Araştırma Makalesi
BibTex RIS Kaynak Göster

HİSSE SENEDİ GETİRİLERİNİN TAHMİNİNDE YAPAY SİNİR AĞI MODELİ KULLANIMI: İMKB’DE BİR UYGULAMA

Yıl 2018, , 572 - 592, 26.11.2018
https://doi.org/10.20990/kilisiibfakademik.442843

Öz

Hisse senedi getirilerini tahmin etmek
amacıyla yapılan çalışmalar incelendiğinde, YSA modelinin daha başarılı
sonuçlar verdiği görülmektedir. İMKB’de işlem gören imalat şirketlerinin hisse
senedi getirilerini tahmin etmek amacıyla gerçekleştirilen bu çalışmada, 1986
yılından itibaren işlem görmeye başlayan firmaların verileri kullanılmak
istenmiştir. Ancak İMKB veri tabanından 1991 yılından önceki verilere ulaşmak
mümkün olmadığı için, analiz dönemi 1991-2010 dönemi olarak belirlenmiştir.
Çalışma kapsamında 2008, 2009 ve 2010 yıllarına ait hisse senedi
getirilerindeki değişim, Statik ve Dinamik YSA modelleri ile tahmin edilmiş ve
aynı yıl gerçekleşen gerçek değerlerle karşılaştırılarak modelin performansı
ölçülmüştür. Hisse senedi getirilerinin tahmininde Dinamik YSA modelinin daha
başarılı bir yöntem olduğu
tespit edilmiştir.

Kaynakça

  • ANDERSON, D. and NCNEIL, G. (1992). Artifical Neural Networks Technology, Kaman Sciences Corporation, New York.
  • ANDREESCU, A. (2004). Forecast Corporate Earnings: A Data Mining Approach, MSc Thesis in Accounting, The Swedish School of Economics and Business Administration.
  • AVCI, E. (2009). “Stock Return Forecasts with Artifical Neural Network Models”, Marmara Üniversitesi İ.İ.B.F. Dergisi, 26(1). 443-461.
  • BAYRAMOĞLU, M. F. (2007). Finansal Endekslerin Öngörüsünde Yapay Sinir Ağı Modellerinin Kullanılması: İMKB Ulusal 100 Endeksinin Gün içi En Yüksek ve En Düşük Değerlerinin Öngörüsü Üzerine Bir Uygulama, Yüksek Lisans Tezi, Zonguldak Karaelmas Üniversitesi Sosyal Bilimler Enstitüsü, Zonguldak.
  • BOATRIGHT, J.R. (2010). Finance Ethics Critical Issues in Theory and Practice, JohnWiley & Sons, Inc., Canada.
  • BRIGHAM, F.E. and HOUSTON, J.E. (2004). Fundamentals of Financial Management, Thomson Learning Inc., USA.
  • DOĞAN, V. (2006). Forecasting Stock Market Return Using Artfiical Neural Networks, Yüksek Lisans Tezi, Boğaziçi Üniversitesi Fen Bilimleri Enstitüsü, İstanbul.
  • ELMAS, Ç. (2007). Yapay Zekâ Uygulamaları (Yapay Sinir Ağları, Bulanık Mantık ve Genetik Algoritma), Seçkin Yayınevi, Ankara.
  • ENKE, D. and THAWORNWONG, S. (2005). “The Use Of Data Mining And Neural Networks For Forecasting Stock Market Returns”, Expert Systems with Applications, 29(4), 927-940.
  • GENÇAY, R. (1996). “Non-Linear Prediction of Security Returns with Moving Average Rules”, Journal of Forecasting, 15, 165-174.
  • KANAS, A. and YANNOPOULOS, A. (2001). “Comparing Linear and Nonlinear Forecasts For Stock Returns”, International Review of Economic and Finance, 10, 383-398.
  • KANAS, A. (2003). Non-Linear Forecasts of Stock Returns, John Wiley&Sons. Ltd (Published online in Wiley InterScience), USA.
  • KASABOV, N.K. (1998). Foundations of Neural Networks, Fuzzy Systems and Knowledge Engineering (Second Edition), The MIT Press, USA.
  • KANAS, A. (2001). “Neural Network Linear Forecasts For Stock Returns”, Internatioanal Journal of Finance and Economics, 6, 245-254.
  • OLSON, D. and MOSSMAN, C. (2003). “Neural Network Forecasts of Canadian Stock Returns Using Accounting Ratios”, International Journal of Forecasting, 19, 453-465.
  • ÖZALP, A.ve ANAGÜN, A.S. (2001). “Sektörel Hisse Senedi Tahmininde Yapay Sinir Ağı Yaklaşımı ve Klasik Tahminleme Yöntemleri ile Karşılaştırılması”, Endüstri Mühendisliği Dergisi, 3(4), 2-17.
  • ÖZTEMEL, E. (2006). Yapay Sinir Ağları, Papatya Yayıncılık, İstanbul.
  • SEYİDOĞLU, H. (2003). Uluslararası Finans (4.Baskı), Güzem Can Yayınları, İstanbul.
  • SKOLPADUNGKET, P., DAHAL, K. And HARNPORNCHAI, N. (2009). Forecasting Stock Returns Using Variable Selections with Genetic Algorithm and Artifical Neural Networks, Asia-Pacific Conference on Computational Intelligence and Industrial Applications (PACIIA), China, 28-29 November.
  • ŞEN, Z. (2004). Yapay Sinir İlkeleri, Su Vakfı Yayınları, İstanbul.
  • PANDA, C., and NARASIMHAN, V. (2006) Predicting Stock Returns: An Experiment of The Articical Neural Network in Indian Stock Market, South Asia Economic Journal, 7(2), 375-388.
  • PISSARENKO, D. (2001). Neural Networks For Financial Time Series Prediction: Overwiev Over Recent Research, http://members.inode.at/d.pissarenko/fyp/Pissarenko2002.pdf, (Son Erişim Tarihi: 16.02.2011).
  • RAPACH, D.E. and WOHAR, M.E. (2006). “In-Sample vs. Out-Of-Sample Tests of Stock Return Predictability In The Context Of Data Mining”, Journal of Empirical Finance, 13, 231-247.
  • USTA, Ö. (2005). İşletme Finansı ve Finansal Yönetim (2.Baskı), Detay Yayıncılık, Ankara.
  • WHITE, H. (1988). “Economic Prediction Using Neural Networks: The Case of IBM Daily Stock Returns”, Proceedings of the IEEE International Conference on Neural Networks, 451-458.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm ARAŞTIRMA MAKALELERİ
Yazarlar

Faruk Dayı 0000-0003-0903-1500

Yayımlanma Tarihi 26 Kasım 2018
Yayımlandığı Sayı Yıl 2018

Kaynak Göster

APA Dayı, F. (2018). HİSSE SENEDİ GETİRİLERİNİN TAHMİNİNDE YAPAY SİNİR AĞI MODELİ KULLANIMI: İMKB’DE BİR UYGULAMA. Akademik Araştırmalar Ve Çalışmalar Dergisi (AKAD), 10(19), 572-592. https://doi.org/10.20990/kilisiibfakademik.442843
AMA Dayı F. HİSSE SENEDİ GETİRİLERİNİN TAHMİNİNDE YAPAY SİNİR AĞI MODELİ KULLANIMI: İMKB’DE BİR UYGULAMA. Akademik Araştırmalar ve Çalışmalar Dergisi (AKAD). Kasım 2018;10(19):572-592. doi:10.20990/kilisiibfakademik.442843
Chicago Dayı, Faruk. “HİSSE SENEDİ GETİRİLERİNİN TAHMİNİNDE YAPAY SİNİR AĞI MODELİ KULLANIMI: İMKB’DE BİR UYGULAMA”. Akademik Araştırmalar Ve Çalışmalar Dergisi (AKAD) 10, sy. 19 (Kasım 2018): 572-92. https://doi.org/10.20990/kilisiibfakademik.442843.
EndNote Dayı F (01 Kasım 2018) HİSSE SENEDİ GETİRİLERİNİN TAHMİNİNDE YAPAY SİNİR AĞI MODELİ KULLANIMI: İMKB’DE BİR UYGULAMA. Akademik Araştırmalar ve Çalışmalar Dergisi (AKAD) 10 19 572–592.
IEEE F. Dayı, “HİSSE SENEDİ GETİRİLERİNİN TAHMİNİNDE YAPAY SİNİR AĞI MODELİ KULLANIMI: İMKB’DE BİR UYGULAMA”, Akademik Araştırmalar ve Çalışmalar Dergisi (AKAD), c. 10, sy. 19, ss. 572–592, 2018, doi: 10.20990/kilisiibfakademik.442843.
ISNAD Dayı, Faruk. “HİSSE SENEDİ GETİRİLERİNİN TAHMİNİNDE YAPAY SİNİR AĞI MODELİ KULLANIMI: İMKB’DE BİR UYGULAMA”. Akademik Araştırmalar ve Çalışmalar Dergisi (AKAD) 10/19 (Kasım 2018), 572-592. https://doi.org/10.20990/kilisiibfakademik.442843.
JAMA Dayı F. HİSSE SENEDİ GETİRİLERİNİN TAHMİNİNDE YAPAY SİNİR AĞI MODELİ KULLANIMI: İMKB’DE BİR UYGULAMA. Akademik Araştırmalar ve Çalışmalar Dergisi (AKAD). 2018;10:572–592.
MLA Dayı, Faruk. “HİSSE SENEDİ GETİRİLERİNİN TAHMİNİNDE YAPAY SİNİR AĞI MODELİ KULLANIMI: İMKB’DE BİR UYGULAMA”. Akademik Araştırmalar Ve Çalışmalar Dergisi (AKAD), c. 10, sy. 19, 2018, ss. 572-9, doi:10.20990/kilisiibfakademik.442843.
Vancouver Dayı F. HİSSE SENEDİ GETİRİLERİNİN TAHMİNİNDE YAPAY SİNİR AĞI MODELİ KULLANIMI: İMKB’DE BİR UYGULAMA. Akademik Araştırmalar ve Çalışmalar Dergisi (AKAD). 2018;10(19):572-9.