Derleme
BibTex RIS Kaynak Göster

Evaluation of Molasses in Civil Engineering Works: A Review

Yıl 2024, Cilt: 10 Sayı: 2, 117 - 141

Öz

In this review study, the potential of employing molasses in civil engineering work was investigated in detail. Molasses material is used in a wide variety of industries, such as pharmaceuticals, chemicals, paper, and fertilizers. The increasing population and growing construction sector gradually increase the need for raw materials. In addition, molasses produced during the sugar production process increase environmental pollution and operating costs. The aim of this study is to explain that molasses material can be used as an alternative raw material source in the construction industry. Furthermore, it is able to establish an economic relationship between different industries, such as construction and the sugar sector. In this study, literature studies on molasses-containing asphalt, construction materials, ground works, and cementitious materials were examined. As a result of the study, it was determined that molasses was generally used as a replacement material instead of synthetic and petroleum-based materials. Accordingly, molasses material can be a valuable raw material source for the construction sector of countries that are foreign-dependent, especially in terms of crude oil and chemical materials. In addition, molasses has been determined to reduce construction costs and improve material properties. This situation provides a significant competitive advantage to the construction sector. Additionally, sustainable environmental protection can be achieved by using molasses in the production of eco-friendly construction materials. Molasses is suggested to be used in civil engineering works in terms of cost and material performance.

Etik Beyan

There is no conflict of interest among the authors.

Kaynakça

  • Abalaka, A. E. (2011). Comparative effects of cassava starch and simple sugar in cement mortar and concrete. ATBU Journal of Environmental Technology, 4(1), 13-22.
  • Abtahi, S. M., Sheikhzadeh, M., & Hejazi, S. M. (2010). Fiber-reinforced asphalt-concrete–a review. Construction and Building Materials, 24(6), 871-877. doi:10.1016/j.conbuildmat.2009.11.009.
  • Acharya, D. P., Gyawali, T. R. (2024). Investigation of the performance of natural molasses on physical and mechanical properties of cement mortar. Ain Shams Engineering Journal, 15(1), 102355. doi.org/10.1016/j.asej.2023.102355.
  • Akar, C., Canbaz, M. (2016). Effect of molasses as an admixture on concrete durability. Journal of Cleaner Production, 112, 2374-2380. doi.org/10.1016/j.jclepro.2015.09.081.
  • Ali, B., Qureshi, L. A., Baig, H. S., Malik, S., Din, M., Aslam, H. M. U. (2020). Effect of molasses and water–cement ratio on properties of recycled aggregate concrete. Arabian Journal for Science and Engineering, 45(5), 3455-3467. doi.org/10.1007/s13369-019-04117-w.
  • Al-Mamoori, F. H. N., Al-Mamoori, A. H. N. (2018). Reduce the influence of horizontal and vertical cold joints on the behavior of high strength concrete beam casting in hot weather by using sugar molasses. Int J Eng Technol, 7(4.19), 794-800.
  • Archibong, G. A., Sunday, E. U., Akudike, J. C., Okeke, O. C., Amadi, C. (2020). A review of the principles and methods of soil stabilization. International Journal of Advanced Academic Research| Sciences, 6(3), 2488-9849.
  • Arslan, D., Guru, M., Çubuk, M. K., Öztürk, Ş. (2024). Investigation of the effects of molasses-based fly ash compound on bitumen and bituminous mixture properties by laboratory tests. Journal of The Faculty of Engineering and Architecture of Gazi University. doi: 10.17341/gazimmfd.1124843.
  • Benk, A., Coban, A. (2012). Possibility of producing lightweight, heat insulating bricks from pumice and H3PO4-or NH4NO3-hardened molasses binder. Ceramics International, 38(3), 2283-2293. doi:10.1016/j.ceramint.2011.10.080.
  • Bhardwaj, A., Sharma, R. K. (2022). Designing thickness of subgrade for flexible pavements incorporating waste foundry sand, molasses, and lime. Innovative Infrastructure Solutions, 7(1), 132. doi.org/10.1007/s41062-021-00723-6.
  • Businessinsider. Markets insider. https://markets.businessinsider.com/commodities/oil-price?type=wti. [Online: 05.05.2024].
  • Cai, W., & Zhao, Z. (2023). Exploiting sugarcane waste molasses and dephenolized cottonseed protein as the promising component for eco-friendly wood-based panel adhesive formulation. Wood Material Science & Engineering, 1-10. doi.org/10.1080/17480272.2023.2289032.
  • Caputo, P., Porto, M., Angelico, R., Loise, V., Calandra, P., Rossi, C. O. (2020). Bitumen and asphalt concrete modified by nanometer-sized particles: Basic concepts, the state of the art and future perspectives of the nanoscale approach. Advances in Colloid and Interface Science, 285, 102283. doi.org/10.1016/j.cis.2020.102283.
  • Chantit, F., El Abbassi, F. E., Kchikach, A. (2022). Investigation on the reuse of the sugar co-products (Bagasse, Molasses, and Ash) as industrial wastes in the production of compressed earth blocks. Materials Today: Proceedings, 58, 1530-1534. doi.org/10.1016/j.matpr.2022.03.295.
  • Dabakuyo, I., Mutuku, R. N., Onchiri, R. O. (2022). Mechanical properties of compressed earth block stabilized with sugarcane molasses and metakaolin-based geopolymer. Civil Engineering Journal, 8(4), 780-795. doi.org/10.28991/CEJ-2022-08-04-012.
  • Djonga, P. N. D., Deramne, R. S., Assoualaye, G., Tom, A., Zaida, T. J. (2024). Composite panels from the combination of rice husk and wood chips with a natural resin based on tannins reinforced with sugar cane molasses intended for building insulation: physico-mechanical and thermal properties. Journal of Materials Science and Chemical Engineering, 12(02), 19-30. doi.org/10.4236/msce.2024.122002.
  • Eliodório, K. P., Cunha, G. C. D. G. E., Lino, F. S. D. O., Sommer, M. O. A., Gombert, A. K., Giudici, R., Basso, T. O. (2023). Physiology of Saccharomyces cerevisiae during growth on industrial sugar cane molasses can be reproduced in a tailor-made defined synthetic medium. Scientific Reports, 13(1), 10567. doi.org/10.1038/s41598-023-37618-8.
  • Gambalonga, B., Nicolini, J. L., Inocente, J. M., Pich, C. T., Angioletto, E., Pereira, F. R., ... Arcaro, S. (2023). Valorization of waste foundry sand aggregates in hot-mix asphalt. Process Safety and Environmental Protection, 173, 277-288. doi.org/10.1016/j.psep.2023.03.025.
  • Gao, X., Yang, Y., Deng, H. (2011). Utilization of beet molasses as a grinding aid in blended cements. Construction and Building Materials, 25(9), 3782-3789. doi:10.1016/j.conbuildmat.2011.04.041.
  • Geremew Kassa, M., Asemu, A. M., Belachew, M. T., Satheesh, N., Abera, B. D., Alemu Teferi, D. (2024). Review on the application, health usage, and negative effects of molasses. CyTA-Journal of Food, 22(1), 2321984. doi.org/10.1080/19476337.2024.2321984.
  • Gürü, M., Çubuk, M. K., Arslan, D., Aminbakhsh, S. (2017). Effects of sugar beet molasses and molasses-based boron oxide compound on bitumen properties. Journal of Materials in Civil Engineering, 29(4), 04016252. doi: 10.1061/(ASCE)MT.1943-5533.0001790.
  • Hareru, W., Ghebrab, T. (2020). Rheological properties and application of molasses modified bitumen in hot mix asphalt (HMA). Applied Sciences, 10(6), 1931. doi:10.3390/app10061931.
  • Huang, G., Pudasainee, D., Gupta, R., Liu, W. V. (2020). Utilization and performance evaluation of molasses as a retarder and plasticizer for calcium sulfoaluminate cement-based mortar. Construction and Building Materials, 243, 118201. doi.org/10.1016/j.conbuildmat.2020.118201.
  • Hussain Sadique, C. S. (2023). A systematic study to strengthen the sub grade of the pavement by stabilisation of expansive soil with molasses and jute fibre. Mathematical Statistician and Engineering Applications, 72(1), 668-682.
  • Isler-Kaya, A., Karaosmanoglu, F. (2022). Life cycle assessment of safflower and sugar beet molasses-based biofuels. Renewable Energy, 201, 1127-1138. doi.org/10.1016/j.renene.2022.11.041.
  • Jamir, L., Kumar, V., Kaur, J., Kumar, S., Singh, H. (2021). Composition, valorization and therapeutical potential of molasses: a critical review. Environmental Technology Reviews, 10(1), 131-142. doi.org/10.1080/21622515.2021.1892203.
  • Jaramillo, H. Y., Camperos, J. A. G., Suárez, A. (2022). Physical-mechanical properties of concrete mixtures incorporating sugar cane molasses. Webology (ISSN: 1735-188X), 19(6).
  • Jiménez, J. E., Fontes Vieira, C. M., Colorado, H. A. (2022). Composite soil made of rubber fibers from waste tires, blended sugar cane molasses, and kaolin clay. Sustainability, 14(4), 2239. doi.org/10.3390/ su14042239.
  • Jumadurdiyev, A., Ozkul, M. H., Saglam, A. R., Parlak, N. (2005). The utilization of beet molasses as a retarding and water-reducing admixture for concrete. Cement and concrete research, 35(5), 874-882. doi:10.1016/j.cemconres.2004.04.036.
  • Kabeyi, M. J. B., Olanrewaju, O. A. (2022, March). Sugarcane molasses to energy conversion for sustainable production and energy transition. In 12th annual Istanbul international conference on industrial engineering and operations management, Istanbul, Turkey (Vol. 405).
  • Karimi, S., Lashkar-Ara, B., Najafi, L. (2022). Influence of sugarcane molasses addition on the shear strength properties of slightly plastic loamy soils. Arabian Journal of Geosciences, 15(9), 903. doi.org/10.1007/s12517-021-09395-z.
  • Kavas, T., Olgun, A., Erdogan, Y. (2005). Setting and hardening of borogypsum–Portland cement clinker–fly ash blends. Studies on effects of molasses on properties of mortar containing borogypsum. Cement and Concrete Research, 35(4), 711-718. doi:10.1016/j.cemconres.2004.05.019.
  • Klaver, M., Petersen, A. M., Görgens, J. F. (2023). Economic comparison of decentralized versus centralized processing of sugarcane to fructooligosaccharides and ethanol. Biofuels, Bioproducts and Biorefining, 17(6), 1566-1578. doi: 10.1002/bbb.2525.
  • Le, V. P. (2021). Performance of asphalt binder containing sugarcane waste molasses in hot mix asphalt. Case Studies in Construction Materials, 15. doi.org/10.1016/j.cscm.2021.e00595.
  • Li, H., Jiang, Z., Yang, X., Yu, L., Zhang, G., Wu, J., Liu, X. (2015). Sustainable resource opportunity for cane molasses: use of cane molasses as a grinding aid in the production of Portland cement. Journal of Cleaner Production, 93, 56-64. doi.org/10.1016/j.jclepro.2015.01.027.
  • Mashtakov, A. F., Chernykh, V. F., Poskonin, V. V. (2018, December). A new plasticizer of comprehensive action on the basis of sugar industry waste. In IOP Conference Series: Materials Science and Engineering 463 (3), 032043. IOP Publishing. doi:10.1088/1757-899X/463/3/032043.
  • Mehta, D., Saboo, N. (2024). Use of sugarcane molasses for preparation of bio-asphalt: Effect of source. Construction and Building Materials, 421, 135691. doi.org/10.1016/j.conbuildmat.2024.135691.
  • M'Ndegwa, J. K. (2011). The effect of cane molasses on strength of expansive clay soil. Journal of Emerging Trends in Engineering and Applied Sciences, 2(6), 1034-1041.
  • Mohammed, T. A., Kadhim, H. M. (2023). Sustainable high-strength lightweight concrete with pumice stone and sugar molasses. Journal of the Mechanical Behavior of Materials, 32(1), 20220231. doi.org/10.1515/jmbm-2022-0231.
  • Mordenti, A. L., Giaretta, E., Campidonico, L., Parazza, P., Formigoni, A. (2021). A review regarding the use of molasses in animal nutrition. Animals, 11(1), 115. doi.org/10.3390/ani11010115.
  • Mose, G. Y., Ponnurangam, P. (2019). Investigating the effect of cane molasses on the performance of base bitumen. Int. J. Res. Innov. Appl. Sci, 54-58.
  • Mustafa, G., Arshad, M., Bano, I., Abbas, M. (2023). Biotechnological applications of sugarcane bagasse and sugar beet molasses. Biomass Conversion and Biorefinery, 13(2), 1489-1501. doi.org/10.1007/s13399-020-01141-x.
  • Nabeel, M., Abbas, T., Ahmed, F., Abid, M. M., Raza, H., Khan, N., Hussain, T. (2019). Ground-granulated-blast-furnace-slag and sugar cane molasses influence on stabilization of claysoil. Pakistan Journal of Science, 71(4), 273.
  • Nguyen, T. L. T., Gheewala, S. H. (2008). Life cycle assessment of fuel ethanol from cane molasses in Thailand. The International Journal of Life Cycle Assessment, 13, 301-311. doi: 10.1007/s11367-008-0011-2.
  • OECD Report. Sugar-OECD-FAO Agricultural. https://stats.oecd.org/index.aspx?queryid=84958. [Online:23.04.2024].
  • Parascanu, M. M., Sanchez, N., Sandoval-Salas, F., Carreto, C. M., Soreanu, G., Sanchez-Silva, L. (2021). Environmental and economic analysis of bioethanol production from sugarcane molasses and agave juice. Environmental Science and Pollution Research, 28, 64374-64393. doi.org/10.1007/s11356-021-15471-4.
  • Pathan, S. B., Singh, V. V. (2017). Using molasses in concrete as a time retarding admixture. International Journal of Engineering Research & Technology, 6(11), 509-513.
  • Pekmezci, B. Y., Atahan, H. N. (2014). Kimyasal ve nano katkılar: betonda kullanımı ve beton performansına etkileri. Hazır Beton Dergisi, Mayıs-Haziran, 69-82.
  • Prakash, K. S., Phanindra, M., Surya, S. R., Naresh, J. (2014). Percentage replacement of bitumen with sugarcane waste molasses. Int. J. Civ. Eng. Technol, 5, 188-197.
  • Raheem, B. S., Oladiran, G. F., Oke, D. A., Musa, S. A. (2020). Evaluation of strength properties of subgrade materials stabilized with bio-enzyme. European Journal of Engineering and Technology Research, 5(5), 607-610.
  • Rangan, P. R. (2019). The Effect of using sugar cane drops as subtitute some asphalt for Ac-Bc and Ac-Wc concrete asphalt layer. Journal of Advanced Research in Dynamical & Control Systems, 11(7), 699-706.
  • Rashid, K., Tariq, S., Shaukat, W. (2019). Attribution of molasses dosage on fresh and hardened performance of recycled aggregate concrete. Construction and Building Materials, 197, 497-505. doi.org/10.1016/j.conbuildmat.2018.11.249.
  • Rodriguez Cuervo, L. S. (2020). Adobe bricks with sugarcane molasses and gypsum to enhance compressive strength in the city Cogua, Colombia. Revista de la construcción, 19(3), 358-365. doi: 10.7764/RDLC.19.3.358.
  • Saboo, N., Sukhija, M., Mehta, D., Haswanth, K., Srivastava, A., Patil, A. (2023). Use of raw sugarcane molasses as a partial replacement of asphalt binder: An experimental investigation. Construction and Building Materials, 369, 130541. doi.org/10.1016/j.conbuildmat.2023.130541.
  • Şahinöz, M., Aruntaş, H. Y., Gürü, M. (2022). Processing of polymer wood composite material from pine cone and the binder of phenol formaldehyde/PVAc/molasses and improvement of its properties. Case Studies in Construction Materials, 16, e01013. doi.org/10.1016/j.cscm.2022.e01013.
  • Şahinöz, M., Aruntaş, H., Gürü, M. (2023). Production of composite particleboard from waste plum pits (prunus domestica) and improvement of its characteristics. Cellulose Chemistry and Technology, 57(5-6). doi: 10.35812/cellulosechemtechnol.2023.57.53.
  • Shivhare, S., Mohanan, H. (2023). A review on subgrade soil stabilization using bio enzymes. Arabian Journal of Geosciences, 16(3), 148. doi.org/10.1007/s12517-023-11257-9.
  • Soré, S. O., Sanou, S., Aubert, J. E., Millogo, Y. (2023). Improvement of geotechnical and mechanical properties of laterite from Burkina Faso using sugar cane molasses for use as road structural layers. Journal de la Société Ouest-Africaine de Chimie, 52.
  • Stephen, G. S., Shitindi, M. J., Bura, M. D., Kahangwa, C. A., Nassary, E. K. (2024). Harnessing the potential of sugarcane-based liquid byproducts-molasses and spentwash (vinasse) for enhanced soil health and environmental quality. A systematic review. Frontiers in Agronomy, 6, 1358076. doi: 10.3389/fagro.2024.1358076.
  • Sutiawan, J., Syahfitri, A., Purnomo, D., Sudarmanto, Narto, Akbar, F., ... Hakim, L. (2023). Characterization and application of non-formaldehyde binder based citric acid, maleic acid, and molasses adhesive for plywood composite. Polymers, 15(19), 3897. doi.org/10.3390/polym15193897.
  • Syahfitri, Alifah, et al. "Conversion of agro-industrial wastes of sorghum bagasse and molasses into lightweight roof tile composite." Biomass Conversion and Biorefinery 14.1 (2024): 1001-1015. doi.org/10.1007/s13399-022-02435-y.
  • Taye, B., Araya, A. A. (2015, May). Stabilization of expansive clay soil with sugar cane molasess and cement. In Proceedings of the 2nd International Conference on Transportation in Africa (ICTA2015), Palapye, Botswana (pp. 25-27).
  • TEPGE Report. Tarımsal Ekonomi ve Politika Geliştirme Enstitüsü. Ürün raporu şeker pancarı ve şeker 2023.
  • THBB Report. Türkiye Hazır Beton Birliği, Hazır beton sektör raporu 2022.
  • Tulga, İ., Kılınç, K. (2018). Uçucu kül kullaniminin farkli dayanim siniflarindaki betonlarin mekanik ve durabilite özellikleri üzerindeki etkisi. Kırklareli Üniversitesi Mühendislik ve Fen Bilimleri Dergisi, 4(2), 212-236.
  • Vinodhkumar, S., Kulanthaivel, P., Kabilan, A., Lokeshkanna, K. M. (2018). Study of black cotton soil characteristics with molasses. Asian Journal of Engineering and Applied Technology, 7(S1), 73-77.
  • Weifeng, L. I., Suhua, M. A., Shengbiao, Z., Xiaodong, S. (2014). Physical and chemical studies on cement containing sugarcane molasses. Journal of Thermal Analysis and Calorimetry, 118, 83-91. Doi: 10.1007/s10973-014-3947-4.
  • Wynne, A. T., Meyer, J. H. (2002). An economic assessment of using molasses and condensed molasses solids as a fertilizer in the South African sugar industry. In Proceedings South African Sugar Technologists Association 200(76), 71-78.
  • Yibas Mamuye, E. T. Q., Geremew, A. (2018). Combined effects of molasses-lime treatment on poor quality natural gravel materials used for sub-base and base course construction. GSJ, 6(7), 621-633.
  • Zhang, S., Wang, J., Jiang, H. (2021). Microbial production of value-added bioproducts and enzymes from molasses, a by-product of sugar industry. Food chemistry, 346, 128860. doi.org/10.1016/j.foodchem.2020.128860.
  • Zhang, Y., Fei, A., Li, D. (2016). Utilization of waste glycerin, industry lignin and cane molasses as grinding aids in blended cement. Construction and Building Materials, 123, 785-791. doi.org/10.1016/j.conbuildmat.2016.07.034.

Melasın İnşaat Mühendisliği İşlerinde Değerlendirilmesi: Bir İnceleme

Yıl 2024, Cilt: 10 Sayı: 2, 117 - 141

Öz

Bu inceleme çalışmasında, melasın inşaat mühendisliği işlerinde kullanım potansiyeli detaylı olarak araştırılmıştır. Melas malzemesi; ilaç, kimya, kağıt ve gübre gibi çok çeşitli sektörlerde kullanılmaktadır. Artan nüfus ve büyüyen inşaat sektörü hammadde ihtiyacını giderek arttırmaktadır. Ayrıca şeker üretimi sürecinde ortaya çıkan melas, çevre kirliliğini ve işletme maliyetlerini de arttırmaktadır. Bu çalışmanın amacı, melas malzemesinin inşaat sektöründe alternatif bir hammadde kaynağı olarak kullanılabileceğini açıklamaktır. Buna ek olarak, inşaat ve şeker sektörü gibi farklı endüstriler arasında ekonomik bir bağ kurabilmektir. Bu çalışmada, melas içeren asfalt, yapı malzemeleri, zemin çalışmaları ve çimentolu malzemeler ile ilgili literatür çalışmaları incelenmiştir. Çalışma sonucunda, genellikle melasın sentetik ve petrol esaslı malzemelerin yerine ikame malzemesi olarak kullanıldığı tespit edilmiştir. Buna göre, melas malzemesi özellikle petrol ve kimyasal malzeme açısından dışa bağımlı ülkelerin inşaat sektörü için değerli bir hammadde kaynağı olabilir. Öte yandan, melasın inşaat maliyetini azalttığı ve malzeme özelliklerini arttırdığı belirlenmiştir. Bu durum, inşaat sektörüne, rekabet açısından oldukça önemli bir avantaj sağlamaktadır. Ayrıca, çevre dostu yapı malzemesi üretiminde melasın kullanılması sayesinde sürdürülebilir bir çevre korunumu sağlanabilir. Melasın, inşaat mühendisliği işlerinde maliyet ve malzeme performansı açısından kullanılması önerilmektedir.

Kaynakça

  • Abalaka, A. E. (2011). Comparative effects of cassava starch and simple sugar in cement mortar and concrete. ATBU Journal of Environmental Technology, 4(1), 13-22.
  • Abtahi, S. M., Sheikhzadeh, M., & Hejazi, S. M. (2010). Fiber-reinforced asphalt-concrete–a review. Construction and Building Materials, 24(6), 871-877. doi:10.1016/j.conbuildmat.2009.11.009.
  • Acharya, D. P., Gyawali, T. R. (2024). Investigation of the performance of natural molasses on physical and mechanical properties of cement mortar. Ain Shams Engineering Journal, 15(1), 102355. doi.org/10.1016/j.asej.2023.102355.
  • Akar, C., Canbaz, M. (2016). Effect of molasses as an admixture on concrete durability. Journal of Cleaner Production, 112, 2374-2380. doi.org/10.1016/j.jclepro.2015.09.081.
  • Ali, B., Qureshi, L. A., Baig, H. S., Malik, S., Din, M., Aslam, H. M. U. (2020). Effect of molasses and water–cement ratio on properties of recycled aggregate concrete. Arabian Journal for Science and Engineering, 45(5), 3455-3467. doi.org/10.1007/s13369-019-04117-w.
  • Al-Mamoori, F. H. N., Al-Mamoori, A. H. N. (2018). Reduce the influence of horizontal and vertical cold joints on the behavior of high strength concrete beam casting in hot weather by using sugar molasses. Int J Eng Technol, 7(4.19), 794-800.
  • Archibong, G. A., Sunday, E. U., Akudike, J. C., Okeke, O. C., Amadi, C. (2020). A review of the principles and methods of soil stabilization. International Journal of Advanced Academic Research| Sciences, 6(3), 2488-9849.
  • Arslan, D., Guru, M., Çubuk, M. K., Öztürk, Ş. (2024). Investigation of the effects of molasses-based fly ash compound on bitumen and bituminous mixture properties by laboratory tests. Journal of The Faculty of Engineering and Architecture of Gazi University. doi: 10.17341/gazimmfd.1124843.
  • Benk, A., Coban, A. (2012). Possibility of producing lightweight, heat insulating bricks from pumice and H3PO4-or NH4NO3-hardened molasses binder. Ceramics International, 38(3), 2283-2293. doi:10.1016/j.ceramint.2011.10.080.
  • Bhardwaj, A., Sharma, R. K. (2022). Designing thickness of subgrade for flexible pavements incorporating waste foundry sand, molasses, and lime. Innovative Infrastructure Solutions, 7(1), 132. doi.org/10.1007/s41062-021-00723-6.
  • Businessinsider. Markets insider. https://markets.businessinsider.com/commodities/oil-price?type=wti. [Online: 05.05.2024].
  • Cai, W., & Zhao, Z. (2023). Exploiting sugarcane waste molasses and dephenolized cottonseed protein as the promising component for eco-friendly wood-based panel adhesive formulation. Wood Material Science & Engineering, 1-10. doi.org/10.1080/17480272.2023.2289032.
  • Caputo, P., Porto, M., Angelico, R., Loise, V., Calandra, P., Rossi, C. O. (2020). Bitumen and asphalt concrete modified by nanometer-sized particles: Basic concepts, the state of the art and future perspectives of the nanoscale approach. Advances in Colloid and Interface Science, 285, 102283. doi.org/10.1016/j.cis.2020.102283.
  • Chantit, F., El Abbassi, F. E., Kchikach, A. (2022). Investigation on the reuse of the sugar co-products (Bagasse, Molasses, and Ash) as industrial wastes in the production of compressed earth blocks. Materials Today: Proceedings, 58, 1530-1534. doi.org/10.1016/j.matpr.2022.03.295.
  • Dabakuyo, I., Mutuku, R. N., Onchiri, R. O. (2022). Mechanical properties of compressed earth block stabilized with sugarcane molasses and metakaolin-based geopolymer. Civil Engineering Journal, 8(4), 780-795. doi.org/10.28991/CEJ-2022-08-04-012.
  • Djonga, P. N. D., Deramne, R. S., Assoualaye, G., Tom, A., Zaida, T. J. (2024). Composite panels from the combination of rice husk and wood chips with a natural resin based on tannins reinforced with sugar cane molasses intended for building insulation: physico-mechanical and thermal properties. Journal of Materials Science and Chemical Engineering, 12(02), 19-30. doi.org/10.4236/msce.2024.122002.
  • Eliodório, K. P., Cunha, G. C. D. G. E., Lino, F. S. D. O., Sommer, M. O. A., Gombert, A. K., Giudici, R., Basso, T. O. (2023). Physiology of Saccharomyces cerevisiae during growth on industrial sugar cane molasses can be reproduced in a tailor-made defined synthetic medium. Scientific Reports, 13(1), 10567. doi.org/10.1038/s41598-023-37618-8.
  • Gambalonga, B., Nicolini, J. L., Inocente, J. M., Pich, C. T., Angioletto, E., Pereira, F. R., ... Arcaro, S. (2023). Valorization of waste foundry sand aggregates in hot-mix asphalt. Process Safety and Environmental Protection, 173, 277-288. doi.org/10.1016/j.psep.2023.03.025.
  • Gao, X., Yang, Y., Deng, H. (2011). Utilization of beet molasses as a grinding aid in blended cements. Construction and Building Materials, 25(9), 3782-3789. doi:10.1016/j.conbuildmat.2011.04.041.
  • Geremew Kassa, M., Asemu, A. M., Belachew, M. T., Satheesh, N., Abera, B. D., Alemu Teferi, D. (2024). Review on the application, health usage, and negative effects of molasses. CyTA-Journal of Food, 22(1), 2321984. doi.org/10.1080/19476337.2024.2321984.
  • Gürü, M., Çubuk, M. K., Arslan, D., Aminbakhsh, S. (2017). Effects of sugar beet molasses and molasses-based boron oxide compound on bitumen properties. Journal of Materials in Civil Engineering, 29(4), 04016252. doi: 10.1061/(ASCE)MT.1943-5533.0001790.
  • Hareru, W., Ghebrab, T. (2020). Rheological properties and application of molasses modified bitumen in hot mix asphalt (HMA). Applied Sciences, 10(6), 1931. doi:10.3390/app10061931.
  • Huang, G., Pudasainee, D., Gupta, R., Liu, W. V. (2020). Utilization and performance evaluation of molasses as a retarder and plasticizer for calcium sulfoaluminate cement-based mortar. Construction and Building Materials, 243, 118201. doi.org/10.1016/j.conbuildmat.2020.118201.
  • Hussain Sadique, C. S. (2023). A systematic study to strengthen the sub grade of the pavement by stabilisation of expansive soil with molasses and jute fibre. Mathematical Statistician and Engineering Applications, 72(1), 668-682.
  • Isler-Kaya, A., Karaosmanoglu, F. (2022). Life cycle assessment of safflower and sugar beet molasses-based biofuels. Renewable Energy, 201, 1127-1138. doi.org/10.1016/j.renene.2022.11.041.
  • Jamir, L., Kumar, V., Kaur, J., Kumar, S., Singh, H. (2021). Composition, valorization and therapeutical potential of molasses: a critical review. Environmental Technology Reviews, 10(1), 131-142. doi.org/10.1080/21622515.2021.1892203.
  • Jaramillo, H. Y., Camperos, J. A. G., Suárez, A. (2022). Physical-mechanical properties of concrete mixtures incorporating sugar cane molasses. Webology (ISSN: 1735-188X), 19(6).
  • Jiménez, J. E., Fontes Vieira, C. M., Colorado, H. A. (2022). Composite soil made of rubber fibers from waste tires, blended sugar cane molasses, and kaolin clay. Sustainability, 14(4), 2239. doi.org/10.3390/ su14042239.
  • Jumadurdiyev, A., Ozkul, M. H., Saglam, A. R., Parlak, N. (2005). The utilization of beet molasses as a retarding and water-reducing admixture for concrete. Cement and concrete research, 35(5), 874-882. doi:10.1016/j.cemconres.2004.04.036.
  • Kabeyi, M. J. B., Olanrewaju, O. A. (2022, March). Sugarcane molasses to energy conversion for sustainable production and energy transition. In 12th annual Istanbul international conference on industrial engineering and operations management, Istanbul, Turkey (Vol. 405).
  • Karimi, S., Lashkar-Ara, B., Najafi, L. (2022). Influence of sugarcane molasses addition on the shear strength properties of slightly plastic loamy soils. Arabian Journal of Geosciences, 15(9), 903. doi.org/10.1007/s12517-021-09395-z.
  • Kavas, T., Olgun, A., Erdogan, Y. (2005). Setting and hardening of borogypsum–Portland cement clinker–fly ash blends. Studies on effects of molasses on properties of mortar containing borogypsum. Cement and Concrete Research, 35(4), 711-718. doi:10.1016/j.cemconres.2004.05.019.
  • Klaver, M., Petersen, A. M., Görgens, J. F. (2023). Economic comparison of decentralized versus centralized processing of sugarcane to fructooligosaccharides and ethanol. Biofuels, Bioproducts and Biorefining, 17(6), 1566-1578. doi: 10.1002/bbb.2525.
  • Le, V. P. (2021). Performance of asphalt binder containing sugarcane waste molasses in hot mix asphalt. Case Studies in Construction Materials, 15. doi.org/10.1016/j.cscm.2021.e00595.
  • Li, H., Jiang, Z., Yang, X., Yu, L., Zhang, G., Wu, J., Liu, X. (2015). Sustainable resource opportunity for cane molasses: use of cane molasses as a grinding aid in the production of Portland cement. Journal of Cleaner Production, 93, 56-64. doi.org/10.1016/j.jclepro.2015.01.027.
  • Mashtakov, A. F., Chernykh, V. F., Poskonin, V. V. (2018, December). A new plasticizer of comprehensive action on the basis of sugar industry waste. In IOP Conference Series: Materials Science and Engineering 463 (3), 032043. IOP Publishing. doi:10.1088/1757-899X/463/3/032043.
  • Mehta, D., Saboo, N. (2024). Use of sugarcane molasses for preparation of bio-asphalt: Effect of source. Construction and Building Materials, 421, 135691. doi.org/10.1016/j.conbuildmat.2024.135691.
  • M'Ndegwa, J. K. (2011). The effect of cane molasses on strength of expansive clay soil. Journal of Emerging Trends in Engineering and Applied Sciences, 2(6), 1034-1041.
  • Mohammed, T. A., Kadhim, H. M. (2023). Sustainable high-strength lightweight concrete with pumice stone and sugar molasses. Journal of the Mechanical Behavior of Materials, 32(1), 20220231. doi.org/10.1515/jmbm-2022-0231.
  • Mordenti, A. L., Giaretta, E., Campidonico, L., Parazza, P., Formigoni, A. (2021). A review regarding the use of molasses in animal nutrition. Animals, 11(1), 115. doi.org/10.3390/ani11010115.
  • Mose, G. Y., Ponnurangam, P. (2019). Investigating the effect of cane molasses on the performance of base bitumen. Int. J. Res. Innov. Appl. Sci, 54-58.
  • Mustafa, G., Arshad, M., Bano, I., Abbas, M. (2023). Biotechnological applications of sugarcane bagasse and sugar beet molasses. Biomass Conversion and Biorefinery, 13(2), 1489-1501. doi.org/10.1007/s13399-020-01141-x.
  • Nabeel, M., Abbas, T., Ahmed, F., Abid, M. M., Raza, H., Khan, N., Hussain, T. (2019). Ground-granulated-blast-furnace-slag and sugar cane molasses influence on stabilization of claysoil. Pakistan Journal of Science, 71(4), 273.
  • Nguyen, T. L. T., Gheewala, S. H. (2008). Life cycle assessment of fuel ethanol from cane molasses in Thailand. The International Journal of Life Cycle Assessment, 13, 301-311. doi: 10.1007/s11367-008-0011-2.
  • OECD Report. Sugar-OECD-FAO Agricultural. https://stats.oecd.org/index.aspx?queryid=84958. [Online:23.04.2024].
  • Parascanu, M. M., Sanchez, N., Sandoval-Salas, F., Carreto, C. M., Soreanu, G., Sanchez-Silva, L. (2021). Environmental and economic analysis of bioethanol production from sugarcane molasses and agave juice. Environmental Science and Pollution Research, 28, 64374-64393. doi.org/10.1007/s11356-021-15471-4.
  • Pathan, S. B., Singh, V. V. (2017). Using molasses in concrete as a time retarding admixture. International Journal of Engineering Research & Technology, 6(11), 509-513.
  • Pekmezci, B. Y., Atahan, H. N. (2014). Kimyasal ve nano katkılar: betonda kullanımı ve beton performansına etkileri. Hazır Beton Dergisi, Mayıs-Haziran, 69-82.
  • Prakash, K. S., Phanindra, M., Surya, S. R., Naresh, J. (2014). Percentage replacement of bitumen with sugarcane waste molasses. Int. J. Civ. Eng. Technol, 5, 188-197.
  • Raheem, B. S., Oladiran, G. F., Oke, D. A., Musa, S. A. (2020). Evaluation of strength properties of subgrade materials stabilized with bio-enzyme. European Journal of Engineering and Technology Research, 5(5), 607-610.
  • Rangan, P. R. (2019). The Effect of using sugar cane drops as subtitute some asphalt for Ac-Bc and Ac-Wc concrete asphalt layer. Journal of Advanced Research in Dynamical & Control Systems, 11(7), 699-706.
  • Rashid, K., Tariq, S., Shaukat, W. (2019). Attribution of molasses dosage on fresh and hardened performance of recycled aggregate concrete. Construction and Building Materials, 197, 497-505. doi.org/10.1016/j.conbuildmat.2018.11.249.
  • Rodriguez Cuervo, L. S. (2020). Adobe bricks with sugarcane molasses and gypsum to enhance compressive strength in the city Cogua, Colombia. Revista de la construcción, 19(3), 358-365. doi: 10.7764/RDLC.19.3.358.
  • Saboo, N., Sukhija, M., Mehta, D., Haswanth, K., Srivastava, A., Patil, A. (2023). Use of raw sugarcane molasses as a partial replacement of asphalt binder: An experimental investigation. Construction and Building Materials, 369, 130541. doi.org/10.1016/j.conbuildmat.2023.130541.
  • Şahinöz, M., Aruntaş, H. Y., Gürü, M. (2022). Processing of polymer wood composite material from pine cone and the binder of phenol formaldehyde/PVAc/molasses and improvement of its properties. Case Studies in Construction Materials, 16, e01013. doi.org/10.1016/j.cscm.2022.e01013.
  • Şahinöz, M., Aruntaş, H., Gürü, M. (2023). Production of composite particleboard from waste plum pits (prunus domestica) and improvement of its characteristics. Cellulose Chemistry and Technology, 57(5-6). doi: 10.35812/cellulosechemtechnol.2023.57.53.
  • Shivhare, S., Mohanan, H. (2023). A review on subgrade soil stabilization using bio enzymes. Arabian Journal of Geosciences, 16(3), 148. doi.org/10.1007/s12517-023-11257-9.
  • Soré, S. O., Sanou, S., Aubert, J. E., Millogo, Y. (2023). Improvement of geotechnical and mechanical properties of laterite from Burkina Faso using sugar cane molasses for use as road structural layers. Journal de la Société Ouest-Africaine de Chimie, 52.
  • Stephen, G. S., Shitindi, M. J., Bura, M. D., Kahangwa, C. A., Nassary, E. K. (2024). Harnessing the potential of sugarcane-based liquid byproducts-molasses and spentwash (vinasse) for enhanced soil health and environmental quality. A systematic review. Frontiers in Agronomy, 6, 1358076. doi: 10.3389/fagro.2024.1358076.
  • Sutiawan, J., Syahfitri, A., Purnomo, D., Sudarmanto, Narto, Akbar, F., ... Hakim, L. (2023). Characterization and application of non-formaldehyde binder based citric acid, maleic acid, and molasses adhesive for plywood composite. Polymers, 15(19), 3897. doi.org/10.3390/polym15193897.
  • Syahfitri, Alifah, et al. "Conversion of agro-industrial wastes of sorghum bagasse and molasses into lightweight roof tile composite." Biomass Conversion and Biorefinery 14.1 (2024): 1001-1015. doi.org/10.1007/s13399-022-02435-y.
  • Taye, B., Araya, A. A. (2015, May). Stabilization of expansive clay soil with sugar cane molasess and cement. In Proceedings of the 2nd International Conference on Transportation in Africa (ICTA2015), Palapye, Botswana (pp. 25-27).
  • TEPGE Report. Tarımsal Ekonomi ve Politika Geliştirme Enstitüsü. Ürün raporu şeker pancarı ve şeker 2023.
  • THBB Report. Türkiye Hazır Beton Birliği, Hazır beton sektör raporu 2022.
  • Tulga, İ., Kılınç, K. (2018). Uçucu kül kullaniminin farkli dayanim siniflarindaki betonlarin mekanik ve durabilite özellikleri üzerindeki etkisi. Kırklareli Üniversitesi Mühendislik ve Fen Bilimleri Dergisi, 4(2), 212-236.
  • Vinodhkumar, S., Kulanthaivel, P., Kabilan, A., Lokeshkanna, K. M. (2018). Study of black cotton soil characteristics with molasses. Asian Journal of Engineering and Applied Technology, 7(S1), 73-77.
  • Weifeng, L. I., Suhua, M. A., Shengbiao, Z., Xiaodong, S. (2014). Physical and chemical studies on cement containing sugarcane molasses. Journal of Thermal Analysis and Calorimetry, 118, 83-91. Doi: 10.1007/s10973-014-3947-4.
  • Wynne, A. T., Meyer, J. H. (2002). An economic assessment of using molasses and condensed molasses solids as a fertilizer in the South African sugar industry. In Proceedings South African Sugar Technologists Association 200(76), 71-78.
  • Yibas Mamuye, E. T. Q., Geremew, A. (2018). Combined effects of molasses-lime treatment on poor quality natural gravel materials used for sub-base and base course construction. GSJ, 6(7), 621-633.
  • Zhang, S., Wang, J., Jiang, H. (2021). Microbial production of value-added bioproducts and enzymes from molasses, a by-product of sugar industry. Food chemistry, 346, 128860. doi.org/10.1016/j.foodchem.2020.128860.
  • Zhang, Y., Fei, A., Li, D. (2016). Utilization of waste glycerin, industry lignin and cane molasses as grinding aids in blended cement. Construction and Building Materials, 123, 785-791. doi.org/10.1016/j.conbuildmat.2016.07.034.
Toplam 71 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yapı Malzemeleri
Bölüm Makaleler
Yazarlar

Melih Şahinöz 0000-0002-4159-1535

Erken Görünüm Tarihi 3 Ekim 2024
Yayımlanma Tarihi
Gönderilme Tarihi 7 Mayıs 2024
Kabul Tarihi 1 Temmuz 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 10 Sayı: 2

Kaynak Göster

APA Şahinöz, M. (2024). Evaluation of Molasses in Civil Engineering Works: A Review. Kirklareli University Journal of Engineering and Science, 10(2), 117-141.