Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, Cilt: 10 Sayı: 2, 316 - 343, 31.12.2024
https://doi.org/10.34186/klujes.1586136

Öz

Proje Numarası

FEF-21028

Kaynakça

  • Amorim, R. V. de, Batista, K. E. A., Nagurniak, G. R., Orenha, R. P., Parreira, R. L. T., & Piotrowski, M. J.. CO, NO, and SO Adsorption on Ni Nanoclusters: a DFT Investigation. Dalton Transactions (2020).
  • Aslanzadeh, S. (2016). Transition metal doped ZnO nanoclusters for carbon monoxide detection: DFT studies. Journal of molecular modeling, 22(7), 160.
  • Aysan, I. I., Gorkan, T., Ozdemir, I., Kadioglu, Y., Gökoğlu, G., & Aktürk, E. (2020). Electronic structure, cohesive and magnetic properties of iridium oxide clusters adsorbed on graphene. Journal of Molecular Graphics and Modelling, 101, 107726.
  • Blöchl, P. E. (1994). Projector augmented-wave method. Physical review B, 50(24), 17953.
  • Chen, X., Sun, Z., Zhang, H., Onsori, S. (2020). Effect of metal atoms on the electronic properties of metal oxide nanoclusters for use in drug delivery applications: a density functional theory study. Molecular Physics, 118(13), e1692150.
  • Ersan, F., Akcay, A., Gökoğlu, G., & Aktürk, E. (2015). Interactions of h-AlN monolayer with platinum, oxygen, and their clusters. Chemical Physics, 455, 73-80.
  • Garzón, I. L., Michaelian, K., Beltrán, M. R., Posada-Amarillas, A., Ordejón, P., Artacho, E., Soler, J. M. (1998). Lowest energy structures of gold nanoclusters. Physical review letters, 81(8), 1600.
  • Grimme, S. (2006). Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction. Journal of computational chemistry, 27(15), 1787-1799.
  • Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., & Hutchison, G. R. (2012). Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. Journal of cheminformatics, 4, 1-17.
  • Hafner, J., & Kresse, G. (1997). The vienna ab-initio simulation program VASP: An efficient and versatile tool for studying the structural, dynamic, and electronic properties of materials. In Properties of Complex Inorganic Solids (pp. 69-82). Boston, MA: Springer US.
  • Henkelman, G., Arnaldsson, A., & Jónsson, H. (2006). A fast and robust algorithm for Bader decomposition of charge density. Computational Materials Science, 36(3), 354-360.
  • Huang, Q., Liu, H., An, W., Wang, Y., Feng, Y., & Men, Y. (2019). Synergy of a metallic NiCo dimer anchored on a C2N–graphene matrix promotes the electrochemical CO2 reduction reaction. ACS Sustainable Chemistry & Engineering, 7(23), 19113-19121.
  • Kadioglu, Y. (2021). Ultra small fluorine carbon nanoclusters by density functional theory. Journal of Innovative Science and Engineering, 5(2), 162-172.
  • Kadıoglu, Y., Demirkıran, A., Yaraneri, H., & Aktürk, O. Ü. (2014). Investigation of NH3 and H2 adsorption on Ptn (n= 2–15, 18, 22, 24) clusters by using density functional theory. Journal of alloys and compounds, 591, 188-200.
  • Kadıoğlu, Y., Gökoğlu, G., & Aktürk, O. Ü. (2017). Molecular adsorption properties of CO and H2O on Au-, Cu-, and AuxCuy-doped MoS2 monolayer. Applied Surface Science, 425, 246-253.
  • Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical review B, 54(16), 11169.
  • Monkhorst, H. J., & Pack, J. D. (1976). Special points for Brillouin-zone integrations. Physical review B, 13(12), 5188.
  • Netskina, O. V., Tayban, E. S., Rogov, V. A., Ozerova, A. M., Mukha, S. A., Simagina, V. I., Komova, O. V. (2021). Solid-state NaBH4 composites for hydrogen generation: Catalytic activity of nickel and cobalt catalysts. International Journal of Hydrogen Energy, 46(7), 5459-5471.
  • Nwaji, N., Zewdie, G. M., Gwak, J., Kang, H., Tufa, L. T., Choi, Y., Lee, J. (2024). Dimeric NiCo single-atom anchored on ultrathin N-doped 2D molybdenum carbide boosted performance in solid-state supercapacitor. Journal of Energy Storage, 83, 110671.
  • Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical review letters, 77(18), 3865.
  • Rad A. S., Ayub K.. Ni adsorption on Al12P12 nano-cage: A DFT study. Journal of Alloys and Compounds 678 (2016) 317e324.
  • Rad A. S., Aghaei S. M., Poralijan V., Peyravi M., Mirzaei M.. Application of pristine and Ni-decorated B12P12 nano-clusters as superior media for acetylene and ethylene adsorption: DFT calculations. Computational and Theoretical Chemistry 1109 (2017) 1–9.
  • Ranjan, P., Dhail, S., Venigalla, S., Kumar, A., Ledwani, L., Chakraborty, T. (2015). A theoretical analysis of bi-metallic (Cu–Ag) nano alloy clusters invoking DFT based descriptors. Materials Science-Poland, 33(4), 719-724.
  • Ranjan, P., Venigalla, S., Kumar, A., & Chakraborty, T. (2014). Theoretıcal Study of Bı-Metallıc Ag M Au N; (M+ N= 2-8) Nano Alloy Clusters In Terms Of Dft Based Descrıptors. New Frontiers in Chemistry, 23(2).
  • Roothaan, C. C. J. (1960). Self-consistent field theory for open shells of electronic systems. Reviews of modern physics, 32(2), 179.
  • Shamlouei, H. R., Nouri, A., Mohammadi, A., Tehrani, A. D. (2016). Influence of transition metal atoms doping on structural, electronic and nonlinear optical properties of Mg12O12 nanoclusters: A DFT study. Physica E: Low-dimensional Systems and Nanostructures, 77, 48-53.
  • Shewchuk, J. R. (1994). An introduction to the conjugate gradient method without the agonizing pain.
  • Vila, F., Rehr, J. J., Kas, J., Nuzzo, R. G., & Frenkel, A. I. (2008). Dynamic structure in supported Pt nanoclusters: real-time density functional theory and X-ray spectroscopy simulations. Physical Review B—Condensed Matter and Materials Physics, 78(12), 121404.
  • Wang Q., Lim K. H., Yang S., Yang Y., Chen Y.. Atomic carbon adsorption on Ni nanoclusters: a DFT study. Theor Chem Acc (2011) 128:17–24.
  • Yang, J., Bao, C., Zhu, K., Yu, T., Li, F., Liu, J., Zou, Z. High catalytic activity and stability of nickel sulfide and cobalt sulfide hierarchical nanospheres on the counter electrodes for dye-sensitized solar cells. Chemical Communications, 50(37), (2014), 4824-4826.

Nikel-Kobalt (NixCoy) Nano Kümelerinin Yapısal, Elektronik ve Manyetik Özelliklerinin Teorik İncelenmesi

Yıl 2024, Cilt: 10 Sayı: 2, 316 - 343, 31.12.2024
https://doi.org/10.34186/klujes.1586136

Öz

Bu çalışmada NixCoy (1 ≤ x ≤ 3; 1 ≤ y ≤ 6) nano kümeleri için kuantum mekaniğinin temel yasalarından yola çıkarak yoğunluk fonksiyoneli teorisini temel alan paket programlar kullanılarak enerjitik olarak en kararlı olduğu geometrik yapılar belirlendi. Enerjitik olarak kararlı bulunan NixCoy nano kümelerinin orbital enerji seviyeleri, atomlar arası bağ uzunlukları, kümelerin toplam manyetik moment değerleri ve seçili nano kümeler için CO ve H2 molekülü ile olan etkileşimleri hesaplandı. Nano küme içerisindeki Ni ve Co atomlarının bulunduğu konumun nano kümenin sahip olduğu toplam manyetik moment değerini değiştirdiği, fakat değişen manyetik moment değerlerinde azalma olsa da, incelenen NixCoy nano kümelerin hiç birisinin manyetik olmayan bir düzene sahip olmadığı görülmüştür. Elde edilen sonuçlar nikel ve kobalt atomlarından yeni nano kümelerin elde edilebilir olduğunu ve bu nano kümelerin seçili moleküller ile yapmış oldukları etkileşimler sonucu yeni kullanım alanlarına sahip olabileceklerini göstermiştir. CO ve H2 molekülleri NiCo4, Ni2Co4 ve Ni3Co3 nano kümelerine Ni atomu üzerinden bağlanmaktadırlar. H2 molekülünün nano kümelere görece güçlü bağlandığı ve NixCoy nano kümelerinin hidrojen depolamada kullanılabilir nano yapılar olduğu sonucu ortaya çıkartılmıştır.

Proje Numarası

FEF-21028

Teşekkür

Bu araştırma Aydın Adnan Menderes Üniversitesi Bilimsel Araştırma Projeleri tarafından desteklenmiştir. Proje Numarası: FEF-21028

Kaynakça

  • Amorim, R. V. de, Batista, K. E. A., Nagurniak, G. R., Orenha, R. P., Parreira, R. L. T., & Piotrowski, M. J.. CO, NO, and SO Adsorption on Ni Nanoclusters: a DFT Investigation. Dalton Transactions (2020).
  • Aslanzadeh, S. (2016). Transition metal doped ZnO nanoclusters for carbon monoxide detection: DFT studies. Journal of molecular modeling, 22(7), 160.
  • Aysan, I. I., Gorkan, T., Ozdemir, I., Kadioglu, Y., Gökoğlu, G., & Aktürk, E. (2020). Electronic structure, cohesive and magnetic properties of iridium oxide clusters adsorbed on graphene. Journal of Molecular Graphics and Modelling, 101, 107726.
  • Blöchl, P. E. (1994). Projector augmented-wave method. Physical review B, 50(24), 17953.
  • Chen, X., Sun, Z., Zhang, H., Onsori, S. (2020). Effect of metal atoms on the electronic properties of metal oxide nanoclusters for use in drug delivery applications: a density functional theory study. Molecular Physics, 118(13), e1692150.
  • Ersan, F., Akcay, A., Gökoğlu, G., & Aktürk, E. (2015). Interactions of h-AlN monolayer with platinum, oxygen, and their clusters. Chemical Physics, 455, 73-80.
  • Garzón, I. L., Michaelian, K., Beltrán, M. R., Posada-Amarillas, A., Ordejón, P., Artacho, E., Soler, J. M. (1998). Lowest energy structures of gold nanoclusters. Physical review letters, 81(8), 1600.
  • Grimme, S. (2006). Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction. Journal of computational chemistry, 27(15), 1787-1799.
  • Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., & Hutchison, G. R. (2012). Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. Journal of cheminformatics, 4, 1-17.
  • Hafner, J., & Kresse, G. (1997). The vienna ab-initio simulation program VASP: An efficient and versatile tool for studying the structural, dynamic, and electronic properties of materials. In Properties of Complex Inorganic Solids (pp. 69-82). Boston, MA: Springer US.
  • Henkelman, G., Arnaldsson, A., & Jónsson, H. (2006). A fast and robust algorithm for Bader decomposition of charge density. Computational Materials Science, 36(3), 354-360.
  • Huang, Q., Liu, H., An, W., Wang, Y., Feng, Y., & Men, Y. (2019). Synergy of a metallic NiCo dimer anchored on a C2N–graphene matrix promotes the electrochemical CO2 reduction reaction. ACS Sustainable Chemistry & Engineering, 7(23), 19113-19121.
  • Kadioglu, Y. (2021). Ultra small fluorine carbon nanoclusters by density functional theory. Journal of Innovative Science and Engineering, 5(2), 162-172.
  • Kadıoglu, Y., Demirkıran, A., Yaraneri, H., & Aktürk, O. Ü. (2014). Investigation of NH3 and H2 adsorption on Ptn (n= 2–15, 18, 22, 24) clusters by using density functional theory. Journal of alloys and compounds, 591, 188-200.
  • Kadıoğlu, Y., Gökoğlu, G., & Aktürk, O. Ü. (2017). Molecular adsorption properties of CO and H2O on Au-, Cu-, and AuxCuy-doped MoS2 monolayer. Applied Surface Science, 425, 246-253.
  • Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical review B, 54(16), 11169.
  • Monkhorst, H. J., & Pack, J. D. (1976). Special points for Brillouin-zone integrations. Physical review B, 13(12), 5188.
  • Netskina, O. V., Tayban, E. S., Rogov, V. A., Ozerova, A. M., Mukha, S. A., Simagina, V. I., Komova, O. V. (2021). Solid-state NaBH4 composites for hydrogen generation: Catalytic activity of nickel and cobalt catalysts. International Journal of Hydrogen Energy, 46(7), 5459-5471.
  • Nwaji, N., Zewdie, G. M., Gwak, J., Kang, H., Tufa, L. T., Choi, Y., Lee, J. (2024). Dimeric NiCo single-atom anchored on ultrathin N-doped 2D molybdenum carbide boosted performance in solid-state supercapacitor. Journal of Energy Storage, 83, 110671.
  • Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical review letters, 77(18), 3865.
  • Rad A. S., Ayub K.. Ni adsorption on Al12P12 nano-cage: A DFT study. Journal of Alloys and Compounds 678 (2016) 317e324.
  • Rad A. S., Aghaei S. M., Poralijan V., Peyravi M., Mirzaei M.. Application of pristine and Ni-decorated B12P12 nano-clusters as superior media for acetylene and ethylene adsorption: DFT calculations. Computational and Theoretical Chemistry 1109 (2017) 1–9.
  • Ranjan, P., Dhail, S., Venigalla, S., Kumar, A., Ledwani, L., Chakraborty, T. (2015). A theoretical analysis of bi-metallic (Cu–Ag) nano alloy clusters invoking DFT based descriptors. Materials Science-Poland, 33(4), 719-724.
  • Ranjan, P., Venigalla, S., Kumar, A., & Chakraborty, T. (2014). Theoretıcal Study of Bı-Metallıc Ag M Au N; (M+ N= 2-8) Nano Alloy Clusters In Terms Of Dft Based Descrıptors. New Frontiers in Chemistry, 23(2).
  • Roothaan, C. C. J. (1960). Self-consistent field theory for open shells of electronic systems. Reviews of modern physics, 32(2), 179.
  • Shamlouei, H. R., Nouri, A., Mohammadi, A., Tehrani, A. D. (2016). Influence of transition metal atoms doping on structural, electronic and nonlinear optical properties of Mg12O12 nanoclusters: A DFT study. Physica E: Low-dimensional Systems and Nanostructures, 77, 48-53.
  • Shewchuk, J. R. (1994). An introduction to the conjugate gradient method without the agonizing pain.
  • Vila, F., Rehr, J. J., Kas, J., Nuzzo, R. G., & Frenkel, A. I. (2008). Dynamic structure in supported Pt nanoclusters: real-time density functional theory and X-ray spectroscopy simulations. Physical Review B—Condensed Matter and Materials Physics, 78(12), 121404.
  • Wang Q., Lim K. H., Yang S., Yang Y., Chen Y.. Atomic carbon adsorption on Ni nanoclusters: a DFT study. Theor Chem Acc (2011) 128:17–24.
  • Yang, J., Bao, C., Zhu, K., Yu, T., Li, F., Liu, J., Zou, Z. High catalytic activity and stability of nickel sulfide and cobalt sulfide hierarchical nanospheres on the counter electrodes for dye-sensitized solar cells. Chemical Communications, 50(37), (2014), 4824-4826.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yoğun Madde Modellemesi ve Yoğunluk Fonksiyonel Teorisi, Yoğun Maddenin Elektronik ve Manyetik Özellikleri; Süperiletkenlik
Bölüm Makaleler
Yazarlar

Murat Kalkanlı 0009-0002-6882-966X

Fethi Mehmet Akis 0009-0008-3953-791X

Isil Ilgaz Aysan 0000-0001-8764-2425

Fatih Ersan 0000-0003-0049-105X

Proje Numarası FEF-21028
Erken Görünüm Tarihi 29 Aralık 2024
Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 15 Kasım 2024
Kabul Tarihi 9 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 10 Sayı: 2

Kaynak Göster

APA Kalkanlı, M., Akis, F. M., Ilgaz Aysan, I., Ersan, F. (2024). Nikel-Kobalt (NixCoy) Nano Kümelerinin Yapısal, Elektronik ve Manyetik Özelliklerinin Teorik İncelenmesi. Kirklareli University Journal of Engineering and Science, 10(2), 316-343. https://doi.org/10.34186/klujes.1586136