nesil (5G) ve ötesi haberleşme teknolojilerinin güvenlik ve savunma alanlarındaki stratejik potansiyelini disiplinler arası bir perspektifle değerlendirmektedir. 5G’nin sunduğu düşük gecikme süresi, yüksek veri aktarım hızı, geniş bant genişliği ve çoklu cihaz bağlantısı gibi ileri düzey özelliklerin; askeri iletişim, kamu güvenliği, elektronik harp, otonom sistemler, lojistik yönetimi ve akıllı şehir uygulamalarında dönüştürücü etkileri ele alınmıştır. Literatürdeki örnek projeler, uluslararası uygulamalar ve teknik analizler ışığında, bu teknolojilerin operasyonel verimlilik, karar alma süreçleri ve tehditlere karşı dayanıklılık açısından sunduğu katkılar tartışılmıştır. Ayrıca, gömülü sistemlerin enerji verimliliği ve 6G’nin olası etkileri gibi mühendislik temelli konulara da değinilmiştir. Sonuç olarak, 5G ve ötesi teknolojilerin yalnızca haberleşme değil, aynı zamanda güvenlik stratejilerinin temel belirleyicisi olacağı vurgulanmaktadır.

Kaynakça

  • [1] A. Bhardwaj, “5G for military communications,” Procedia Computer Science, vol. 171, pp. 2665–2674, 2020.
  • [2] J. Liao and X. Ou, “5G military application scenarios and private network architectures,” in Proc. 2020 IEEE Int. Conf. Advances in Electrical Engineering and Computer Applications (AEECA), Aug. 2020, pp. 726–732.
  • [3] S. Sicari, A. Rizzardi, and A. Coen-Porisini, “5G in the internet of things era: An overview on security and privacy challenges,” Computer Networks, vol. 179, p. 107345, 2020.
  • [4] J. Śliwa and M. Suchański, “Security threats and countermeasures in military 5G systems,” in Proc. 2022 24th Int. Microwave and Radar Conf. (MIKON), Sep. 2022, pp. 1–6.
  • [5] D. Zmysłowski, P. Skokowski, K. Malon, K. Maślanka, and J. M. Kelner, “Naval use cases of 5G technology,” TransNav: Int. J. on Marine Navigation and Safety of Sea Transportation, vol. 17, no. 3, 2023.
  • [6] U.S. Department of Homeland Security, Mapping of 5G Technologies and Use Cases to DHS S&T Customer Needs. Science and Technology Directorate, 2021. [Online]. https://www.dhs.gov/sites/default/files/publications/5g_mapping_may2021_0.pdf (Erişim: 03 Tem. 2025).
  • [7] K. K. Samanta, “Cost-Effective Technologies for Next-Generation System on Package: Multilayer Transmission Lines and Interconnects for 5G and Millimeter-Wave,” IEEE Microwave Magazine, vol. 23, no. 8, pp. 50–65, 2022.
  • [8] A. Kaur and S. Gupta, “A complementary Sierpinski gasket fractal antenna array for wireless MIMO portable devices,” Microwave and Optical Technology Letters, vol. 61, no. 2, pp. 436–442, 2019.
  • [9] L. E. Milner et al., “A 25 to 45 GHz SiGe receiver MMIC,” in Proc. 2016 11th European Microwave Integrated Circuits Conf. (EuMIC), Oct. 2016, pp. 548–551.
  • [10] A. Mohammed, H. Nahom, A. Tewodros, Y. Habtamu, and G. Hayelom, “Deep reinforcement learning for computation offloading and resource allocation in blockchain-based multi-UAV-enabled mobile edge computing,” in Proc. 2020 17th Int. Computer Conf. on Wavelet Active Media Technology and Information Processing (ICCWAMTIP), Dec. 2020, pp. 295–299.
  • [11] G. Velusamy and R. Lent, “Delay-Packet-Loss-Optimized Distributed Routing Using Spiking Neural Network in Delay-Tolerant Networking,” Sensors, vol. 23, no. 1, p. 310, 2022.
  • [12] R. Bajracharya, R. Shrestha, S. A. Hassan, H. Jung, and H. Shin, “5G and beyond private military communication: Trend, requirements, challenges and enablers,” IEEE Access, 2023.
  • [13] A. Özduman, G. Ö. K. Başak, and H. A. D. İ. Gökçen, “Mobil telefon kullanıcılarının mobil bağımlılık durumu ve 5G teknolojisi kabullenme niyeti modellerinin geliştirilmesi,” Bilişim Teknolojileri Dergisi, vol. 13, no. 3, pp. 269–288, 2020.
  • [14] G. R. Patil and P. S. Wankhade, “5G wireless technology,” Int. J. Comput. Sci. Mobile Comput., vol. 3, no. 10, pp. 203–207, 2014.
  • [15] H. A. Kholidy, “Dynamic network slicing orchestration in open 5G networks using multi-criteria decision making and secure federated learning techniques,” Cluster Computing, 2025.
  • [16] C. Barz et al., “Enabling adaptive communications at the tactical edge,” in Proc. MILCOM 2022—IEEE Military Communications Conf., Nov. 2022, pp. 1038–1044.

Future perspectives of 5G and Post-5G data capacity in Beyond Signal Defense, Law Enforcement and Military Technologies

Yıl 2026, Sayı: ERKEN GÖRÜNÜM, 1 - 1
https://doi.org/10.17134/khosbd.1724917

Öz

This study evaluates the strategic potential of fifth-generation (5G) and beyond communication technologies in the fields of security and defense through an interdisciplinary lens. Key features such as ultra-low latency, high-speed data transmission, wide bandwidth, and massive connectivity are examined in relation to their transformative roles in military communications, law enforcement, electronic warfare, autonomous systems, logistics management, and smart city security. Drawing on recent literature, international projects, and technical analyses, the paper explores how these technologies enhance operational efficiency, decision-making processes, and resilience against threats. Additionally, topics such as energy efficiency in embedded systems and the prospective impact of 6G are addressed from an engineering perspective. The findings emphasize that 5G and its successors are not merely communication infrastructures but core enablers of modern security strategies.

Kaynakça

  • [1] A. Bhardwaj, “5G for military communications,” Procedia Computer Science, vol. 171, pp. 2665–2674, 2020.
  • [2] J. Liao and X. Ou, “5G military application scenarios and private network architectures,” in Proc. 2020 IEEE Int. Conf. Advances in Electrical Engineering and Computer Applications (AEECA), Aug. 2020, pp. 726–732.
  • [3] S. Sicari, A. Rizzardi, and A. Coen-Porisini, “5G in the internet of things era: An overview on security and privacy challenges,” Computer Networks, vol. 179, p. 107345, 2020.
  • [4] J. Śliwa and M. Suchański, “Security threats and countermeasures in military 5G systems,” in Proc. 2022 24th Int. Microwave and Radar Conf. (MIKON), Sep. 2022, pp. 1–6.
  • [5] D. Zmysłowski, P. Skokowski, K. Malon, K. Maślanka, and J. M. Kelner, “Naval use cases of 5G technology,” TransNav: Int. J. on Marine Navigation and Safety of Sea Transportation, vol. 17, no. 3, 2023.
  • [6] U.S. Department of Homeland Security, Mapping of 5G Technologies and Use Cases to DHS S&T Customer Needs. Science and Technology Directorate, 2021. [Online]. https://www.dhs.gov/sites/default/files/publications/5g_mapping_may2021_0.pdf (Erişim: 03 Tem. 2025).
  • [7] K. K. Samanta, “Cost-Effective Technologies for Next-Generation System on Package: Multilayer Transmission Lines and Interconnects for 5G and Millimeter-Wave,” IEEE Microwave Magazine, vol. 23, no. 8, pp. 50–65, 2022.
  • [8] A. Kaur and S. Gupta, “A complementary Sierpinski gasket fractal antenna array for wireless MIMO portable devices,” Microwave and Optical Technology Letters, vol. 61, no. 2, pp. 436–442, 2019.
  • [9] L. E. Milner et al., “A 25 to 45 GHz SiGe receiver MMIC,” in Proc. 2016 11th European Microwave Integrated Circuits Conf. (EuMIC), Oct. 2016, pp. 548–551.
  • [10] A. Mohammed, H. Nahom, A. Tewodros, Y. Habtamu, and G. Hayelom, “Deep reinforcement learning for computation offloading and resource allocation in blockchain-based multi-UAV-enabled mobile edge computing,” in Proc. 2020 17th Int. Computer Conf. on Wavelet Active Media Technology and Information Processing (ICCWAMTIP), Dec. 2020, pp. 295–299.
  • [11] G. Velusamy and R. Lent, “Delay-Packet-Loss-Optimized Distributed Routing Using Spiking Neural Network in Delay-Tolerant Networking,” Sensors, vol. 23, no. 1, p. 310, 2022.
  • [12] R. Bajracharya, R. Shrestha, S. A. Hassan, H. Jung, and H. Shin, “5G and beyond private military communication: Trend, requirements, challenges and enablers,” IEEE Access, 2023.
  • [13] A. Özduman, G. Ö. K. Başak, and H. A. D. İ. Gökçen, “Mobil telefon kullanıcılarının mobil bağımlılık durumu ve 5G teknolojisi kabullenme niyeti modellerinin geliştirilmesi,” Bilişim Teknolojileri Dergisi, vol. 13, no. 3, pp. 269–288, 2020.
  • [14] G. R. Patil and P. S. Wankhade, “5G wireless technology,” Int. J. Comput. Sci. Mobile Comput., vol. 3, no. 10, pp. 203–207, 2014.
  • [15] H. A. Kholidy, “Dynamic network slicing orchestration in open 5G networks using multi-criteria decision making and secure federated learning techniques,” Cluster Computing, 2025.
  • [16] C. Barz et al., “Enabling adaptive communications at the tactical edge,” in Proc. MILCOM 2022—IEEE Military Communications Conf., Nov. 2022, pp. 1038–1044.
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Bilgi Sistemleri (Diğer), Elektronik, Sensörler ve Dijital Donanım (Diğer), Antenler ve Yayılma
Bölüm Derleme
Yazarlar

Kazım Duraklar 0000-0003-0815-2976

Vedat Yılmaz 0000-0002-3112-9371

Erken Görünüm Tarihi 18 Kasım 2025
Yayımlanma Tarihi 14 Aralık 2025
Gönderilme Tarihi 22 Haziran 2025
Kabul Tarihi 29 Eylül 2025
Yayımlandığı Sayı Yıl 2026 Sayı: ERKEN GÖRÜNÜM

Kaynak Göster

IEEE K. Duraklar ve V. Yılmaz, “Sinyal Ötesi Savunma, Kolluk ve Askeri Teknolojilerinde 5G ve Sonrası Veri Kapasitesinin Getireceği Gelecek Perspektifi”, Savunma Bilimleri Dergisi, sy. ERKEN GÖRÜNÜM, ss. 1–1, Kasım2025, doi: 10.17134/khosbd.1724917.