DÜŞÜK FREKANSTA İNCELENEN FİNANSAL VARLIKLARIN OYNAKLIK KIRILMALARININ DEĞERLENDİRİLMESİ: BİST-100 ENDEKSİ ÜZERİNE BİR UYGULAMA
Yıl 2018,
Cilt: 10 Sayı: 18, 1 - 11, 30.05.2018
Mehmet Çınar
,
Atilla Hepkorucu
Öz
Çalışmada BIST-100 (ulusal) endeksinin 1986 yılının
birinci ayı ile 2017 yılının üçüncü ayı arasındaki aylık getiri oynaklığı modellenerek
önraporlanmaya çalışılmıştır. BIST-100 endeksinin getiri oynaklığının aylık
veriler için sabit bir değere sahip olduğu belirlenmiştir. Görsel olarak
modelin ortalamaya dönen bir yapıda olduğu saptanmıştır. Bu koşullar altında
modeldeki kırılmaların tahminlenmesi Inclan ve Tiao’nun (1994) ICSS (Yinelenen
Birikimli Kareler Metodu) algoritması ile tespit edilmeye çalışılmıştır.
Kırılmaların oluştuğu tarihler arasında seçim yapılarak modeli en iyi açıklayan
yapı seçilmiştir. Elde edilen sonuçlar karşılaştırıldığında varyansta
kırılmanın dikkate alındığı model sonuçlarının, varyansta kırılmayı dikkate
almayan model sonuçlarına nazaran gerek tahmin sonuçları gerekse öngörü
performansı açısından daha iyi sonuçlara sahip olduğu görülmektedir.
Kaynakça
- ABRAHAM, B. and William W.S.W. (1984). “Inferences About The Parameters Of A Time Series
Model With Changing Variance‟‟, Metrika, 31: 183-194.
- AGGARWAL, R., INCLAN C. and LEAL, R. (1999). “Volatility in Emerging Stock Markets”, The
Journal of Financial and Quantitative Analysis, 34(1): 33-55.
- DEMİRELİ, E. ve TORUN, E. (2010). „„Alternatif Piyasa Oynaklıklarında Meydana Gelen
Kırılmaların ICSS algoritmasıyla Belirlenmesi ve Süreğenliğe Etkileri: Türkiye ve Londra
Örneği‟‟, Muhasebe ve Finansman Dergisi, 10(46): 129-145.
- DIEBOLD, F. (1986). „„Modeling The Persistence Of Conditional Variances: A Comment‟‟,
Econometric Reviews, 5: 51-56.
- DIEBOLD, F. (1988). “Empirical Modeling of Exchange Rate Dynamics” Lecture Notes in
Economics and Mathematical Systems, 303, Springer-Verlag, New York.
- ENGLE, R. (1993). “Statistical Models for Financial Volatility”, Financial Analyst Journal, 49: 72-78.
ENGLE, R. and BOLLERSLEV, T. (1986). "Modelling the Persistence of Conditional Variances,"
Econometrics Review, 5(1): 1-50.
- FERNANDEZ, V. (2005). “Structural Breakpoints in Volatility in International Markets”, The
Institute for International Integration Studies Discussion Paper Series, 76: 1-36.
- HEPKORUCU, A. (2012). „„Koşullu Değişen Varyans Modelleri ile IMKB-100 Endeksinde Varyans
Kırılması Uygulaması‟‟, 1. International Symposium on Accounting and Finance, 32-48.
- HINKLEY, D. V. (1971). „„Inference in Two-Phase Regression‟‟, Taylor&Francis Group, American
Statistical Association, 66(336): 736-743.
- HINKLEY, D. V. (1971). „„Inference about Change Point From Cumulative Sum Test‟‟, Oxford
Journal, Biometrika Trust, 58(3): 509-523.
- HSIEH, D. (1989). “Modeling Heteroscedasticity in Daily Foreign-Exchange Rates”, American
Statistical Association Journal of Business & Economic Statistics, 7(3): 307-317.
- HSU, D. A. (1977). “Test for Variance Shift at an Unknown Time Point”, Wiley, Journal of Royal
Statistical Society, 26(3): 279-284.
- HSU, D. A. (1979), “Detecting Shifts of Parameter in Gamma Sequences with Application to Stock
Prices and Air Traffic Flow Analysis”, Taylor Francis Group, American Statistical Association,
77(377): 29-39.
- HSU, D. A. (1982). “A Bayesian Robust Detection of Shifts in Risk Structure of Stock Market
Returns”, Taylor Francis Group, Journal of The American Statistical Association, Applied
Statistics, 74(365): 31-40.
- HSU, D. A., MILLER, R. B. and WICHERN, D. W. (1974). “On a Stable Paretian Behavior of Stock
Market Prices” Taylor&Francis Group, Journal of the American Statistical Association,
69(345): 108-113.
- HSU, D. A., MILLER, R. B. and WICHERN, D. W. (1976). “Changes of Variance in First Order
Autoregressive Time Series Model-With an Application”, Wiley, Journal of Royal Statistical
Society, Series C, Applied Statistics, 25(3): 248-256.
- INCLAN, C. (1993). “Detection of Multiple Changes of Variance Using Posterior Odds”,
Taylor&Francis Group, Journal of Business & Economic Statistics, 11(3): 289-300.
- INCLAN, Carla and TIAO, G. (1994). “Use of Cumulative Sums of Squares for Retrospective
Detection of Changes of Variance”, Journal of the American Statistical Association, 89(427):
913-923.
- LAMOUREUX, C. and LASTRAPES, W. (1990). “Persistence in Variance, Structural Change, and
the GARCH Model”, Journal of Business & Economic Statistics, 8(2): 225-234.
- MALİK, F. (2003). “Sudden Changes in Variance and Volatility Persistence İn Foreign Exchange
Markets”, Journal. of Multinational. Financial. Management, 13: 217-230.
- MALİK, F. and HASSAN, S.A. (2004). “Modeling Volatility in Sector Index Returns with GARCH
Models Using an Iterated Algorithm”, Journal of Economics and Finance, 28(2): 211-225.
- MANDELBROT, B. (1963). “The Variation of Certain Speculative Prices”, The Journal of Business,
36(4): 394-419.
- MENZEFRICKE, U. (1981). “A Bayesian Analysis of a Change in the Precision of a Sequence of
Independent Normal Random Variables at an Unknown Time Point”, Wiley, Journal of Royal
Statistical Society, Seris C, Applied Statistics, 30(2): 41-146.
- NELSON, D. (1991). “Conditional Heteroskedasticity on Asset Retuns: A New Approach”,
Econometrica, 59(2): 347-370.
- POOTER, M. and DİJK, D. V. (2004). “Testing for Changes in Volatility in Heteroskedastic Time
Series- A Further Examination”, Econometric Institute Report EI, 38: 1-39.
- RAPACH, D., STRAUSS, J. and WOHAR, M. (2007). “Forecasting Stock Return Volatility in the
Presence of Structural Breaks”, Forecasting in the Presence of Structural Breaks and Model
Uncertainty, 1-38
- RAPACH, D. and STRAUSS, J. (2008). “Structural Breaks and GARCH Models of Exchange Rate
Volatility”, Journal of Applied Econometrics, 23: 65-90.
- SMITH, A., F., M. (1975). “A Bayesian Approach to Inference about a Change-Point in a Sequence of
Random Variables”, Oxford University Press, Biometrika Trust, 62(2): 407-416.
- TSAY, R. S. (1988). “Outliers, Level Shifts and Variance Changes in Time Series”, Journal of
Forecasting, 7: 1-20.
- WANG, P.and MOORE, T. (2009). “Sudden Changes In Volatility: The Case Of Five Central
European Stock Markets”, International Financial. Markets, Institutions and Money, 19: 33–46.
- WORSLEY, K. J. (1986). “Confidence Regions and Tests for a Change-Point in a Sequence of
Exponential Family Random Variables”, Oxford University Press, Biometrika Trust, 73(1): 91-
104.