Derleme
BibTex RIS Kaynak Göster

ANTOSİYANİNLERİN BESLENMEDEKİ ÖNEMİ VE SAĞLIK ÜZERİNE ETKİLERİ

Yıl 2020, Cilt: 1 Sayı: 1, 19 - 24, 30.08.2020

Öz

Antosiyaninler, antioksidan alımının büyük bir kısmına katkıda bulunan bir polifenol alt sınıfı olan flavonoid grubuna dahildir. Doğada 600'den fazla antosiyaninin bulunduğu tahmin edilmektedir ve yeni çalışmalarla beraber bu sayının artması beklenmektedir. Bu doğal bileşikler insan diyetinde yaygın olarak bulunur. Özellikle kırmızı, mavi veya mor meyve ve sebzelerde normalde % 0.1 ila % 1.0 kuru ağırlık arasındaki konsantrasyonlarda gözlemlenirler. Pigmentasyonu ve yapısal özellikleri nedeniyle, antosiyaninler endüstride doğal renklendiriciler olarak da kullanılmaktadır. Antosiyaninlerin, antioksidan savunmayı arttırarak ve antioksidan ve enflamatuar sinyal yollarını modüle ederek kronik hastalık risklerini azalttığı gözlemlenmiştir. Ayrıca bu bileşiklerin, oksidatif hasarı ve iltihabı hafiflettiği, DNA hasarını onardığı, kanser hücrelerinde apoptozu tetiklediği, lipoprotein oksidasyonunu azalttığı, lipoprofilleri normalleştirdiği, vasküler endotelyal fonksiyonunu iyileştirdiği, trombosit reaktivitesinin azalttığı ve nörotoksisitenin iyileştirilmesine katkı sağladığı tespit edilmiştir. Antosiyanin tüketiminin uzun vadeli etkilerini değerlendirmek için konu ile alakalı çalışma artırılması gerekmektedir. Bu derleme, antosiyaninlerin özelliklerini, sağlığa etkilerini ve diyetteki kullanımlarını incelemektedir.

Teşekkür

Yok

Kaynakça

  • 1. Mazza, G., Cacace, J., & Kay, C. (2004). Methods of analysis for anthocyanins in plants and biological fluids. J. AOAC Int, 87(1), 129-145.
  • 2. M. Yang, S. K. (2011). Food Matrix Affecting Anthocyanin Bioavailability: Review. Current Medicinal Chemistry, 18, 291-300.
  • 3. Pascural-Teresa, S. M.-A.-V. (2010). Flavanols and anthocyanins in cardiovascular health: A review of current evidence. Int. J. Mol. Sci, 11, 1679–1703.
  • 4. Tsuda, T. (2012). Dietary anthocyanin-rich plants: Biochemical basis and recent progress in health benefits studies. Mol. Nutr. Food Res., 56, 159–170.
  • 5. Castañeda-Ovando A, P.-H. M.-H.-V. (2009). Chemical studies of anthocyanins: a review. Food Chem, 113, 859–871.
  • 6. Smeriglio A., B. D. (2016). Chemistry, Pharmacology and Health Benefits of Anthociyanins. Phytother. Res. doi:10.1002/ptr.5642
  • 7. Lucioli, S. (2012). Anthocyanins: mechanism of action and therapeutic efficacy. In Medicinal Plants as Antioxidant Agents: Understanding Their Mechanism of Action and Therapeutic Efficacy,. (C. A, Dü.) 27-57. doi:97881-308-0509-2.
  • 8. Pojer E, M. F. (2013). The case for anthocyanin consumption to promote human health: a review. Comp Rev Food Sci Food Safety, 12, 483–508.
  • 9. John Overall, M. A. (2017). Anthocyanins in metabolic health and disease. Nutrigenomics and Proteomics in Health and Disease: Towards a Systems-Level Understanding of Gene–Diet Interactions, Second Edition, 92-124.
  • 10. Wu X, B. G. (2006). Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption. J Agric Food Chem, 54(11), 4069–4075.
  • 11. Kay, C. K. (2009). The bioactivity of dietary anthocyanins is likely to be mediated by their degradation products. Mol Nutr Food Res., 53(1), 92-101.
  • 12. Rosalind Miller, S. P. (2013). Potential Health Benefits of Blackcurrants. Bioactives in Fruit: Health Benefits and Functional Foods, First Edition. Edited by Margot Skinner and Denise Hunter., 215-250.
  • 13. Øyvind M Andersen, M. J. (2010). Anthocyanins. Encyclopedia of Life Sciences (ELS), 1-12.
  • 14. Milbury, P. E.-C. (2007). Bilberry (Vaccinium myrtillus) anthocyanins modulate heme oxygenase-1 and glutathione S-transferase-pi expression in ARPE-19 cells. Invest. Ophthalmol. Vis. Sci., 48, 2343–2349.
  • 15. Prior, R. L. (2008). Whole berries versus berry anthocyanins: interactions with dietary fat levels in the C57BL/6J mouse model of obesity. J. Agric. Food Chem., 56, 647–653.
  • 16. Erlund I, K. R. (2008). Favorable effects of berry consumption on platelet function, blood pressure, and HDL cholesterol. Am J Clin Nutr, 87, 323–331.
  • 17. Shukitt-Hale, B. K.-T. (2009). Plum juice, but not dried plum powder, is effective in mitigating cognitive deficits in aged rats. Nutrition, 25, 567–573.
  • 18. Bei, R., Masuelli, L., Turriziani, M., Li Volti, G., Malaguarnera, M., & Galvano, F. (2009). Impaired expression and function of signaling pathway enzymes by anthocyanins: role on cancer prevention and progression. Curr. Enzyme Inhib., 5, 184-197.
  • 19. Russo, A., La Fauci, L., Acquaviva, R., Campisi, A., Raciti, G., Scifo, C., . . . Galvano, F. (2005). Ochratoxin A-induced DNA damage in human fibroblast:protective effect of cyanidin 3-O-beta-d-glucoside. J. Nutr. Biochem., 16(1), 31-37.
  • 20. Yan X., M. B. (2002). Antioxidant activities and antitumor screening of extracts from cranberry fruit(Vaccinium macrocarpon). J. Agric. Food Chem., 50(21), 5844-5849.
  • 21. Chen G., L. J. (2010). Anthocyanins: are they beneficial in treating ethanol neurotoxicity? Neurotox. Res., 17(1), 91-101.
  • 22. Shih P.H., C. Y. (2010). Antioxidant and cognitive promotion effects of anthocyanin-rich mulberry(Morus atropurpurea L.) on senescence-accelerated mice and prevention of Alzheimer's disease. J. Nutr. Biochem., 21(7), 598-605.
  • 23. He J, G. M. (2010). Anthocyanins: natural colorants with health-promoting properties. Annu Rev Food Sci Technol, 1, 163-187.
  • 24. Tsuda T., H. F. (2003). Dietary cyanidin 3-O-beta-D-glucoside-rich purple corn color prevents obesity and ameliorates hyperglycemia in mice. J. Nutr., 133(7), 2125-2130.
  • 25. Tsuda, T. U. (2004). Anthocyanin enhances adipocytokine secretion and adipocyte Anthocyanin enhances adipocytokine secretion and adipocyte specific gene expression in isolated rat adipocytes. Biochem Biophys Res Commun, 316, 149-157.
  • 26. Arita, Y. K. (1999). Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun, 257, 79-83.
  • 27. Sasaki, R. N. (2007). Cyanidin 3-glucoside ameliorates hyperglycemia and insulin sensitivity due to downregulation of retinol binding protein 4 expression in diabetic mice. Biochem. Pharmacol, 74, 1619–1627.
  • 28. Prior, R. L. (2010). Purified blueberry anthocyanins and blueberry juice alter development of obesity in mice fed an obesogenic high-fat diet. J. Agric. Food Chem., 58, 3970–3976.
  • 29. Takikawa, M. I. (2010). Dietary anthocyanin-rich bilberry extract ameliorates hyperglycemia and insulin sensitivity via activation of AMP-activated. J. Nutr., 140, 527-533.
  • 30. Yamauchi, T. K. (2001). The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat. Med., 7, 941–946.
  • 31. Berg, A. C. (2002). ACRP30/adiponectin: an adipokine regulating glucose and lipid metabolism. Trends Endocrinol Metab., 13, 84-89.
  • 32. Lindsay, R. F. (2002). Adiponectin and development of type 2 diabetes in the Pima Indian population. Lancet, 360, 57–58.
  • 33. Svegliati-Baroni, G. C. (2006). A model of insulin resistance and nonalcoholic steatohepatitis in rats: role of peroxisome proliferator-activated receptor-alpha and n-3 polyunsaturated fatty acid treatment on liver injury. Am. J. Pathol., 169, 846–860.
  • 34. Yang, Q. G. (2005). Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature, 436, 356–362.
  • 35. Torronen, R. S. (2010). Berries modify the postprandial plasma glucose response to sucrose in healthy subjects. Br. J. Nutr., 103, 1094–1097.
  • 36. Torronen, R. S. (2012). Postprandial glucose, insulin and glucagon-like peptide 1 responses to sucrose ingested with berries in healthy subjects. Br. J. Nutr., 107, 1445–1451.
  • 37. Wood, P. (2007). Cereal b-glucans in diet and health. J Cereal Sci, 46, 230-238.
  • 38. Hardie, D. G. (2008). Role of AMP-activated protein kinase in the metabolic syndrome and in heart disease. FEBS Lett, 582, 81-89.
  • 39. Wallace TC, S. M. (2016). Systematic review of anthocyanins and markers of cardiovascular disease. Nutrients, 8(1), 32-45.
  • 40. Stocker, R. a. (2004). Role of oxidative modifications in atherosclerosis. Physiol Rev., 84, 1381–1478.
  • 41. Tsuda, T. M. (1994). Antioxidative activity of the anthocyanin pigments cyanidin 3-O-beta-D-glucoside and cyanidin. J Agric Food Chem, 2407–2410.
  • 42. Rice-Evans, C. M. (1996). Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med, 20, 933–956.
  • 43. Hassellund SS, F. A. (2013). Effects of anthocyanins on cardiovascular risk factors and inflammation in pre-hypertensive men: a double-blind randomized placebocontrolled crossover study. J Hum Hypertens, 27(2), 100-106.
  • 44. Serraino I, D. L. (2003). Protective effects of cyanidin-3-O-glucoside from blackberry extract against peroxynitrite-induced endothelial dysfunction and vascular failure. Life Sci, 73(9), 1097–1114.
  • 45. Kawashima, S. a. (2004). Dysfunction of endothelial nitric oxide synthase and atherosclerosis. Arterioscler Thromb Vasc Biol, 24, 998-1005.
  • 46. Rissanen, T. H. (2003). Low intake of fruits, berries and vegetables is associated with excess mortality in men: the Kuopio Ischaemic Heart Disease Risk Factor (KIHD) Study. J. Nutr., 133, 199–204.
  • 47. Mink PJ, S. C. (2007). Flavonoid intake and cardiovascular disease mortality: a prospective study in postmenopausal women. Am J Clin Nutr, 85(3), 895-909
  • 48. Ellingsen I, H. E. (2008). Consumption of fruit and berries is inversely associated with carotid atherosclerosis in elderly men. Br. J. Nutr., 99(3), 674–681.
  • 49. Cassidy, A. O. (2010). Habitual intake of flavonoid subclasses and incident hypertension in adults. Am J Clin Nutr, 93, 338–347.
  • 50. McCullough, M. P. (2012). Flavonoid intake and cardiovascular disease mortality in a prospective cohort of US adults. Am J Clin Nutr, 95(2), 454–464.
  • 51. Qin, Y. X. (2009). Anthocyanin supplementation improves serum LDL- and HDL-cholesterol concentrations associated with the inhibition of cholesteryl ester transfer protein in dyslipidemic subjects. Am J Clin Nutr, 90, 485-492.
  • 52. Zhu, Y. X. (2011). Purified anthocyanin supplementation improves endothelial function via NO-cGMP activation in hypercholesterolemic individuals. Clin Chem., 57, 1524–1533.
  • 53. Halliwell, B. (2008). Are polyphenols antioxidants or pro-oxidants? What do we learn from cell culture and in vivo studies? Arch Biochem Biophys, 476(2), 107-112.
  • 54. Ghosh D, K. T. (2007a). Anthocyanins and anthocyanin-rich extracts: role in diabetes and eye function. Asia Pac J Clin Nutr, 16, 200-208.
  • 55. Nakaishi, H. M. (2000). Effects of blackcurrant anthocyanosides intake on dark adaptation and VDT work-induced transient refractive alternation in healthy humans. Altern. Med. Rev., 5, 553-562.
  • 56. Rendeiro C, G. J. (2012). Flavonoids as modulators of memory and learning: molecular interactions resulting in behavioural effects. Proc Nutr Soc., 71(2), 246-262.
  • 57. Krikorian, R. S. (2010). Blueberry supplementation improves memory in older adults. J. Agric. Food Chem, 58, 3996–4000.
  • 58. Kang SY, S. N. (2003). Tat cherry anthocyanins inhibit tumor development in ApcMin mice and reduce proliferation of human colon cancer cells. . Cancer Lett, 194(1), 13-19.
  • 59. Seeram NP., Momin RA., Nair MG. (2001). Cyclooxygenase inhibitory and antioxidant cyanidin glycosides in cherries and berries. Phytomedicine, 8, 362-369.
  • 60. Wang JA. (2002). Effects of anthocyanins and other phenolic compounds on the production of tumor necrosis factor alpha in LPS/IFN-gamma-activated RAW 264.7 macrophages. J Agric Food Chem, 50(15), 4183-4189.

THE IMPORTANCE OF ANTOCIANES IN NUTRITION AND EFFECTS ON HEALTH

Yıl 2020, Cilt: 1 Sayı: 1, 19 - 24, 30.08.2020

Öz

Anthocyanins belong to the flavonoid group, a polyphenol subclass found in a large part of dietary antioxidant intake. It is estimated that there are more than 600 anthocyanins in nature and this number is expected to increase with the new researches. These natural compounds are commonly found in the human diet. They are normally observed in concentrations from 0.1% to 1.0% dry weight, especially in red, blue or purple fruits and vegetables. Because of its pigmentation and structural properties, anthocyanins have been used as natural colorants in the industry. Anthocyanins have been observed to reduce the risk of chronic disease by increasing antioxidant defense and modulating antioxidant and inflammatory signaling pathways. Additionally, the compounds have been found to alleviate oxidative damage and inflammation, repair DNA damage, trigger apoptosis in cancer cells, reduce lipoprotein oxidation, normalize lipoprophils, improve vascular endothelial function, decrease platelet reactivity and contribute to the improvement of neurotoxicity. More studies are needed to assess the long-term effects of anthocyanin consumption. This review examines the properties of anthocyanins, their health effects, and dietary uses.

Kaynakça

  • 1. Mazza, G., Cacace, J., & Kay, C. (2004). Methods of analysis for anthocyanins in plants and biological fluids. J. AOAC Int, 87(1), 129-145.
  • 2. M. Yang, S. K. (2011). Food Matrix Affecting Anthocyanin Bioavailability: Review. Current Medicinal Chemistry, 18, 291-300.
  • 3. Pascural-Teresa, S. M.-A.-V. (2010). Flavanols and anthocyanins in cardiovascular health: A review of current evidence. Int. J. Mol. Sci, 11, 1679–1703.
  • 4. Tsuda, T. (2012). Dietary anthocyanin-rich plants: Biochemical basis and recent progress in health benefits studies. Mol. Nutr. Food Res., 56, 159–170.
  • 5. Castañeda-Ovando A, P.-H. M.-H.-V. (2009). Chemical studies of anthocyanins: a review. Food Chem, 113, 859–871.
  • 6. Smeriglio A., B. D. (2016). Chemistry, Pharmacology and Health Benefits of Anthociyanins. Phytother. Res. doi:10.1002/ptr.5642
  • 7. Lucioli, S. (2012). Anthocyanins: mechanism of action and therapeutic efficacy. In Medicinal Plants as Antioxidant Agents: Understanding Their Mechanism of Action and Therapeutic Efficacy,. (C. A, Dü.) 27-57. doi:97881-308-0509-2.
  • 8. Pojer E, M. F. (2013). The case for anthocyanin consumption to promote human health: a review. Comp Rev Food Sci Food Safety, 12, 483–508.
  • 9. John Overall, M. A. (2017). Anthocyanins in metabolic health and disease. Nutrigenomics and Proteomics in Health and Disease: Towards a Systems-Level Understanding of Gene–Diet Interactions, Second Edition, 92-124.
  • 10. Wu X, B. G. (2006). Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption. J Agric Food Chem, 54(11), 4069–4075.
  • 11. Kay, C. K. (2009). The bioactivity of dietary anthocyanins is likely to be mediated by their degradation products. Mol Nutr Food Res., 53(1), 92-101.
  • 12. Rosalind Miller, S. P. (2013). Potential Health Benefits of Blackcurrants. Bioactives in Fruit: Health Benefits and Functional Foods, First Edition. Edited by Margot Skinner and Denise Hunter., 215-250.
  • 13. Øyvind M Andersen, M. J. (2010). Anthocyanins. Encyclopedia of Life Sciences (ELS), 1-12.
  • 14. Milbury, P. E.-C. (2007). Bilberry (Vaccinium myrtillus) anthocyanins modulate heme oxygenase-1 and glutathione S-transferase-pi expression in ARPE-19 cells. Invest. Ophthalmol. Vis. Sci., 48, 2343–2349.
  • 15. Prior, R. L. (2008). Whole berries versus berry anthocyanins: interactions with dietary fat levels in the C57BL/6J mouse model of obesity. J. Agric. Food Chem., 56, 647–653.
  • 16. Erlund I, K. R. (2008). Favorable effects of berry consumption on platelet function, blood pressure, and HDL cholesterol. Am J Clin Nutr, 87, 323–331.
  • 17. Shukitt-Hale, B. K.-T. (2009). Plum juice, but not dried plum powder, is effective in mitigating cognitive deficits in aged rats. Nutrition, 25, 567–573.
  • 18. Bei, R., Masuelli, L., Turriziani, M., Li Volti, G., Malaguarnera, M., & Galvano, F. (2009). Impaired expression and function of signaling pathway enzymes by anthocyanins: role on cancer prevention and progression. Curr. Enzyme Inhib., 5, 184-197.
  • 19. Russo, A., La Fauci, L., Acquaviva, R., Campisi, A., Raciti, G., Scifo, C., . . . Galvano, F. (2005). Ochratoxin A-induced DNA damage in human fibroblast:protective effect of cyanidin 3-O-beta-d-glucoside. J. Nutr. Biochem., 16(1), 31-37.
  • 20. Yan X., M. B. (2002). Antioxidant activities and antitumor screening of extracts from cranberry fruit(Vaccinium macrocarpon). J. Agric. Food Chem., 50(21), 5844-5849.
  • 21. Chen G., L. J. (2010). Anthocyanins: are they beneficial in treating ethanol neurotoxicity? Neurotox. Res., 17(1), 91-101.
  • 22. Shih P.H., C. Y. (2010). Antioxidant and cognitive promotion effects of anthocyanin-rich mulberry(Morus atropurpurea L.) on senescence-accelerated mice and prevention of Alzheimer's disease. J. Nutr. Biochem., 21(7), 598-605.
  • 23. He J, G. M. (2010). Anthocyanins: natural colorants with health-promoting properties. Annu Rev Food Sci Technol, 1, 163-187.
  • 24. Tsuda T., H. F. (2003). Dietary cyanidin 3-O-beta-D-glucoside-rich purple corn color prevents obesity and ameliorates hyperglycemia in mice. J. Nutr., 133(7), 2125-2130.
  • 25. Tsuda, T. U. (2004). Anthocyanin enhances adipocytokine secretion and adipocyte Anthocyanin enhances adipocytokine secretion and adipocyte specific gene expression in isolated rat adipocytes. Biochem Biophys Res Commun, 316, 149-157.
  • 26. Arita, Y. K. (1999). Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun, 257, 79-83.
  • 27. Sasaki, R. N. (2007). Cyanidin 3-glucoside ameliorates hyperglycemia and insulin sensitivity due to downregulation of retinol binding protein 4 expression in diabetic mice. Biochem. Pharmacol, 74, 1619–1627.
  • 28. Prior, R. L. (2010). Purified blueberry anthocyanins and blueberry juice alter development of obesity in mice fed an obesogenic high-fat diet. J. Agric. Food Chem., 58, 3970–3976.
  • 29. Takikawa, M. I. (2010). Dietary anthocyanin-rich bilberry extract ameliorates hyperglycemia and insulin sensitivity via activation of AMP-activated. J. Nutr., 140, 527-533.
  • 30. Yamauchi, T. K. (2001). The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat. Med., 7, 941–946.
  • 31. Berg, A. C. (2002). ACRP30/adiponectin: an adipokine regulating glucose and lipid metabolism. Trends Endocrinol Metab., 13, 84-89.
  • 32. Lindsay, R. F. (2002). Adiponectin and development of type 2 diabetes in the Pima Indian population. Lancet, 360, 57–58.
  • 33. Svegliati-Baroni, G. C. (2006). A model of insulin resistance and nonalcoholic steatohepatitis in rats: role of peroxisome proliferator-activated receptor-alpha and n-3 polyunsaturated fatty acid treatment on liver injury. Am. J. Pathol., 169, 846–860.
  • 34. Yang, Q. G. (2005). Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature, 436, 356–362.
  • 35. Torronen, R. S. (2010). Berries modify the postprandial plasma glucose response to sucrose in healthy subjects. Br. J. Nutr., 103, 1094–1097.
  • 36. Torronen, R. S. (2012). Postprandial glucose, insulin and glucagon-like peptide 1 responses to sucrose ingested with berries in healthy subjects. Br. J. Nutr., 107, 1445–1451.
  • 37. Wood, P. (2007). Cereal b-glucans in diet and health. J Cereal Sci, 46, 230-238.
  • 38. Hardie, D. G. (2008). Role of AMP-activated protein kinase in the metabolic syndrome and in heart disease. FEBS Lett, 582, 81-89.
  • 39. Wallace TC, S. M. (2016). Systematic review of anthocyanins and markers of cardiovascular disease. Nutrients, 8(1), 32-45.
  • 40. Stocker, R. a. (2004). Role of oxidative modifications in atherosclerosis. Physiol Rev., 84, 1381–1478.
  • 41. Tsuda, T. M. (1994). Antioxidative activity of the anthocyanin pigments cyanidin 3-O-beta-D-glucoside and cyanidin. J Agric Food Chem, 2407–2410.
  • 42. Rice-Evans, C. M. (1996). Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med, 20, 933–956.
  • 43. Hassellund SS, F. A. (2013). Effects of anthocyanins on cardiovascular risk factors and inflammation in pre-hypertensive men: a double-blind randomized placebocontrolled crossover study. J Hum Hypertens, 27(2), 100-106.
  • 44. Serraino I, D. L. (2003). Protective effects of cyanidin-3-O-glucoside from blackberry extract against peroxynitrite-induced endothelial dysfunction and vascular failure. Life Sci, 73(9), 1097–1114.
  • 45. Kawashima, S. a. (2004). Dysfunction of endothelial nitric oxide synthase and atherosclerosis. Arterioscler Thromb Vasc Biol, 24, 998-1005.
  • 46. Rissanen, T. H. (2003). Low intake of fruits, berries and vegetables is associated with excess mortality in men: the Kuopio Ischaemic Heart Disease Risk Factor (KIHD) Study. J. Nutr., 133, 199–204.
  • 47. Mink PJ, S. C. (2007). Flavonoid intake and cardiovascular disease mortality: a prospective study in postmenopausal women. Am J Clin Nutr, 85(3), 895-909
  • 48. Ellingsen I, H. E. (2008). Consumption of fruit and berries is inversely associated with carotid atherosclerosis in elderly men. Br. J. Nutr., 99(3), 674–681.
  • 49. Cassidy, A. O. (2010). Habitual intake of flavonoid subclasses and incident hypertension in adults. Am J Clin Nutr, 93, 338–347.
  • 50. McCullough, M. P. (2012). Flavonoid intake and cardiovascular disease mortality in a prospective cohort of US adults. Am J Clin Nutr, 95(2), 454–464.
  • 51. Qin, Y. X. (2009). Anthocyanin supplementation improves serum LDL- and HDL-cholesterol concentrations associated with the inhibition of cholesteryl ester transfer protein in dyslipidemic subjects. Am J Clin Nutr, 90, 485-492.
  • 52. Zhu, Y. X. (2011). Purified anthocyanin supplementation improves endothelial function via NO-cGMP activation in hypercholesterolemic individuals. Clin Chem., 57, 1524–1533.
  • 53. Halliwell, B. (2008). Are polyphenols antioxidants or pro-oxidants? What do we learn from cell culture and in vivo studies? Arch Biochem Biophys, 476(2), 107-112.
  • 54. Ghosh D, K. T. (2007a). Anthocyanins and anthocyanin-rich extracts: role in diabetes and eye function. Asia Pac J Clin Nutr, 16, 200-208.
  • 55. Nakaishi, H. M. (2000). Effects of blackcurrant anthocyanosides intake on dark adaptation and VDT work-induced transient refractive alternation in healthy humans. Altern. Med. Rev., 5, 553-562.
  • 56. Rendeiro C, G. J. (2012). Flavonoids as modulators of memory and learning: molecular interactions resulting in behavioural effects. Proc Nutr Soc., 71(2), 246-262.
  • 57. Krikorian, R. S. (2010). Blueberry supplementation improves memory in older adults. J. Agric. Food Chem, 58, 3996–4000.
  • 58. Kang SY, S. N. (2003). Tat cherry anthocyanins inhibit tumor development in ApcMin mice and reduce proliferation of human colon cancer cells. . Cancer Lett, 194(1), 13-19.
  • 59. Seeram NP., Momin RA., Nair MG. (2001). Cyclooxygenase inhibitory and antioxidant cyanidin glycosides in cherries and berries. Phytomedicine, 8, 362-369.
  • 60. Wang JA. (2002). Effects of anthocyanins and other phenolic compounds on the production of tumor necrosis factor alpha in LPS/IFN-gamma-activated RAW 264.7 macrophages. J Agric Food Chem, 50(15), 4183-4189.
Toplam 60 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlık Kurumları Yönetimi
Bölüm Derlemeler
Yazarlar

Fatma Öznur Afacan 0000-0002-3138-3257

Ahmet Salih Sönmezdağ 0000-0001-6360-4037

Yayımlanma Tarihi 30 Ağustos 2020
Gönderilme Tarihi 17 Temmuz 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 1 Sayı: 1

Kaynak Göster

Vancouver Afacan FÖ, Sönmezdağ AS. ANTOSİYANİNLERİN BESLENMEDEKİ ÖNEMİ VE SAĞLIK ÜZERİNE ETKİLERİ. Karya J Health Sci. 2020;1(1):19-24.