Araştırma Makalesi
BibTex RIS Kaynak Göster

Jeotermal Enerji ile Elektrik Üretiminde Farklı Akışkan Türlerinin Çevrim Performansına Etkisi

Yıl 2024, Cilt: 10 Sayı: 2, 282 - 293, 31.12.2024
https://doi.org/10.34186/klujes.1576527

Öz

Jeotermal enerji, doğal olarak yenilenen bir kaynak olup, fosil yakıtlara göre daha az karbondioksit emisyonu ile çevreye zarar vermeden elektrik ve ısı üretebilir. Bu da onu çevre dostu bir seçenek haline getirmektedir. Ülkemiz, aktif bir tektonik kuşak üzerinde yer almaktadır ve jeotermal enerji kaynakları bakımından dünya genelinde önemli bir konuma sahiptir. Bu sebeple jeotermal kaynaklardan faydalanma potansiyelimiz yüksektir. Jeotermal enerji ile elektrik üretim sistemi (türbin, ısı eşanjörü, akışkan özellikleri vb.) tasarımı da verimlilik açısından kritik bir rol oynamaktadır. Sistem, sıcaklık ve basınç gibi koşullara göre optimize edilmelidir. Bu çalışmada da; 195 0C kaynak sıcaklığı olan bir jeotermal akışkan kullanılan enerji dönüşüm santralinde, ikincil çevrimdeki farklı akışkan tipleri, türbin verimi ve kuyu başı sıcaklığı için elektrik üretim performansları karşılaştırılmıştır.

Destekleyen Kurum

Kutahya Dumlupınar University

Teşekkür

Information Note: This study was supported within the scope of Kutahya Dumlupınar University Scientific Research Project, No. 2024 – 44.

Kaynakça

  • IRENA (2023), World Energy Transitions Outlook 2023: 1.5°C Pathway, Volume 1, International Renewable Energy Agency, Abu Dhabi.
  • Dinçer, İ., & Ezan, M. E. H. M. E. T. (2020). Tuba-geothermal energy technologies report.
  • Arslan, O., & Kose, R. (2010). Exergoeconomic optimization of integrated geothermal system in Simav, Kutahya. Energy Conversion and Management, 51(4), 663-676.
  • Tuğcu, A., Arslan, O., Köse, R., & Yamankaradeniz, N. (2016). Thermodynamic and economic analysis of geothermal supported absorption cooling system: Simav example. Journal of Thermal Science and Technology, 36(1), 143-159.
  • Rašković, P., Guzović, Z., & Cvetković, S. (2013). Performance analysis of electricity generation by the medium temperature geothermal resources: Velika Ciglena case study. Energy, 54, 11-31.
  • Zinsalo, J. M., Lamarche, L., & Raymond, J. (2022). Performance analysis and working fluid selection of an Organic Rankine Cycle Power Plant coupled to an Enhanced Geothermal System. Energy, 245, 123259.
  • Kabeyi, M. J. B. (2019). Geothermal electricity generation, challenges, opportunities and recommendations. International Journal of Advances in Scientific Research and Engineering (ijasre), 5(8), 53-95.
  • Bayer, P., Rybach, L., Blum, P., & Brauchler, R. (2013). Review on life cycle environmental effects of geothermal power generation. Renewable and Sustainable Energy Reviews, 26, 446-463.
  • Chitgar, N., Hemmati, A., & Sadrzadeh, M. (2023). A comparative performance analysis, working fluid selection, and machine learning optimization of ORC systems driven by geothermal energy. Energy Conversion and Management, 286, 117072.
  • Bu, X., Wang, L., & Li, H. (2013). Performance analysis and working fluid selection for geothermal energy-powered organic Rankine-vapor compression air conditioning. Geothermal Energy, 1, 1-14.
  • Luo, C., Huang, L., Gong, Y., & Ma, W. (2012). Thermodynamic comparison of different types of geothermal power plant systems and case studies in China. Renewable energy, 48, 155-160.
  • Heberle, F., & Brüggemann, D. (2010). Exergy based fluid selection for a geothermal Organic Rankine Cycle for combined heat and power generation. Applied Thermal Engineering, 30(11-12), 1326-1332.
  • Beckers, K. F., Rangel-Jurado, N., Chandrasekar, H., Hawkins, A. J., Fulton, P. M., & Tester, J. W. (2022). Techno-economic performance of closed-loop geothermal systems for heat production and electricity generation. Geothermics, 100, 102318.
  • Liu, Q., Duan, Y., & Yang, Z. (2013). Performance analyses of geothermal organic Rankine cycles with selected hydrocarbon working fluids. Energy, 63, 123-132.
  • Li, T., Liu, Q., Gao, X., Meng, N., & Kong, X. (2022). Thermodynamic, economic, and environmental performance comparison of typical geothermal power generation systems driven by hot dry rock. Energy Reports, 8, 2762-2777.

Effect of Different Fluid Types on Cycle Performance in Electricity Generation with Geothermal Energy

Yıl 2024, Cilt: 10 Sayı: 2, 282 - 293, 31.12.2024
https://doi.org/10.34186/klujes.1576527

Öz

Geothermal energy is a naturally renewable resource and can produce electricity and heat without harming the environment with less carbon dioxide emissions than fossil fuels. This makes it an environmentally friendly option. Our country is located on an active tectonic belt and has an important position in the world in terms of geothermal energy resources. For this reason, we have a high potential to benefit from geothermal resources. The design of the geothermal energy electricity generation system (turbine, heat exchanger, fluid properties, etc.) also plays a critical role in terms of efficiency. The system should be optimized according to conditions such as temperature and pressure. In this study, electricity production performances were compared for different fluid types in the secondary cycle, turbine efficiency and wellhead temperature in an energy conversion plant using a geothermal fluid with a source temperature of 195 0C.

Kaynakça

  • IRENA (2023), World Energy Transitions Outlook 2023: 1.5°C Pathway, Volume 1, International Renewable Energy Agency, Abu Dhabi.
  • Dinçer, İ., & Ezan, M. E. H. M. E. T. (2020). Tuba-geothermal energy technologies report.
  • Arslan, O., & Kose, R. (2010). Exergoeconomic optimization of integrated geothermal system in Simav, Kutahya. Energy Conversion and Management, 51(4), 663-676.
  • Tuğcu, A., Arslan, O., Köse, R., & Yamankaradeniz, N. (2016). Thermodynamic and economic analysis of geothermal supported absorption cooling system: Simav example. Journal of Thermal Science and Technology, 36(1), 143-159.
  • Rašković, P., Guzović, Z., & Cvetković, S. (2013). Performance analysis of electricity generation by the medium temperature geothermal resources: Velika Ciglena case study. Energy, 54, 11-31.
  • Zinsalo, J. M., Lamarche, L., & Raymond, J. (2022). Performance analysis and working fluid selection of an Organic Rankine Cycle Power Plant coupled to an Enhanced Geothermal System. Energy, 245, 123259.
  • Kabeyi, M. J. B. (2019). Geothermal electricity generation, challenges, opportunities and recommendations. International Journal of Advances in Scientific Research and Engineering (ijasre), 5(8), 53-95.
  • Bayer, P., Rybach, L., Blum, P., & Brauchler, R. (2013). Review on life cycle environmental effects of geothermal power generation. Renewable and Sustainable Energy Reviews, 26, 446-463.
  • Chitgar, N., Hemmati, A., & Sadrzadeh, M. (2023). A comparative performance analysis, working fluid selection, and machine learning optimization of ORC systems driven by geothermal energy. Energy Conversion and Management, 286, 117072.
  • Bu, X., Wang, L., & Li, H. (2013). Performance analysis and working fluid selection for geothermal energy-powered organic Rankine-vapor compression air conditioning. Geothermal Energy, 1, 1-14.
  • Luo, C., Huang, L., Gong, Y., & Ma, W. (2012). Thermodynamic comparison of different types of geothermal power plant systems and case studies in China. Renewable energy, 48, 155-160.
  • Heberle, F., & Brüggemann, D. (2010). Exergy based fluid selection for a geothermal Organic Rankine Cycle for combined heat and power generation. Applied Thermal Engineering, 30(11-12), 1326-1332.
  • Beckers, K. F., Rangel-Jurado, N., Chandrasekar, H., Hawkins, A. J., Fulton, P. M., & Tester, J. W. (2022). Techno-economic performance of closed-loop geothermal systems for heat production and electricity generation. Geothermics, 100, 102318.
  • Liu, Q., Duan, Y., & Yang, Z. (2013). Performance analyses of geothermal organic Rankine cycles with selected hydrocarbon working fluids. Energy, 63, 123-132.
  • Li, T., Liu, Q., Gao, X., Meng, N., & Kong, X. (2022). Thermodynamic, economic, and environmental performance comparison of typical geothermal power generation systems driven by hot dry rock. Energy Reports, 8, 2762-2777.
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Oğuzhan Erbaş 0000-0001-9424-4273

Erken Görünüm Tarihi 26 Aralık 2024
Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 30 Ekim 2024
Kabul Tarihi 8 Kasım 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 10 Sayı: 2

Kaynak Göster

APA Erbaş, O. (2024). Effect of Different Fluid Types on Cycle Performance in Electricity Generation with Geothermal Energy. Kirklareli University Journal of Engineering and Science, 10(2), 282-293. https://doi.org/10.34186/klujes.1576527