Araştırma Makalesi
BibTex RIS Kaynak Göster

Dijital Platformlarda Öneri Sistemlerinin Kullanıcı Deneyimine Etkisi: Netflix, Amazon Prime ve Disney+ Örnekleri

Yıl 2025, Sayı: 15, 84 - 107, 31.12.2025
https://doi.org/10.56676/kiad.1647277

Öz

Netflix, Amazon Prime Video ve Disney+ gibi küresel ölçekte milyonlarca kullanıcıya ulaşan platformlar, içerik çeşitliliği ve erişim kolaylığı ile dikkat çekerken, kullanıcı deneyimini iyileştirmek için gelişmiş algoritmalar ve öneri sistemleri kullanmaktadır. Bu çalışma, Netflix, Amazon Prime Video ve Disney+ platformlarının öneri sistemlerini ve bu sistemlerin kullanıcı deneyimine etkisini, sosyal medya, haber kaynakları, bloglar ve forumlardan elde edilen veriler ışığında incelemektedir. Çevrimiçi akış platformları, kullanıcıların içerik bolluğu içinde kaybolmaması için yapay zekâ destekli öneri algoritmaları kullanmakta, ancak bu algoritmaların etkinliği ve memnuniyet düzeyi kullanıcı deneyimini doğrudan şekillendirmektedir. Araştırmada Betimsel İçerik Analizi yöntemi benimsenmiş, Netflix için 153, Amazon Prime Video için 176, Disney+ için 176 veri noktası Mention uygulaması aracılığıyla toplanarak beş ana tema altında incelenmiştir: Genel Algı, Kullanıcı Etkileşimleri, Haber Kaynaklarında Algı, Algoritma Eleştirileri ve Popüler İçeriklerle Etkileşim. Bulgular, kişiselleştirilmiş öneri mekanizmalarının kullanıcıların içerik keşfini kolaylaştırdığını ve platformda geçirilen süreyi artırdığını ancak tekrar eden ya da ilgisiz önerilerin memnuniyeti düşürdüğünü göstermektedir. Netflix kullanıcılarının bir kısmı önerilerin başarılı olduğunu belirtirken, diğerleri sistemin kişisel tercihlere uyum sağlamakta zorlandığını vurgulamaktadır. Benzer biçimde, Amazon Prime Video’nun öneri algoritmaları da bazı kullanıcılar tarafından isabetli bulunurken, tekrarlı öneri sorunu sıkça gündeme gelmiştir. Disney+ ise güçlü markalara dayalı içerikleri öne çıkararak memnuniyet yaratmakta, fakat niş yapımların az önerildiği yönünde eleştiri almaktadır.

Kaynakça

  • Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 17(6), 734–749. https://doi.org/10.1109/TKDE.2005.99
  • Aggarwal, C. C. (2016). Recommender systems: The textbook. Springer. https://doi.org/10.1007/978-3-319-29659-3
  • Ahn, H. J. (2006). Utilizing popularity characteristics for product recommendation. International Journal of Electronic Commerce, 11(2), 59–80. https://doi.org/10.2753/JEC1086-4415110203
  • Ansari, A. (2016). Hybrid models for recommender systems. In Advanced Database Marketing (pp. 167-188). Routledge.
  • Amatriain, X., & Basilico, J. (2015). Recommender systems in industry: A Netflix case study. In F. Ricci, L. Rokach, & B. Shapira (Eds.), Recommender systems handbook (2nd ed., pp. 385–419). Springer. https://doi.org/10.1007/978-1-4899-7637-6_11
  • Aytaş, M., & Yavuz, G. (2024). Netflix çağı: Dijital seyir platformları ve belgesel sinemada anlatının dönüşümü. idil, 13(113), 59–69. https://doi.org/10.7816/idil-13-113-04
  • Bishop, C. M., & Nasrabadi, N. M. (2006). Pattern recognition and machine learning (Vol. 4, No. 4, p. 738). Springer.
  • Burke, R. (2002). Hybrid recommender systems: Survey and experiments. User Modeling and User-Adapted Interaction, 12(4), 331–370. https://doi.org/10.1023/A:1021240730564
  • Chen, J., & Sundar, S. S. (2018). This app would like to use your current location to better serve you: The effect of permissions requests & personalized ads on user engagement. Journal of Computer-Mediated Communication, 23(6), 422–438. https://doi.org/10.1093/jcmc/zmy026
  • Coffman, K. G., & Odlyzko, A. M. (2002). Growth of the Internet. In Optical fiber telecommunications IV-B (pp. 17-56). Academic Press.
  • Covington, P., Adams, J., & Sargin, E. (2016). Deep neural networks for YouTube recommendations. In Proceedings of the 10th ACM Conference on Recommender Systems (pp. 191–198). ACM. https://doi.org/10.1145/2959100.2959190
  • Elahi, M., Beheshti, A., & Goluguri, S. R. (2021). Recommender systems: Challenges and opportunities in the age of big data and artificial intelligence. Data Science and Its Applications, 15-39.
  • Jiang, L., Cheng, Y., Yang, L., Li, J., Yan, H., & Wang, X. (2019). A trust-based collaborative filtering algorithm for E-commerce recommendation system. Journal of ambient intelligence and humanized computing, 10, 3023-3034.
  • Ekstrand, M. D., Riedl, J., & Konstan, J. A. (2011). Collaborative filtering recommender systems. Foundations and Trends in Human–Computer Interaction, 4(2), 81–173. https://doi.org/10.1561/1100000009
  • Elahi, M., Ricci, F., & Rubens, N. (2016). A survey of active learning in collaborative filtering recommender systems. Computer Science Review, 20, 29-50.
  • Gabrilovich, E., & Markovitch, S. (2007). Computing semantic relatedness using Wikipedia-based explicit semantic analysis. In Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI’07) (pp. 1606–1611). AAAI Press.
  • Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep learning (Vol. 1, No. 2). MIT press.
  • Gomez-Uribe, C. A., & Hunt, N. (2015). The netflix recommender system: Algorithms, business value, and innovation. ACM Transactions on Management Information Systems (TMIS), 6(4), 1-19.
  • Herlocker, J. L., Konstan, J. A., Terveen, L. G., & Riedl, J. (2004). Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems, 22(1), 5–53. https://doi.org/10.1145/963770.963772
  • ISPO (2025). How AI is taking the production of sports content to a new level. https://www.ispo.com/en/sportstech/ai-sport-artificial-intelligence-production-sports-content
  • Linden, G., Smith, B., & York, J. (2003). Amazon.com recommendations: Item-to-item collaborative filtering. IEEE Internet Computing, 7(1), 76–80. https://doi.org/10.1109/MIC.2003.1167344
  • Linkedin (2025). Netflix Algorithm: How Netflix Uses AI to Improve. https://www.linkedin.com/pulse/netflix-algorithm-how-uses-ai-improve-personalization-5mbgf
  • Lops, P., De Gemmis, M., & Semeraro, G. (2011). Content-based recommender systems: State of the art and trends. In F. Ricci, L. Rokach, B. Shapira, & P. B. Kantor (Eds.), Recommender systems handbook (1st ed., pp. 73–105). Springer. https://doi.org/10.1007/978-0-387-85820-3_3
  • Luo, S. (2024). Research on the Analysis of Disney+ Consumer Behavior and Marketing Strategy Based on R Language. In SHS Web of Conferences (Vol. 207, p. 01010). EDP Sciences.
  • Maddodi, S. (2019). NETFLIX bigdata analytics-the emergence of data driven recommendation. Srivatsa Maddodi, & Krishna Prasad, K.(2019). Netflix Bigdata Analytics-The Emergence of Data Driven Recommendation. International Journal of Case Studies in Business, IT, and Education (IJCSBE), 3(2), 41-51.
  • Ping, Y., Li, Y., & Zhu, J. (2024). Beyond accuracy measures: the effect of diversity, novelty and serendipity in recommender systems on user engagement. Electronic Commerce Research, 1-28.
  • PPCLAND (2025) Prime Video releases AI-powered content discovery system in limited beta. https://ppc.land/prime-video-releases-ai-powered-content-discovery-system-in-limited-beta/
  • Rao, R. (2023, October 12). Streaming wars: Analyzing the competitive dynamics of Disney+ vs. Netflix. Medium. https://medium.com/@rujularao/streaming-wars-analyzing-the-competitive-dynamics-of-disney-vs-netflix-aad4e42f776f
  • Ricci, F., Rokach, L., & Shapira, B. (2011). Introduction to recommender systems handbook. In F. Ricci, L. Rokach, B. Shapira, & P. B. Kantor (Eds.), Recommender systems handbook (1st ed., pp. 1–35). Springer. https://doi.org/10.1007/978-0-387-85820-3_1
  • Ricci, F., Rokach, L., & Shapira, B. (2021). Recommender systems: Techniques, applications, and challenges. Recommender systems handbook, 1-35.
  • Russell, S. J., & Norvig, P. (2010). Artificial intelligence: A modern approach (3rd ed.). Prentice Hall.
  • Sarwar, B., Karypis, G., Konstan, J. A., & Riedl, J. (2001). Item-based collaborative filtering recommendation algorithms. In Proceedings of the 10th International Conference on World Wide Web (WWW ‘01) (pp. 285–295). ACM. https://doi.org/10.1145/371920.372071
  • Smith, B., & Linden, G. (2017). Two decades of recommender systems at Amazon.com. IEEE Internet Computing, 21(3), 12–18. https://doi.org/10.1109/MIC.2017.72
  • Su, X., & Khoshgoftaar, T. M. (2009). A survey of collaborative filtering techniques. Advances in Artificial Intelligence, 2009, 1–19. https://doi.org/10.1155/2009/421425
  • The Sundae. (2025, Şubat 1). The Problem with Your Netflix Recommendations. https://thesundae.net/2019/11/03/the-problem-with-your-netflix-recommendations/
  • Varela, D., Kaun, A. (2019) The Netflix Experience: A User-Focused Approach to the Netflix Recommendation Algorithm In: Theo Plothe, Amber M. Buck (Ed.), Netflix at the Nexus: Content, Practice, and Production in the Age of Streaming Television (pp. 197-211). Peter Lang Publishing Group
  • Widayanti, R., Chakim, M. H. R., Lukita, C., Rahardja, U., & Lutfiani, N. (2023). Improving recommender systems using hybrid techniques of collaborative filtering and content-based filtering. Journal of Applied Data Sciences, 4(3), 289-302.
  • Yesilada, M., & Lewandowsky, S. (2022). Systematic review: YouTube recommendations and problematic content. Internet policy review, 11(1), 1652.
  • Zhang, S., Yao, L., Sun, A., & Tay, Y. (2019). Deep learning based recommender system: A survey and new perspectives. ACM Computing Surveys (CSUR), 52(1), 1–38. https://doi.org/10.1145/3285029

The Impact of Recommendation Systems on User Experience in Digital Platforms: Netflix, Amazon Prime Video, and Disney+

Yıl 2025, Sayı: 15, 84 - 107, 31.12.2025
https://doi.org/10.56676/kiad.1647277

Öz

Netflix, Amazon Prime Video, and Disney+ are global streaming platforms that reach millions of users, offering a wide variety of content and easy accessibility. To enhance user experience, these platforms utilize advanced algorithms and recommendation systems. This study examines the recommendation systems of Netflix, Amazon Prime Video, and Disney+ and their impact on user experience based on data collected from social media, news sources, blogs, and forums. Online streaming platforms use AI-powered recommendation algorithms to prevent users from getting lost in the vast content library. However, their effectiveness and the resulting user satisfaction directly shape the user experience. The study employs a descriptive content analysis method, collecting 153 data points for Netflix, 176 for Amazon Prime Video, and 176 for Disney+ via the Mention application. These data are analyzed under five main themes: General Perception, User Interactions, Perception in News Sources, Criticisms of Algorithms, and Engagement with Popular Content. Findings indicate that personalized recommendation mechanisms facilitate content discovery and increase time spent on the platform. However, repetitive or irrelevant recommendations reduce user satisfaction. While some Netflix users find the recommendations effective, others argue that the system struggles to adapt to personal preferences. Similarly, some users consider Amazon Prime Video’s recommendation algorithms accurate, but issues with repetitive suggestions are frequently reported. Disney+, on the other hand, generates satisfaction by promoting content based on its strong brand franchises, but faces criticism for the limited recommendations of niche productions.

Kaynakça

  • Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 17(6), 734–749. https://doi.org/10.1109/TKDE.2005.99
  • Aggarwal, C. C. (2016). Recommender systems: The textbook. Springer. https://doi.org/10.1007/978-3-319-29659-3
  • Ahn, H. J. (2006). Utilizing popularity characteristics for product recommendation. International Journal of Electronic Commerce, 11(2), 59–80. https://doi.org/10.2753/JEC1086-4415110203
  • Ansari, A. (2016). Hybrid models for recommender systems. In Advanced Database Marketing (pp. 167-188). Routledge.
  • Amatriain, X., & Basilico, J. (2015). Recommender systems in industry: A Netflix case study. In F. Ricci, L. Rokach, & B. Shapira (Eds.), Recommender systems handbook (2nd ed., pp. 385–419). Springer. https://doi.org/10.1007/978-1-4899-7637-6_11
  • Aytaş, M., & Yavuz, G. (2024). Netflix çağı: Dijital seyir platformları ve belgesel sinemada anlatının dönüşümü. idil, 13(113), 59–69. https://doi.org/10.7816/idil-13-113-04
  • Bishop, C. M., & Nasrabadi, N. M. (2006). Pattern recognition and machine learning (Vol. 4, No. 4, p. 738). Springer.
  • Burke, R. (2002). Hybrid recommender systems: Survey and experiments. User Modeling and User-Adapted Interaction, 12(4), 331–370. https://doi.org/10.1023/A:1021240730564
  • Chen, J., & Sundar, S. S. (2018). This app would like to use your current location to better serve you: The effect of permissions requests & personalized ads on user engagement. Journal of Computer-Mediated Communication, 23(6), 422–438. https://doi.org/10.1093/jcmc/zmy026
  • Coffman, K. G., & Odlyzko, A. M. (2002). Growth of the Internet. In Optical fiber telecommunications IV-B (pp. 17-56). Academic Press.
  • Covington, P., Adams, J., & Sargin, E. (2016). Deep neural networks for YouTube recommendations. In Proceedings of the 10th ACM Conference on Recommender Systems (pp. 191–198). ACM. https://doi.org/10.1145/2959100.2959190
  • Elahi, M., Beheshti, A., & Goluguri, S. R. (2021). Recommender systems: Challenges and opportunities in the age of big data and artificial intelligence. Data Science and Its Applications, 15-39.
  • Jiang, L., Cheng, Y., Yang, L., Li, J., Yan, H., & Wang, X. (2019). A trust-based collaborative filtering algorithm for E-commerce recommendation system. Journal of ambient intelligence and humanized computing, 10, 3023-3034.
  • Ekstrand, M. D., Riedl, J., & Konstan, J. A. (2011). Collaborative filtering recommender systems. Foundations and Trends in Human–Computer Interaction, 4(2), 81–173. https://doi.org/10.1561/1100000009
  • Elahi, M., Ricci, F., & Rubens, N. (2016). A survey of active learning in collaborative filtering recommender systems. Computer Science Review, 20, 29-50.
  • Gabrilovich, E., & Markovitch, S. (2007). Computing semantic relatedness using Wikipedia-based explicit semantic analysis. In Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI’07) (pp. 1606–1611). AAAI Press.
  • Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep learning (Vol. 1, No. 2). MIT press.
  • Gomez-Uribe, C. A., & Hunt, N. (2015). The netflix recommender system: Algorithms, business value, and innovation. ACM Transactions on Management Information Systems (TMIS), 6(4), 1-19.
  • Herlocker, J. L., Konstan, J. A., Terveen, L. G., & Riedl, J. (2004). Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems, 22(1), 5–53. https://doi.org/10.1145/963770.963772
  • ISPO (2025). How AI is taking the production of sports content to a new level. https://www.ispo.com/en/sportstech/ai-sport-artificial-intelligence-production-sports-content
  • Linden, G., Smith, B., & York, J. (2003). Amazon.com recommendations: Item-to-item collaborative filtering. IEEE Internet Computing, 7(1), 76–80. https://doi.org/10.1109/MIC.2003.1167344
  • Linkedin (2025). Netflix Algorithm: How Netflix Uses AI to Improve. https://www.linkedin.com/pulse/netflix-algorithm-how-uses-ai-improve-personalization-5mbgf
  • Lops, P., De Gemmis, M., & Semeraro, G. (2011). Content-based recommender systems: State of the art and trends. In F. Ricci, L. Rokach, B. Shapira, & P. B. Kantor (Eds.), Recommender systems handbook (1st ed., pp. 73–105). Springer. https://doi.org/10.1007/978-0-387-85820-3_3
  • Luo, S. (2024). Research on the Analysis of Disney+ Consumer Behavior and Marketing Strategy Based on R Language. In SHS Web of Conferences (Vol. 207, p. 01010). EDP Sciences.
  • Maddodi, S. (2019). NETFLIX bigdata analytics-the emergence of data driven recommendation. Srivatsa Maddodi, & Krishna Prasad, K.(2019). Netflix Bigdata Analytics-The Emergence of Data Driven Recommendation. International Journal of Case Studies in Business, IT, and Education (IJCSBE), 3(2), 41-51.
  • Ping, Y., Li, Y., & Zhu, J. (2024). Beyond accuracy measures: the effect of diversity, novelty and serendipity in recommender systems on user engagement. Electronic Commerce Research, 1-28.
  • PPCLAND (2025) Prime Video releases AI-powered content discovery system in limited beta. https://ppc.land/prime-video-releases-ai-powered-content-discovery-system-in-limited-beta/
  • Rao, R. (2023, October 12). Streaming wars: Analyzing the competitive dynamics of Disney+ vs. Netflix. Medium. https://medium.com/@rujularao/streaming-wars-analyzing-the-competitive-dynamics-of-disney-vs-netflix-aad4e42f776f
  • Ricci, F., Rokach, L., & Shapira, B. (2011). Introduction to recommender systems handbook. In F. Ricci, L. Rokach, B. Shapira, & P. B. Kantor (Eds.), Recommender systems handbook (1st ed., pp. 1–35). Springer. https://doi.org/10.1007/978-0-387-85820-3_1
  • Ricci, F., Rokach, L., & Shapira, B. (2021). Recommender systems: Techniques, applications, and challenges. Recommender systems handbook, 1-35.
  • Russell, S. J., & Norvig, P. (2010). Artificial intelligence: A modern approach (3rd ed.). Prentice Hall.
  • Sarwar, B., Karypis, G., Konstan, J. A., & Riedl, J. (2001). Item-based collaborative filtering recommendation algorithms. In Proceedings of the 10th International Conference on World Wide Web (WWW ‘01) (pp. 285–295). ACM. https://doi.org/10.1145/371920.372071
  • Smith, B., & Linden, G. (2017). Two decades of recommender systems at Amazon.com. IEEE Internet Computing, 21(3), 12–18. https://doi.org/10.1109/MIC.2017.72
  • Su, X., & Khoshgoftaar, T. M. (2009). A survey of collaborative filtering techniques. Advances in Artificial Intelligence, 2009, 1–19. https://doi.org/10.1155/2009/421425
  • The Sundae. (2025, Şubat 1). The Problem with Your Netflix Recommendations. https://thesundae.net/2019/11/03/the-problem-with-your-netflix-recommendations/
  • Varela, D., Kaun, A. (2019) The Netflix Experience: A User-Focused Approach to the Netflix Recommendation Algorithm In: Theo Plothe, Amber M. Buck (Ed.), Netflix at the Nexus: Content, Practice, and Production in the Age of Streaming Television (pp. 197-211). Peter Lang Publishing Group
  • Widayanti, R., Chakim, M. H. R., Lukita, C., Rahardja, U., & Lutfiani, N. (2023). Improving recommender systems using hybrid techniques of collaborative filtering and content-based filtering. Journal of Applied Data Sciences, 4(3), 289-302.
  • Yesilada, M., & Lewandowsky, S. (2022). Systematic review: YouTube recommendations and problematic content. Internet policy review, 11(1), 1652.
  • Zhang, S., Yao, L., Sun, A., & Tay, Y. (2019). Deep learning based recommender system: A survey and new perspectives. ACM Computing Surveys (CSUR), 52(1), 1–38. https://doi.org/10.1145/3285029
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Radyo-Televizyon
Bölüm Araştırma Makalesi
Yazarlar

Evren Günevi Uslu 0000-0003-4134-3897

Gönderilme Tarihi 26 Şubat 2025
Kabul Tarihi 1 Eylül 2025
Yayımlanma Tarihi 31 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Sayı: 15

Kaynak Göster

APA Günevi Uslu, E. (2025). The Impact of Recommendation Systems on User Experience in Digital Platforms: Netflix, Amazon Prime Video, and Disney+. Kastamonu İletişim Araştırmaları Dergisi(15), 84-107. https://doi.org/10.56676/kiad.1647277