Hidrofilik Aşı Kopolimer Membranların Şişme Davranışının Kinetik İncelenmesi
Yıl 2024,
Cilt: 10 Sayı: 2, 191 - 206
Fatma Kurşun Baysak
,
Gülcan Geyik
Öz
Son yıllarda, çevreyle uyumlu malzeme ve süreçlerin kullanımı, biyolojik çeşitliliği koruma, su, toprak ve hava kirliliğini azaltma ve yenilenebilir kaynakları teşvik etme hedefleri doğrultusunda büyük önem kazanmıştır. Yeni çevresel sorunların ortaya çıkmasını engellemek ve mevcut problemlere çözüm bulmak da bu çabaların temel amaçları arasında yer almaktadır. Bu çalışmada, yeşil kimya malzemelerinden biyolojik olarak uyumlu polimer olarak bilinen poli (vinil alkol) (PVA), hazırlanan membranlarda destek polimer olarak tercih edilmiştir. Destek metaryeli olan PVA içerisine konulan aşı kopolimerler yine biyolojik uyumluluk gösteren polivinil alkol-aşı-poli(etilen glikol dimetakrilat) (PVA-aşı-ED) ve sodyum aljinat-aşı- poli(etilen glikol dimetakrilat) (ALG-aşı-ED) aşı kopolimerleri kullanılarak hazırlanmıştır. Termal çapraz bağlı membranların şişme davranışı pH 6’da çalışılmış, en iyi şişme oranı membran6’da %528,8 olarak bulunmuştur. Şişme sonuçlarından yararlanılarak kinetik hesaplamalar yapılmıştır.
Etik Beyan
Bulunmamaktadır.
Destekleyen Kurum
Kırklareli Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü
Proje Numarası
KLÜBAP-238 ve KLÜBAP-264
Teşekkür
Bu çalışmaya KLÜBAP-238 ve KLÜBAP-264 numaralı projeler aracılığı ile destekte bulunan Kırklareli Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü'ne teşekkürlerimizi sunarız.
Kaynakça
- Ayhan, H., & Ayhan, F. (2014). Kontrollu ilaç salımı için fotoçapraz bağlı poli(Etilen glikol) hidrojeller. Turkish Journal of Biochemistry, 39(4), 403–415. Retrieved from https://doi.org/10.5505/tjb.2014.09719
- Baker, R. W. (2023). Membrane technology and applications (Third Edition). John Wiley & Sons.
- Bal, A., Özkahraman, B., Gök, M. K., & Acar, I. (2014). Investigation of Swelling, Adsorption and Mechanical Properties of Sodium Acrylate Based Hydrogel and Cryogels. Pamukkale University Journal of Engineering Sciences, 20(7), 258–265. Retrieved from https://doi.org/10.5505/pajes.2014.08370
- Gao, X., Guo, C., Hao, J., Zhao, Z., Long, H., & Li, M. (2020, December 1). Adsorption of heavy metal ions by sodium alginate based adsorbent-a review and new perspectives. International Journal of Biological Macromolecules. Elsevier B.V. Retrieved from https://doi.org/10.1016/j.ijbiomac.2020.09.046
- GEYİK, G. (2023). Ca2+ İyonları ile Çapraz Bağlı Sodyum Aljinat/-Karagenan Kürelerden Nifedipinin Kontrollü Salımı. Uluslararası Muhendislik Arastirma ve Gelistirme Dergisi, 16(1), 150–162. Retrieved from https://doi.org/10.29137/umagd.1384946
- Geyik, G., Güncüm, E., & Işıklan, N. (2023). Design and development of pH-responsive alginate-based nanogel carriers for etoposide delivery. International Journal of Biological Macromolecules, 250, 126242. Retrieved from https://doi.org/10.1016/j.ijbiomac.2023.126242
- Geyik, G., & Işıklan, N. (2020). Synthesis, characterization and swelling performance of a temperature/pH-sensitive κ-carrageenan graft copolymer. International Journal of Biological Macromolecules, 152, 359–370. Retrieved from https://doi.org/10.1016/j.ijbiomac.2020.02.129
- Geyik, G., & Işıklan, N. (2021). Design and fabrication of hybrid triple-responsive κ-carrageenan-based nanospheres for controlled drug delivery. International Journal of Biological Macromolecules, 192, 701–715. Retrieved 6 October 2023 from https://doi.org/10.1016/J.IJBIOMAC.2021.10.007
- Geyik, G., & Işıklan, N. (2023). Chemical modification of κ-carrageenan with poly(2-hydroxypropylmethacrylamide) through microwave induced graft copolymerization: Characterization and swelling features. International Journal of Biological Macromolecules, 235, 123888. Retrieved from https://doi.org/10.1016/j.ijbiomac.2023.123888
- Işiklan, N., & Kurşun, F. (2013). Synthesis and characterization of graft copolymer of sodium alginate and poly(itaconic acid) by the redox system. Polymer Bulletin, 70(3). Retrieved from https://doi.org/10.1007/s00289-012-0876-x
- Işiklan, N., Kurşun, F., & Inal, M. (2009). Graft copolymerization of itaconic acid onto sodium alginate using ceric ammonium nitrate as initiator. Journal of Applied Polymer Science, 114(1), 40–48. Retrieved from https://doi.org/10.1002/app.30549
- Işiklan, N., Kurşun, F., & Inal, M. (2010). Graft copolymerization of itaconic acid onto sodium alginate using benzoyl peroxide. Carbohydrate Polymers, 79(3), 665–672. Retrieved from https://doi.org/10.1016/j.carbpol.2009.09.021
- Işiklan, Nuran, & Küçükbalci, G. (2012). Microwave-induced synthesis of alginate-graft-poly(N-isopropylacrylamide) and drug release properties of dual pH- and temperature-responsive beads. European Journal of Pharmaceutics and Biopharmaceutics, 82(2), 316–331. Retrieved from https://doi.org/10.1016/j.ejpb.2012.07.015
- Jadoun, S., & Nirmala Kumari, J. (2019). Polyvinyl Alcohol (PVA) Based Nanocomposites for Biomedical and Tissue Engineering Applications. Biocomp. Bio. Med., 20, 111–126.
- Jayakumar, R., Prabaharan, M., Reis, R. L., & Mano, J. F. (2005). Graft copolymerized chitosan - Present status and applications. Carbohydrate Polymers, 62(2), 142–158. Retrieved from https://doi.org/10.1016/j.carbpol.2005.07.017
- Korsmeyer, R. W., Gurny, R., Doelker, E., Buri, P., & Peppas, N. A. (1983). Mechanisms of solute release from porous hydrophilic polymers. International Journal of Pharmaceutics, 15(1), 25–35. Retrieved 22 October 2024 from https://doi.org/10.1016/0378-5173(83)90064-9
- Kurşun, F. (2020). Application of PVA-b-NaY zeolite mixture membranes in pervaporation method. Journal of Molecular Structure, 1201, 127170. Retrieved from https://doi.org/10.1016/j.molstruc.2019.127170
- Kurşun, F., & Işıklan, N. (2016). Development of thermo-responsive poly(vinyl alcohol)-g-poly(N-isopropylacrylamide) copolymeric membranes for separation of isopropyl alcohol/water mixtures via pervaporation. Journal of Industrial and Engineering Chemistry, 41. Retrieved from https://doi.org/10.1016/j.jiec.2016.07.011
- Kurşun, F., & Işıklan, N. (2020). Synthesis, characterization, and swelling behavior of poly(N-hydroxymethylacrylamide) grafted poly(vinyl alcohol). Journal of Applied Polymer Science, 137(35). Retrieved from https://doi.org/10.1002/app.49014
- Lee, K. Y., & Mooney, D. J. (2012). Alginate: Properties and biomedical applications. Progress in Polymer Science (Oxford). Elsevier Ltd. Retrieved from https://doi.org/10.1016/j.progpolymsci.2011.06.003
- Lin, M. C., Tai, H. Y., Ou, T. C., & Don, T. M. (2012). Preparation and characterization of UV-sensitive chitosan for UV-cure with poly(ethylene glycol) dimethacrylate. Cellulose, 19(5), 1689–1700. Retrieved from https://doi.org/10.1007/s10570-012-9758-5
- Meimoun, J., Wiatz, V., Saint-Loup, R., Parcq, J., Favrelle, A., Bonnet, F., & Zinck, P. (2018, January 1). Modification of starch by graft copolymerization. Starch/Staerke. Wiley-VCH Verlag. Retrieved from https://doi.org/10.1002/star.201600351
- Moszner, N., & Salz, U. (2001). New developments of polymeric dental composites, 26, 535–576. Retrieved from www.elsevier.com/locate/ppolysci
- Peppas, N. A., Bures, P., Leobandung, W., & Ichikawa, H. (2000). Hydrogels in pharmaceutical formulations, 50, 27–46. Retrieved from www.elsevier.com/locate/ejphabio
- Peppas, Nicholas A, & Brannon-Peppas, L. (1994). Water Diffusion and Sorption in Amorphous Macromolecular Systems and Foods. Journal of Food Engineering, 22, 189–210.
- Peppas, Nikolaos A., & Merrill, E. W. (1976). Poly(Vinyl Alcohol) Hydrogels: Reinforcement of Radiation-Crosslinked Networks by Crystallization. J Polym Sci Polym Chem Ed, 14(2), 441–457. Retrieved from https://doi.org/10.1002/pol.1976.170140215
- Pourmahdi, M., Abdollahi, M., & Nasiri, A. (2023). Effect of lignin source and initiation conditions on graft copolymerization of lignin with acrylamide and performance of graft copolymer as additive in water- based drilling fluid. Journal of Petroleum Science and Engineering, 220, 111253. Retrieved from https://doi.org/10.1016/j.petrol.2022.111253
- Purohit, P., Bhatt, A., Mittal, R. K., Abdellattif, M. H., & Farghaly, T. A. (2023, January 11). Polymer Grafting and its chemical reactions. Frontiers in Bioengineering and Biotechnology. Frontiers Media S.A. Retrieved from https://doi.org/10.3389/fbioe.2022.1044927
- Rahman, M. M., Islam, M. M., & Maniruzzaman, M. (2023). Preparation and characterization of biocomposite from modified α-cellulose of Agave cantala leaf fiber by graft copolymerization with 2 hydroxy ethyl methacrylate. Carbohydrate Polymer Technologies and Applications, 6, 100354. Retrieved from https://doi.org/10.1016/j.carpta.2023.100354
- Ritger, P. L., & Peppas, N. A. (1987). A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. Journal of Controlled Release, 5(1), 37–42. Retrieved 22 October 2024 from https://doi.org/10.1016/0168-3659(87)90035-6
- Şen Karaman, D., & Pamukçu, A. (2022). Polietilen Glikol Dimetilakrilat Doku İskelelerinin Dentritik Gözenekleri Genişletilmiş Mezogözenekli Silika Nanoparçacıklar ile Katkılandırılması ve In Vitro İncelemeleri. Konya Journal of Engineering Sciences, 10(1), 229–239. Retrieved from https://doi.org/10.36306/konjes.1027750
- Wang, M., Bai, J., Shao, K., Tang, W., Zhao, X., Lin, D., Ye, J. (2021). Poly(vinyl alcohol) Hydrogels: The Old and New Functional Materials. International Journal of Polymer Science. Hindawi Limited. Retrieved from https://doi.org/10.1155/2021/2225426